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Abstract. We establish a comparison principle for locally bounded plurisub-
harmonid functions on complex varieties (possibly with singularities) in bound-
ed domains in Cn.

1. Introduction

Let D be a bounded domain in Cn. Denote by PSH(D) the cone of plurisubhar-
monic functions onD and PSH(D)∩L∞

loc(D) (resp. PSH(D)∩L∞(D) the sub-cone
of locally bounded (resp. bounded) plurisubharmonic functions on D. According
to the fundamental work of Bedford and Taylor (see [BT1], [BT2], [BT3]), the com-
plex Monge-Ampère operator (ddc)n is well defined on PSH(D) ∩ L∞

loc(D). This
operator plays a prominent role in pluripotential theory just as the Laplace opera-
tor does in classical potential theory. An important property of this operator is the
following celebrated comparison principle due to Bedford and Taylor (see Theorem
4.1 in [BT1]).

Theorem 1.1. Let u, v ∈ PSH(D) ∩ L∞(D) be such that lim
z→∂D

(u(z)− v(z)) ≥ 0.

Then we have ∫
{u<v}

(ddcv)n ≤
∫
{u<v}

(ddcu)n.

An analogous comparison principle was also obtained by Bedford (see Theorem
4.3 in [Be]) for bounded plurisubharmonic functions on open subsets of complex
spaces. This result is the first inspiration for our work. The other one comes from
the following sharper form of Theorem 1.1 that was obtained a few years later by
Xing (see Lemma 1 in [Xi1]).

Theorem 1.2. Let u, v ∈ PSH(D) ∩ L∞(D) be such that lim
z→∂D

(u(z)− v(z)) ≥ 0.

Then for any constant r ≥ 0 and w1, · · · , wn ∈ PSH(D) with −1 ≤ wj < 0 we
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have

1

(n!)2

∫
{u<v}

(v − u)nddcw1 ∧ · · · ∧ ddcwn +

∫
{u<v}

(r − w1)(dd
cv)n

≤
∫
{u<v}

(r − w1)(dd
cu)n.

Theorem 1.2 implies many important inequalities involving the complex Monge-
Ampère operator (see [Xi2] for details). Besides, this strong comparison principle
provides an effective tool in studying convergence problems for plurisubharmonic
functions and estimating capacity of small sets in pluripotential theory. It should
be noted, however, that in the extreme case “r = ∞”, Theorem 1.2 reduces to
Theorem 1.1. Therefore, the essence of this version of the comparison principle lies
at the other extreme r = 0. Along the development of energy classes for plurisub-
harmonic functions (see [Ce]), there are variants of Theorem 1.2 that deal with
plurisubharmonic functions in Cegrell’s classes, we could mention Theorem 4.7 in
[KH] and Theorem 2 in [Xi2].

The aim of this note is twofold, first we generalize Theorem 1.2 to the context
of bounded plurisubharmonic functions on complex varieties in bounded domain
of Cn, and second we wish to relax somewhat the assumption on the boundary
behavior of u and v. Another novelty of our work is to replace the expression
(v − u)n in Theorem 1.2 by the composition of v − u with a suitable real valued
smooth function.

We now fix some notation and terminology that will be needed later on. Given
a connected complex variety V of pure dimension 1 ≤ k ≤ n in a bounded domain
D in C

n, by PSH(V ) (resp. PSH−(V )) we mean the set of plurisubharmonic
(resp. negative plurisubharmonic) functions on V. We defer to the next section for
a brief account of plurisubharmonic functions on V and the complex Monge-Ampère
operator on PSH(V )∩L∞

loc(V ), the collection of locally bounded plurisubharmonic
functions on V. A function χ : (0,∞) → (0,∞) is said to be m−increasing, where
m ≥ 1 is an integer, if χ ∈ Cm(0,∞), χ(j) is increasing and non-negative on (0,∞)
for every 0 ≤ j ≤ m. For such a function χ and 0 ≤ j ≤ m, we set

(1.1) χ(j)(0) := lim
t→0

χ(j)(t), Pm(χ) :=

m−1∑
j=0

χ(j)(0).

The boundary of V , denoted by ∂V , is the point set V ∩ ∂D. A subset E ⊂ ∂V is
said to be negligible if there exists ψ ∈ PSH−(V ) ∩ L∞

loc(V ) such that

(1.2) lim
z→ξ

ψ(z) = −∞, ∀ξ ∈ E.

Our comparison principle reads as follows.

Theorem 1.3. Let u, v ∈ PSH(V ) ∩ L∞
loc(V ) and E ⊂ ∂V be a negligible set.

Assume that u, v and E satisfy the following conditions:
(a) inf

z∈V
(u(z)− v(z)) > −∞.

(b) lim
z→ξ

(u(z)− v(z)) ≥ 0 for every ξ ∈ (∂V ) \ E.
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Then for every integer m with 1 ≤ m ≤ k and every m−increasing function
χ : (0,∞) → (0,∞) we have∫

{u<v}
χ ◦ (v − u)ddcw1 ∧ · · · ∧ ddcwk

+

∫
{u<v}

(−w1)χ
(m) ◦ (v − u)(ddcv)m ∧ ddcwm+1 ∧ · · · ∧ ddcwk

≤
∫
{u<v}

(−w1)χ
(m) ◦ (v − u)(ddcu)m ∧ ddcwm+1 ∧ · · · ∧ ddcwk

+ Pm(χ)

∫
V

ddcw1 ∧ · · · ∧ ddcwk,

where w1, · · · , wk ∈ PSH−(V ) ∩ L∞
loc(V ) satisfying wj ≥ −1 for 2 ≤ j ≤ m.

