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TRANSITIVE ENDOMORPHISMS WITH CRITICAL POINTS

WAGNER RANTER

(Communicated by Yingfei Yi)

Abstract. We show that a non-wandering endomorphism on the torus with
topological degree at least two, hyperbolic linear part, and for which the critical
points are in some sense “generic” is transitive. This is an improvement of a
result by Andersson (Nonlinearity 29 (2016), 1047), since it allows critical
points and relaxes the volume preserving hypothesis.

1. Introduction

The interplay between the dynamics on the homology group and properties of
dynamical systems have attracted recently a lot of attention. One of the most well
known problems in this direction is the entropy conjecture of Shub (see [Shu74]).
In a sense, one tries to obtain some dynamical properties (which are of asymptotic
nature) by the a priori knowledge of how a certain map wraps the manifold in itself.

In this paper we are interested in how a dynamical system could be influenced by
its action on the homology groups. In particular, we are interested in conditions on
the action on the homology group of a continuous map of the torus that allow us to
promote a mild recurrence property (being non-wandering) to a stronger one (i.e.,
transitivity). This improves a recent result of Andersson (see [And16]) by allowing
the presence of critical points.

Let us fix some notation. Let T
2 be a two-dimensional torus and let M2(Z)

be the set of all square matrices with integer entries. A toral endomorphism or,
simply, endomorphism is a surjective continuous map f : T2 → T

2. It is well known
that given two endomorphisms f, g : T2 → T

2, f and g are homotopic if and only
if f∗ = g∗ : H1(T

2) → H1(T
2). From this fact, we have that given a continuous

map f : T2 → T
2 there is a unique square matrix L ∈ M2(Z) such that the linear

endomorphism induced by L, denoted by L : T2 → T
2 as well, is homotopic to f .

The matrix L we call the linear part of f . When L is a hyperbolic matrix,1 it is
called the hyperbolic linear part.

Let f : T2 → T
2 be an endomorphism with linear part L ∈ M2(Z). We define

the topological degree of f as the modulus of the determinant of L.
The following question naturally arises:

Question 1. Under which conditions is an endomorphism with hyperbolic linear
part transitive?
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Recently, Andersson (in [And16]) showed that volume preserving non-invertible
covering maps of the torus with hyperbolic linear part are transitive.

It is interesting to observe that the hyperbolicity property is on the homology
group, and this action influences the dynamics. Note that when the action is no
longer hyperbolic this result cannot be true. For instance, f : T2 → T

2, f(x, y) =
(x, 3y) is a volume preserving noninvertible covering map which preserves vertical
stripes.

In order to study dynamical systems in the C0-topology, it is interesting to
consider continuous maps with critical points,2 because the set of all the covering
maps (endomorphisms without critical points) is neither dense nor an open set.
Then, questions naturally appear about the critical set. For instance:

Question 2. Can the result be extended to allow critical points?

Another question that can be asked is the following:

Question 3. Can the volume preserving condition be relaxed?

In this direction, we are interested in giving some answers for Questions 2 and 3.
We show that it is possible to obtain an analogous result by changing the volume
preserving property given by a milder topological property even in the case where
there are critical points. Notice that one can create sinks for maps of T2 in any
homotopy class, so at least some sort of a priori recurrence is necessary to obtain
such a result.

In order to state the main result of this work, let us introduce some notation
first.

A point p ∈ T
2 is a non-wandering point for f if for every neighborhood Bp of

p in T
2 there exists an integer n ≥ 1 such that fn(Bp) ∩ Bp is non-empty. The

set Ω(f) of all non-wandering points is called a non-wandering set. Clearly Ω(f)
is closed and f -forward invariant. We call an endomorphism f : T2 → T

2 a non-
wandering endomorphism if Ω(f) = T

2. Recalling that a point p belonging to T
2 is

said to be a critical point for f if for every neighborhood Bp of p in T
2, we have that

f : Bx → f(Bx) is not a homeomorphism. We will denote by Sf the set of all the
critical points. Clearly Sf is a closed set in T

2. A critical point p is called generic
critical point if for any neighborhood B of p in T

2, f(B)\{f(p)} is a connected set.
When all critical points are generics, Sf we will be called a generic critical set. It
is easy to see that the fold and cusp critical points are generic critical points; this
justifies the name given by H. Whitney (see [Whi55]) since the maps whose critical
points are folds and cusps are generic in the C∞-topology.