Let’s point out that in the case where V = D,m = k = n and χ(t) = tn,
our comparison principle directly implies Theorem 1.2 even with a slightly better
estimate, since χ(n) ≡ n! < (n!)2.

The main ingredients in our proof are a smoothing method for plurisubharmonic
functions on complex varieties developed by Bedford in [Be] as well as integration
by parts techniques demonstrated in [Xi1] and [KH].

The first application of our comparison principle is the following domination
principle that was essentially due to Bedford and Taylor in the case where V is
an open domain in Cn and the exceptional set E is empty (see Corollary 4.4 and
Corollary 4.5 in [BT1]).

Corollary 1.4. Let u, v ∈ PSH(V ) ∩ L∞
loc(V ) and E ⊂ ∂V be as in Theorem 1.3.

Assume that for some 1 ≤ m ≤ k we have either
∫

{u<v}
(ddcu)m ∧ ωk−m = 0 or

(ddcu)m ∧ ωk−m ≤ (ddcv)m ∧ ωk−m on the set {u < v},
where ω is the restriction of the Kähler form ddc‖z‖2 on V. Then u ≥ v on V.

The next consequence of Theorem 1.3 is a refinement of Theorem 4.3 in [Be].

Corollary 1.5. Let u, v ∈ PSH(V ) ∩ L∞
loc(V ) and E ⊂ ∂V be as in Theorem 1.3.

Then for every increasing continuous function χ : (0,∞) → (0,∞) we have∫
{u<v}

χ ◦ (v − u)(ddcv)k ≤
∫
{u<v}

χ ◦ (v − u)(ddcu)k.

We end this section by presenting another consequence of Theorem 1.3 that offers
a sufficient condition for convergence in capacity of a sequence in PSH(V )∩L∞(V ).
This result is similar in spirit to Theorem 3 in [Xi1] and Theorem 3.5 in [KH].

Corollary 1.6. Let u, {uj} ⊂ PSH(V ) ∩ L∞(V ). Let χ : (0,∞) → (0,∞) be an
increasing continuous function. Assume that u, uj satisfy the following conditions:
(a) lim

z→∂V
(u(z)− uj(z)) = 0 for each j ≥ 1;

(b) lim
j→∞

∫
{uj<u}

χ ◦ (u− uj)d|μj | = lim
j→∞

∫
{uj>u}

χ ◦ (uj − u)d|μj | = 0,

where μj := (ddcuj)
k − (ddcu)k. Then uj → u in capacity on V .

The conclusion of the above result says roughly that for each ε > 0 the capacities
of the sets where the deviation of uj and u is larger than ε tend to 0 as j → ∞.
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Observe also that the sequence {uj} is not assumed to be locally uniformly bounded
on V.

2. Preliminaries

We first recall elements of pluripotential theory on complex varieties in Cn. The
main focus is the complex Monge-Ampère operator and its continuity property. For
more details we refer the reader to [Be].

Let V be a connected complex variety of pure dimension k in a bounded domain
D ⊂ Cn(n ≥ 2, 1 ≤ k ≤ n). Thus, V is locally the common zero sets of holomorphic
functions on open subsets of D. We denote by Vr the set of regular points of V.
Hence Vr is the largest (possibly disconnected) complex manifold of dimension k
included in V. The singular locus of V is then denoted by Vs := V \ Vr. A function
u : V → [−∞,∞) is said to be plurisubharmonic if u is locally the restriction (on
V ) of plurisubharmonic functions on an open subset of D. Notice that we regard
the function identically −∞ as plurisubharmonic. Thus, locally on Vr, u behaves
like plurisubharmonic on open subsets on C

n. A fundamental result of Fornaess
and Narasimhan (see Theorem 5.3.1 in [FN]) asserts that an upper semicontinuous
function u : V → [−∞,∞) is plurisubharmonic if and only if the restriction of u
on every analytic curve in V is subharmonic.

Next, we turn to the complex Monge-Ampère operator for locally bounded
plurisubharmonic functions on V. According to Bedford in [Be], the complex Monge-
Ampère operator

(ddc)k : PSH(V ) ∩ L∞
loc(V ) → Mk,k(V ),

where Mk,k(V ) denotes the collection of Radon measures on V, may be defined
in the usual way on the regular locus Vr of V as in [BT1]. Namely, given u ∈
PSH(V ) ∩ L∞

loc(V ), we define inductively on Vr the following currents:

(ddcu)m := ddc(u(ddcu)m−1), 1 ≤ m ≤ k,

and the measure (ddcu)k extends “by zero” through the singular locus Vs, i.e., for
Borel sets E ⊂ V

(2.1)

∫
E

(ddcu)k :=

∫
E∩Vr

(ddcu)k.

For a Borel subset E of an open set Ω ⊂ V, the capacity of E relative to Ω is defined
by

C(E,Ω) = sup
{∫

E

(ddcu)k : u ∈ PSH(Ω) : −1 ≤ u < 0
}
.

The above definition makes sense since ψ(z) := ‖z‖2

M − 1 ∈ PSH(V ) and satisfies

−1 ≤ ψ < 0, where M := sup{‖z‖2 : z ∈ D} < ∞.
Obviously, by (2.1), the singular locus Vs has zero capacity, i.e., C(Vs∩Ω,Ω) = 0

for every open subset Ω of V. The following basic result of Bedford (Lemma 3.1 in
[Be]) asserts that Vs actually has outer capacity zero.

Lemma 2.1. For every open subset Ω of V and every ε > 0, there exists an open
neighborhood U of Vs in Ω such that C(U,Ω) < ε.
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From Lemma 2.1, we see immediately that (2.1) in fact defines (ddcu)k as a
Radon measure on V for each u ∈ PSH(V )∩L∞

loc(V ). Moreover, the following ver-
sion of the Chern-Levine-Nirenberg inequality holds true on V : For every relatively
compact open subset V ′ ⊂ V and every Borel subset E of V ′ we have

(2.2)

∫
E

(ddcu)k ≤ λ‖u‖kV ′ ,

where λ ≥ 0 is a finite constant depends only on E, V ′.
More generally, if u1, · · · , uk ∈ PSH(V ) ∩ L∞

loc(V ), then by local polarization
in the symmetric linear form ddcu1 ∧ · · · ∧ ddcuk, e.g, for every U open relatively
compact subset of V we set

2ddcu′
1 ∧ ddcu′

2 = ddc(u′
1 + u′

2)
2 − ddc(u′

1
2
)− ddc(u′

2
2
),

where u′
1 = u1− infU u1, u

′
2 := u2− infU u2, we see that dd

cu1∧· · ·∧ddcuk defines a
Radon measure on V as well. Another point to stress is that, all the local analysis
in the fundamental work [BT1] carries over Vs. For instance, from Theorem 3.5 in
[BT1] and Lemma 2.1 we conclude that every u ∈ PSH(V ) is quasi-continuous on
V, i.e., for every ε > 0 there exists an open subset Vε of V such that C(Vε, V ) < ε
and u is continuous on V \ Vε. It follows, using Dini’s lemma, that every sequence
{uj} ∈ PSH(V ) that converges monotonically to u ∈ PSH(V ) must converge
locally quasi-uniformly i.e., given a relatively compact open subset V ′ of V and
ε > 0, there exists an open subset V ′

ε ⊂ V ′ such that C(V ′
ε , V ) < ε and uj converges

uniformly to u on V ′ \ V ′
ε .

We claim no originality for the following result about convergence of certain
measures on V .

Proposition 2.2. Let p, q, r be non-negative integers with p + q + r = k, and
{u1,j}, · · · , {up,j},
{v1,j}, · · · , {vq,j}, {w1,j}, · · · , {wr,j} be sequences in PSH(V ) that decrease point-
wise to u1, · · · , up,
v1, · · · , vq, w1, · · · , wr ∈ PSH(V ) ∩ L∞

loc(V ). For each j, define the measure

Tj := du1,j ∧ · · · ∧ dup,j ∧ dcv1,j ∧ · · · ∧ dcvq,j ∧ ddcw1,j ∧ · · · ∧ ddcwr,j .

Then the following assertions hold true:
(a) The total variation of norms |Tj | of Tj are uniformly bounded on compact sets
of V .
(b) Tj converges weakly to T := du1∧· · ·∧dup∧dcv1∧· · ·∧dcvq∧ddcw1∧· · ·∧ddcwr.
(c) If {ψj}, ψ are quasi-continuous functions on V which are locally uniformly
bounded and if ψj converges locally quasi-uniformly to ψ, then ψjTj converges
weakly to ψT.

Proof. Given a relatively compact open subset V ′ of V and a compact subset K of
V ′ ∩Vr, by the proof of Lemma 2.2 of [BT3] where a stronger version of the Chern-
Levine-Nirenberg inequality (2.2) is established, we can find a constant γ > 0 that
depends only on the sup norms on V ′ of u1, · · · , up, v1, · · · , vq, w1, · · · , wr such that
for j large enough we have

(2.3) |Tj |(K) ≤ γC(K,V ′).

Using Lemma 2.1 we see that the above inequality holds true for any compact
subset K of V ′. This proves the statement (a). Next, (2.3) also implies that |Tj |
put uniformly small mass on sets having small capacity, i.e., given a relatively
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compact open subset V ′ of V and ε > 0, there exists δ > 0, j0 ≥ 1 such that for
every compact subset K ⊂ V ′ with C(K,V ′) < δ we have |Tj |(K) < ε for j ≥ j0.
This fact together with Proposition 2.3 in [BT3] implies (b). Finally (c) follows
from an easy adaptation of the proof (4) ⇒ (1) in Theorem 3.2 of [BT2] (see also
Theorem 2.6 in [BT3]).

Now we discuss the problem of smoothing plurisubharmonic functions on V . In
the case where V is Stein, i.e., there exists a strictly plurisubharmonic exhaustion
for V , we can approximate every element u ∈ PSH(V ) from above by a decreasing
sequence of C∞ smooth strictly plurisubharmonic functions on V (see Theorem 5.5
in [FN]). For a general V , such a smoothing may not be possible even on domains
in C

n. See p. 297 in [Be] for a counterexample of Fornaess. So we have to be
content with the following smoothing method devised by Bedford (see p. 299 in
[Be]). Namely, let ψ ∈ PSH(V ) be given, and let U := {Ul} be an open covering

of V such that for each l there is an open subset Ũl of D,Ul is a complex variety
of Ũl, and there exists ψ̃l ∈ PSH(Ũl) with ψ̃l = ψ on Ul. Next, we let {χl} be a

partition of unity subordinate to Ũ := {Ũl}. For each l, after taking convolution

ψ̃l with standard radial smoothing kernels ρδ on Cn, we obtain a smoothing ψ̃l,δ

which is smooth and plurisubharmonic on a neighborhood of supp χl for δ > 0
small enough. Now our smoothing is obtained as the sum

(2.4) ψδ :=
∑

χlψ̃l,δ.

It is clear that ψδ is smooth on a neighborhood (in Cn) of K for every compact
subset K of V . Moreover, ψδ ↓ ψ on V as δ → 0. In general, ψδ �∈ PSH(V ).
However, as we will see below, these smoothings are nice enough to make continuity
of the complex Monge-Ampère operator possible. More precisely, let u1, · · · , uk ∈
PSH(V ) ∩ L∞

loc(V ). Choose a common covering U := {Ul} of V and a partition of

unity {χl} subordinate to Ũ for all plurisubharmonic functions u1, · · · , uk. Then,
by using Proposition 2.2 we obtain the following approximation result which is
implicitly contained on p. 302 of [Be].

Proposition 2.3. Let {fj}, f be locally uniformly bounded, quasi-continuous func-
tions on V . Assume that {fj} converges locally quasi-uniformly to f. Then for

every sequence {δj} ↓ 0, the measures fjdd
cu

δj
1 ∧ · · · ∧ ddcu

δj
k converge weakly to

fddcu1 ∧ · · · ∧ ddcuk as j → ∞.

Our final auxiliary result concerns approximation of m−increasing functions by
smooth ones.

Lemma 2.4. Let m ≥ 1 be an integer and χ : (0,∞) → (0,∞) be an m−increasing
function. Then there exists a sequence {χj} of m−increasing C∞−smooth functions

such that {χ(l)
j } converges locally uniformly on [0,∞) to χ(l) for 0 ≤ l ≤ m.

Proof. Set ϕ(t) = χ(m)(t) for t ≥ 0 and ϕ(t) := χ(m)(0) for t < 0. Then ϕ is real
valued, continuous and increasing on R. By taking convolution of ϕ with approxi-
mate of identity, we obtain a sequence {ϕj} of C∞−smooth increasing functions on
R that converge locally uniformly to ϕ. Now for each j, we define inductively on
(0,∞) the following functions:

ϕj,0 := ϕj , ϕj,l(t) :=

∫ t

0

ϕj,l−1(x)dx+ χ(m−l)(0), 1 ≤ l ≤ m.
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Then we have ϕ′
j,l = ϕj,l−1 for 1 ≤ l ≤ m. Hence ϕ

(l)
j,m = ϕj,m−l for 1 ≤ l ≤ m.

Moreover, we can show by induction that {ϕ(l)
j,m} converges locally uniformly on

[0,∞) to χ(l) as j → ∞ for 0 ≤ l ≤ m. It follows that χj := ϕj,m is the sequence
we are searching for.

3. Strong comparison principle

We start with the following simple facts that will be needed in examining certain
integration by parts formulas. In the next two lemmas, we will denote by ϕ a real
valued C2− smooth function defined on (0,∞).

Lemma 3.1. Let u, v ∈ PSH(V ) ∩ L∞
loc(V ) with u < v on V . Then the following

assertions hold in the sense of currents on Vr :
(a) ddc(ϕ ◦ (v − u)) = ϕ′ ◦ (v − u)ddc(v − u) + ϕ′′(v − u)d(v − u) ∧ dc(v − u).
(b) If ϕ′′ ≥ 0 on (0,∞), then ddc(ϕ ◦ (v − u)) ≥ ϕ′ ◦ (v − u)ddc(v − u).

Proof. (a) Fix a ∈ Vr, it suffices to show the above identity in a small neighborhood
of a in V. Then we can find a ball B ⊂ D around a and plurisubharmonic functions
ũ, ṽ on B such that ũ|B∩V = u, ṽ|B∩V = v. By considering max{ũ, ṽ} instead of ṽ,
we can assume ũ < ṽ on B. By taking convolutions of ũ and ṽ with standard radial
smoothing kernels ρδ on Cn and shrinking B, we obtain smooth plurisubharmonic
functions uδ, vδ on B such that uδ < vδ and uδ ↓ u, vδ ↓ v on B ∩ V as δ ↓ 0. By
direct computation we obtain for each δ > 0

ddc(ϕ◦ (vδ−uδ)) = ϕ′ ◦ (vδ−uδ)dd
c(vδ−uδ)+ϕ′′ ◦ (vδ−uδ)d(vδ−uδ)∧dc(vδ−uδ).

Since uδ, vδ are uniformly bounded on B, by letting δ ↓ 0 and applying the Lebesgue
dominated convergence theorem we obtain the desired equality.
(b) The inequality then follows directly from (a) and the fact that d(v−u)∧dc(v−u)
is a non-negative (1, 1) current on Vr.

The following integration by parts formula plays a crucial role in the proof of
Lemma 3.3. Its proof requires all the machinery developed in the preceding section.

Lemma 3.2. Let u, v, w1, · · · , wk ∈ PSH(V ) ∩ L∞
loc(V ). Assume that u ≤ v on

V, u = v outside a compact subset K of V. Then for all real number ε > 0 and open
sets V ′ such that K ⊂ V ′ � V we have∫

V ′
ϕ ◦ (v + ε− u)ddcw1 ∧ · · · ∧ ddcwk

=

∫
V ′

w1dd
c(ϕ ◦ (v + ε− u)) ∧ ddcw2 ∧ · · · ∧ ddcwk

+ ϕ(ε)

∫
V ′

ddcw1 ∧ · · · ∧ ddcwk.

Proof. For δ > 0 small enough, following (2.4), we let uδ, vδ, wδ
1, · · · , wδ

k be smooth-
ing of u, v, w1, · · · , wk, respectively. Notice that the covering {Uj} and the partition
of unity {χj} can be chosen to be common for all these plurisubharmonic functions.
By the assumption we have uδ = vδ on V ′\K. In addition, as in the proof of Lemma
3.1, we may arrange so that uδ ≤ vδ on V ′ for every δ. To simplify notation, we set

T δ := ddcwδ
2 ∧ · · · ∧ ddcwδ

k, T := ddcw2 ∧ · · · ∧ ddcwk, ϕ
δ := ϕ ◦ (vδ + ε− uδ)−ϕ(ε).
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Notice that ϕδ = 0 on a small neighborhood of ∂V ′. Hence, an application of
Stoke’s theorem for smooth forms on the complex variety V ′ (see p. 33 in [GH])
yields∫

V ′

[
ϕδddcwδ

1 − wδ
1dd

cϕδ
]
∧ T δ =

∫
V ′

d
[
ϕδdcwδ

1 ∧ T δ − wδ
1d

cϕδ ∧ T δ
]
= 0.

It follows that

(3.1)

∫
V ′

[
ϕ ◦ (vδ + ε−uδ)−ϕ(ε)

]
ddcwδ

1 ∧T δ =

∫
V ′

wδ
1dd

c(ϕ ◦ (vδ + ε−uδ))∧T δ.

We now consider the limits of both sides of (3.1) as δ ↓ 0. For the left hand side,
set

μδ := [ϕ ◦ (vδ + ε− uδ)− ϕ(ε)]ddcwδ
1 ∧ T δ, μ := [ϕ ◦ (v + ε− u)− ϕ(ε)]ddcw1 ∧ T.

Then μδ and μ are real measures on V ′ that vanish outside K. Observe that
the functions ϕ ◦ (vδ + ε− uδ) are continuous on V, locally uniformly bounded and
converges to ϕ◦(v+ε−u) locally quasi-uniformly on V ′. Hence, by Proposition 2.3
we deduce that μδ converge weakly to μ as δ ↓ 0. We claim that μδ(V ′) → μ(V ′)
as δ ↓ 0. Indeed, fix ε > 0. By the Chern-Levine-Nirenberg inequality (2.2) we
can choose an open subset V ′′ of V such that K ⊂ V ′′ � V and |μ|(V ′′ \ K) <
ε, |μδ|(V ′′ \K) < ε for 0 < δ < δ0 small enough. Let f be a continuous function on
V ” with compact support such that 0 ≤ f ≤ 1, f = 1 on K. Then we have

|μδ(V ′)− μ(V ′)| = |μδ(K)− μ(K)| ≤
∣∣ ∫

V ′′
fdμδ −

∫
V ′′

fdμ
∣∣+ 2ε.

It follows that

lim
δ→0

|μδ(V ′)− μ(V ′)| ≤ 2ε.

This proves our claim since ε > 0 can be chosen to be arbitrarily small. Hence

(3.2) lim
δ→0

∫
V ′
[ϕ◦(vδ+ε−uδ)−ϕ(ε)]ddcwδ

1∧T δ =

∫
V ′
[ϕ◦(v+ε−u)−ϕ(ε)]ddcw1∧T.

Similarly, for the right hand side of (3.1) we define the following currents on V ′:

μ′δ : = wδ
1[ϕ

′ ◦ (vδ + ε− uδ)ddc(vδ − uδ)

+ ϕ′′ ◦ (vδ + ε− uδ)d(vδ − uδ) ∧ dc(vδ − uδ)
]
∧ T δ,

μ′ : = w1[ϕ
′ ◦ (v + ε− u)ddc(v − u) + ϕ′′ ◦ (v + ε− u)d(v − u) ∧ dc(v − u)

]
∧ T.

By repeating the same reasoning as above we have μ′δ(V ) → μ′(V ) as δ ↓ 0.
Therefore, by applying Lemma 3.1 (a) we obtain

(3.3) lim
δ→0

∫
V ′

wδ
1dd

c(ϕ ◦ (vδ + ε− uδ)) ∧ T δ =

∫
V ′

w1dd
c(ϕ ◦ (v + ε− u)) ∧ T.

Combining (3.1), (3.2) and (3.3) we obtain∫
V ′

[
ϕ ◦ (v + ε− u)− ϕ(ε)

]
ddcw1 ∧ · · · ∧ ddcwk

=

∫
V ′

w1dd
c(ϕ ◦ (v + ε− u)) ∧ ddcw2 ∧ · · · ∧ ddcwk.

Finally, by (2.2) we have 0 ≤
∫
V ′ dd

cw1 ∧ · · · ∧ ddcwk < ∞, so after rearranging the
above equation we obtain the desired conclusion.
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The next lemma, a special case of Theorem 1.3, is the key step in our proof. It
is somewhat inspired by Lemma 3.3 in [KH].

Lemma 3.3. Let u, v ∈ PSH(V ) ∩ L∞(V ) be such that u ≤ v on V and u = v
outside a compact subset K of V . Then for any integer 1 ≤ m ≤ k we have

∫
V

χ ◦ (v − u)ddcw1 ∧ · · · ∧ ddcwk

+

∫
V

(−w1)χ
(m) ◦ (v − u)(ddcv)mddcwm+1 ∧ · · · ∧ ddcwk

≤
∫
V

(−w1)χ
(m) ◦ (v − u)(ddcu)mddcwm+1 ∧ · · · ∧ ddcwk

+ Pm(χ)

∫
V

ddcw1 ∧ · · · ∧ ddcwk,

where w1, · · · , wk ∈ PSH(V ) ∩ L∞
loc(V ) satisfying wj < 0 for 1 ≤ j ≤ m and

wj ≥ −1 for 2 ≤ j ≤ m.

Proof. For the ease of notation, we set

T := ddcw1 ∧ · · · ∧ ddcwm, T ′ := ddcwm+1 ∧ · · · ∧ ddcwk.

Let V ′ be a relatively compact connected open subset of V such that K ⊂ V ′. It
follows that u = v on a small neighborhood of ∂V ′. We are now aiming at the
following estimate:

∫
V ′

χ ◦ (v − u)T ∧ T ′ +

∫
V ′
(−w1)χ

(m) ◦ (v − u)(ddcv)m ∧ T ′

(3.4) ≤
∫
V ′
(−w1)χ

(m) ◦ (v − u)(ddcu)m ∧ T ′ + Pm(χ)

∫
V ′

T ∧ T ′.

For this, we first assume that χ ∈ Cm+1(0,∞). Then χ(j) ≥ 0 on (0,∞) for each
0 ≤ j ≤ m + 1. Now by using the integration by parts formula (Lemma 3.2) and
Lemma 3.1(b) (while noting that wm < 0) we obtain

∫
V ′

χ ◦ (v + ε− u)T ∧ T ′

=

∫
V ′

wmddc(χ ◦ (v + ε− u))ddcw1 ∧ · · · ∧ ddcwm−1 ∧ T ′ + χ(ε)

∫
V ′

T ∧ T ′

≤
∫
V ′

wmχ′ ◦ (v + ε− u)ddc(v − u) ∧ ddcw1 ∧ · · · ∧ ddcwm−1 ∧ T ′

+ χ(ε)

∫
V ′

T ∧ T ′

≤
∫
V ′

χ′ ◦ (v + ε− u)ddcu ∧ ddcw1 ∧ · · · ∧ ddcwm−1 ∧ T ′ + χ(ε)

∫
V ′

T ∧ T ′.

Here the last inequality follows from the fact that wmddc(v − u) ≤ ddcu, which in
turn is a consequence of the assumption that −1 ≤ wm < 0 on V. Continuing this
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process (m− 2) more times we get∫
V ′

χ ◦ (v + ε− u)T ∧ T ′ ≤
∫
V ′

χ(m−1) ◦ (v + ε− u)(ddcu)m−1 ∧ ddcw1 ∧ T ′

+ (
m−2∑
j=0

χ(j)(ε))

∫
V ′

T ∧ T ′.

Next, since χ ∈ Cm+1(0,∞) we may apply Lemma 3.2 and Lemma 3.1(b) again
(while noting that w1 < 0 on V ) to get∫

V ′
χ(m−1) ◦ (v + ε− u)(ddcu)m−1 ∧ ddcw1 ∧ T ′

=

∫
V ′

w1dd
c(χ(m−1) ◦ (v + ε− u)) ∧ (ddcu)m−1 ∧ T ′

+ χ(m−1)(ε)

∫
V ′

ddcw1 ∧ · · · ∧ ddcwk

≤
∫
V ′

w1χ
(m) ◦ (v + ε− u)ddc(v − u) ∧ (ddcu)m−1 ∧ T ′

+ χ(m−1)(ε)

∫
V ′

ddcw1 ∧ · · · ∧ ddcwk.

It follows that∫
V ′

χ ◦ (v + ε− u)T ∧ T ′

≤
∫
V ′

w1χ
(m) ◦ (v + ε− u)ddc(v − u) ∧ (ddcu)m−1 ∧ T ′ + (

m−1∑
j=0

χ(j)(ε))

∫
V ′

T ∧ T ′.

Since u, v are bounded on V ′, by letting ε ↓ 0 and applying the Lebesgue domi-
nated convergence theorem (and taking into account the Chern-Levine-Nirenberg
inequality (2.2) and (1.1)) we obtain∫

V ′
χ ◦ (v − u)T ∧ T ′

≤
∫
V ′

w1χ
(m) ◦ (v − u)ddc(v − u) ∧ (ddcu)m−1 ∧ T ′ + Pm(χ)

∫
V ′

T ∧ T ′.

Since u, v ∈ PSH(V ) and w1 < 0, the first term on the right hand side may be
dominated as follows:∫

V ′
(−w1)χ

(m) ◦ (v − u)ddc(u− v) ∧ (ddcu)m−1 ∧ T ′

≤
∫
V ′
(−w1)χ

(m) ◦ (v − u)
(m−1∑

j=0

(ddcu)j ∧ (ddcv)m−j−1
)
∧ ddc(u− v) ∧ T ′

=

∫
V ′
(−w1)χ

(m) ◦ (v − u)[(ddcu)m − (ddcv)m] ∧ T ′.

Putting all this together and rearranging we obtain (3.4).
It remains to remove the restriction on smoothness of χ. Toward this end, we

use Lemma 2.4 to get a sequence χj of m−increasing, C∞−smooth functions such
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that χj and χ
(l)
j converges locally uniformly to χ and χ(l) on [0,∞) for 0 ≤ l ≤ m.

Then for each j, we have by (3.4)∫
V ′

χj ◦ (v − u)T ∧ T ′ +

∫
V ′
(−w1)χ

(m)
j ◦ (v − u)(ddcv)m ∧ T ′

≤
∫
V ′
(−w1)χ

(m)
j ◦ (v − u)(ddcu)m ∧ T ′ + Pm(χj)

∫
V ′

T ∧ T ′.

By letting j → ∞ and using the Lebesgue dominated convergence theorem we get
(3.4).

Finally, by letting V ′ ↑ V and using the Lebesgue monotone convergence theorem
in both sides of (3.4) we complete the proof of the lemma.

The final ingredient is the following equality of measures which is a modification
of Proposition 4.2 in [BT2] (see also Theorem 4.1 in [KH]).

Lemma 3.4. Let 1 ≤ m ≤ k and u,w1, · · · , wk−m ∈ PSH(V ) ∩ L∞
loc(V ), v ∈

PSH(V ). Set T := ddcw1 ∧ · · · ∧ ddcwk−m. Then we have

(ddc max{u, v})m ∧ T = (ddcu)m ∧ T on {u > v}.

Proof. Fix a ∈ V , it suffices to show that there is some open ball B ⊂ D around a
such that

(ddc max{u, v})m ∧ T = (ddcu)m ∧ T on {u > v} ∩ B.

To see this, we first choose a small ball B ⊂ D around a such that u,w1, · · · , wk−m

are restrictions of plurisubharmonic functions on B. The proof is now concluded by
invoking a standard approximation argument as in the proof of Proposition 4.2 in
[BT2]. The details are omitted.

Proof of Theorem 1.3. First, we treat the case where E = ∅ and u, v ∈ PSH(V ) ∩
L∞(V ). For ε > 0, we setvε := max{u, v − ε}. Then vε ∈ PSH(V ) ∩ L∞(V ).
Moreover, by the assumption (b) we see that vε = u on a neighborhood of ∂V . As
in Lemma 3.3 we put

T := ddcw1 ∧ · · · ∧ ddcwm, T ′ := ddcwm+1 ∧ · · · ∧ ddcwk.

Then using Lemma 3.3 we get∫
V

χ ◦ (vε − u)T ∧ T ′

≤
∫
V

(−w1)χ
(m) ◦ (vε − u)

[
(ddcu)m − (ddcvε)

m
]
∧ T ′ + Pm(χ)

∫
V

T ∧ T ′.

By Lemma 3.4, we have[
(ddcu)m − (ddcvε)

m
]
∧ T ′ = 0 on {u > v − ε},[

(ddcv)m − (ddcvε)
m
]
∧ T ′ = 0 on {u < v − ε}.

Note also that
vε − u = v − ε− u on u ≤ v − ε.

From these facts we conclude that∫
{u<v−ε}

χ ◦ (v − ε− u)T ∧ T ′ +

∫
{u<v−ε}

(−w1)χ
(m) ◦ (v − ε− u)(ddcv)m ∧ T ′

≤
∫
{u≤v−ε}

(−w1)χ
(m) ◦ (v − ε− u)(ddcu)m ∧ T ′ + Pm(χ)

∫
V

T ∧ T ′.
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Let θε and θ̃ε be the characteristic functions of {u < v − ε} and {u ≤ v − ε},
respectively. Then we see that θε ↑ 1, θ′ε ↑ 1 on {u < v} as ε ↓ 0. Hence, by
applying Lebesgue’s monotone convergence theorem and using the fact that χ is
m−increasing we obtain∫

{u<v}
θ̃ε.(−w1)χ

(m) ◦ (v − ε− u)(ddcv)m ∧ T ′ ↑
∫
{u<v}

(−w1)χ
(m)

◦ (v − u)(ddcv)m ∧ T ′,∫
{u<v}

θε.(−w1)χ
(m) ◦ (v − ε− u)(ddcu)m ∧ T ′ ↑

∫
{u<v}

(−w1)χ
(m)

◦ (v − u)(ddcu)m ∧ T ′,∫
{u<v}

θε.χ ◦ (v − ε− u)T ∧ T ′ ↑
∫
{u<v}

χ ◦ (v − u)T ∧ T ′.

Putting all this together we obtain the desired conclusion.
For the general case we proceed as follows. Let Vj ↑ V be an increasing sequence

of sub-domains in V. Since E is negligible we may find a function ψ satisfying (1.2).
Fix j ≥ 1. Set

vj(z) := v(z) +
1

j
ψ(z)− 1

j
, ∀z ∈ V.

Then vj ↑ v on V. We claim that there exists α(j) ≥ j such that

lim
z→∂Vα(j)

(u(z)− vj(z)) ≥ 0.

Indeed, if this is false, then we can find a sequence zk → z∗ ∈ ∂V such that for
each k we have

u(zk) < vj(zk) = v(zk) +
1

j
ψ(zk)−

1

j
.

It implies, in view of the assumption (a), that

1

j
ψ(zk) ≥ inf

k≥1
(u(zk)− v(zk)) +

1

j
> −∞.

Hence, by (1.2) we must have z∗ �∈ E. On the other hand, by the condition (b) we
get

0 ≤ lim
k→∞

(u(zk)− v(zk)) ≤ −1

j
,

which is clearly absurd. The claim follows. For simplicity of notation, we may
assume that α(j) = j for every j. Since u, vj ∈ PSH(Vj) ∩ L∞(Vj) and satisfies
lim

z→∂Vj

(u(z)−vj(z)) ≥ 0 and since (ddcvj)
m∧T ′ ≥ (ddcv)m∧T ′ on V , by the result

proved in the preceding case we get∫
{u<vj}

χ ◦ (vj − u)T ∧ T ′ +

∫
{u<vj}

(−w1)χ
(m) ◦ (vj − u)(ddcv)m ∧ T ′

∫
{u<vj}

χ ◦ (vj − u)T ∧ T ′ +

∫
{u<vj}

(−w1)χ
(m) ◦ (vj − u)(ddcvj)

m ∧ T ′

≤
∫
{u<vj}

(−w1)χ
(m) ◦ (vj − u)(ddcu)m ∧ T ′ + Pm(χ)

∫
Vj

ddcw1 ∧ · · · ∧ ddcwk.
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Observe that {z ∈ Vj : u(z) < vj(z)} ↑ {z ∈ V : u(z) < v(z)} as j → ∞. So, by
letting j → ∞ and using the Lebesgue monotone convergence theorem as in the
previous case we obtain∫

{u<v}
χ ◦ (v − u)T ∧ T ′ +

∫
{u<v}

(−w1)χ
(m) ◦ (v − u)(ddcv)m ∧ T ′

≤
∫
{u<v}

(−w1)χ
(m) ◦ (v − u)(ddcu)m ∧ T ′ + Pm(χ)

∫
V

T ∧ T ′.

We have the desired result.

Proof of Corollary 1.4. By applying Theorem 1.3 to χ(t) = tm and w1 = · · · =
wk = ψr := ‖z‖2

r − 1 with r > sup{‖z‖2 : z ∈ V } we obtain

Cr,m

∫
{u<v}

(v − u)mωk +

∫
{u<v}

(−ψr)(dd
cv)m ∧ ωk−m

≤
∫
{u<v}

(−ψr)(dd
cu)m ∧ ωk−m,

where Cr,m > 0 is a constant depends only on r,m. By the assumption on u, v we
conclude that ∫

{u<v}
(v − u)mωk = 0.

This implies that v ≤ u a.e. (with respect to ωk) on Vr, the smooth locus of V.
Hence v ≤ u entirely on Vr. Now, we fix a ∈ Vs, we claim that there exists a one
dimensional complex subvariety γ ⊂ V such that γ ∩ Vs = {a}. To see this, we
first make a change of coordinates to find a polydisc Δ in Cn that contains a and
a polydisc Δ′ in Ck such that the projection map π : (z1, · · · , zn) �→ (z1, · · · , zk)
expresses V ∩Δ as a branched cover of Δ′ = π(Δ) which is branched over a proper
complex subvariety H of Δ′. Thus we can find a complex line l ⊂ C

k passing
through π(a) such that l∩H is discrete. Since π(Vs∩Δ) ⊂ H, we have γ∩Vs = {a},
where γ := π−1(U) and U ⊂ l is a small neighborhood of π(a) ∈ l. This proves
our claim. Next, we pick an irreducible branch γ′ ⊂ γ that contains a. Then, by
normalization (see p. 70 in [Ch]) we can find a connected Riemann surface γ∗ and
holomorphic mapping f : γ∗ → γ′ which is surjective. Set u′ := u ◦ f |γ∗ , v′ :=
v ◦ f |γ∗ . Since u ≤ v on Vr, by the choice of γ, we infer that v′ ≤ u′ on γ∗ except
for the finite set f−1(a). Hence, this inequality holds true entirely on γ∗ since u′, v′

are subharmonic there. It follows that v(a) ≤ u(a). The proof is complete.

Proof of Corollary 1.5. Define inductively on (0,∞) the following functions:

χ0(t) := χ(t), χj+1(t) =

∫ t

0

χj(x)dx, j ≥ 0.

We can check that χ
(j)
k = χk−j for every 0 ≤ j ≤ k. In particular χ

(k)
k = χ0

on (0,∞) and χk is k−increasing. Furthermore, Pk(χk) = 0. Now we apply

Theorem 1.3 to the “weight” function χk and w1 = · · · = wk = ψr := ‖z‖2

r − 1

with r > sup{‖z‖2 : z ∈ V } to obtain∫
{u<v}

(−ψr)χ ◦ (v − u)(ddcv)k ≤
∫
{u<v}

(−ψr)χ ◦ (v − u)(ddcu)k.

By letting r → ∞ we arrived at the desired conclusion.
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Proof of Corollary 1.6. First, we let χk be the function constructed in the proof of
Corollary 1.5. Next, fix δ > 0. Set

Aj := {z ∈ V : u(z) > uj(z) + δ}, Bj := {z ∈ V : uj(z) > u(z) + δ}.
We claim that C(Aj , V ) → 0 as j → ∞. Assume otherwise, then, by switching to
a subsequence, we may find a sequence {ψj} ⊂ PSH(V ),−1 < ψj < 0 and λ > 0
such that ∫

Aj

(ddcψj)
k ≥ λ, ∀j.

Fix j ≥ 1. In view of the assumption (a), we may apply Theorem 1.3 to u, uj , w1 =
· · · = wk = ψj and χk to obtain∫

{uj<u}
χk ◦ (u− uj)(dd

cψj)
k ≤

∫
{uj<u}

(−ψj)χ ◦ (u− uj)dμj

≤
∫
{uj<u}

χ ◦ (u− uj)d|μj |.

It implies, using the condition (b), that

lim
j→∞

∫
Aj

χk ◦ (u− uj)(dd
cψj)

k = 0.

On the other hand, for each j ≥ 1 we have∫
Aj

χk ◦ (u− uj)(dd
cψj)

k ≥ χk(δ)

∫
Aj

(ddcψj)
k ≥ λχk(δ) > 0.

We arrived at a contradiction. Hence lim
j→∞

C(Aj, V ) = 0. By exchanging the role of

u and uj and repeating the same reasoning we also obtain lim
j→∞

C(Bj , V ) = 0. The

proof is thereby completed.
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