In this paper, we will prove the following result:

Main Theorem. Let f : T2 → T
2 be a non-wandering endomorphism with topo-

logical degree at least two and generic critical set. If f is not transitive, then its
linear part has a real eigenvalue of modulus one.

It is not known whether the hypothesis of a generic critical set is a necessary
condition. It is utilized as a technical hypothesis.

The paper is organized as follows. In section 2, we rephrase the Main Theorem
and give some corollaries. In section 3, we give a sketch of the proof of the Main
Theorem. In sections 4 and 5, we prove some results that will be used in the proof
of the Main Theorem.

2The points for which locally the map is not a homeomorphism.
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2. The results

In this section we will give the Main Theorem and its consequences. The Main
Theorem can be rephrased as follows:

Main Theorem. Let f : T2 → T
2 be a non-wandering endomorphism with topolog-

ical degree at least two and generic critical set. If the linear part of f is hyperbolic,
then f is transitive.

Before starting the proof, we give some immediate consequences of the Main
Theorem:

Corollary 2.1. Let f : T
2 → T

2 be a volume preserving endomorphism with
topological degree at least two and generic critical set. If f is not transitive, then
its linear part has a real eigenvalue of modulus one.

The proof follows from the fact that volume preserving implies that the non-
wandering set is the whole torus. Furthermore, in that case the critical set is
empty, that is, when the endomorphism is a covering map. We also have the
following consequence:

Corollary 2.2. Let f : T2 → T
2 be a non-wandering endomorphism with topo-

logical degree at least two and without critical points (i.e., Sf = ∅). If f is not
transitive, then its linear part has a real eigenvalue of modulus one.

3. Sketch of the proof of the Main Theorem

We prove in section 4 that if a non-wandering endomorphism is not transi-
tive, then we can divide the torus into two complementary open sets which are
f -invariant. After, in section 5, we use the generic critical points to prove that
those open sets are essential (see Definition 5.1) and their fundamental groups have
just one generator. Then, in section 6, we prove that the action of f on the funda-
mental group of the torus has integer eigenvalues and that at least one has modulus
one.

4. Existence of invariant sets

An open subset U ⊂ T
2 is called regular if U = int(U) where U is the closure of

U in T
2 that sometimes will also be denoted cl(U).

Given a subset A ⊂ T
2 we write A⊥ := T

2\A. Note that for any open set

U ⊆ T
2, we have U⊥ = int(U⊥); i.e., U⊥ is regular.

We say that a subset A ⊆ T
2 is f-backward invariant if f−1(A) ⊆ A and f-forward

invariant if f(A) ⊆ A. We say that A ⊆ T
2 is f-invariant when it is an f -backward

and f -forward invariant set.
An endomorphism f : T2 → T

2 is transitive if for every open set U in T
2 we

have that
⋃

n≥0 f
−n(U) is dense in T

2.
The lemma below gives a topological obstruction for a non-wandering endomor-

phism to be transitive.

Lemma 4.1. Let f : T
2 → T

2 be a non-wandering endomorphism. Then, the
following are equivalent:

(a) f is not transitive;
(b) there exist U, V ⊆ T

2 disjoint f -backward invariant regular open sets. Fur-
thermore, U and V are f -forward invariant.
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Proof. (b) ⇒ (a): It is clear, since f−n(U) ∩ V = ∅ for every n ≥ 0.
(a) ⇒ (b): Since f is not transitive, there exist U ′

0 and V ′
0 open sets such that

f−n(U ′
0) ∩ V ′

0 = ∅ for every n ≥ 0.

Claim 1. U ′ =
⋃

n≥0 f
−n(U ′

0) and V ′ =
⋃

n≥0 f
−n(V ′

0) are disjoint f -backward
invariant open sets.

Indeed, it is clear that U ′ and V ′ are f -backward invariant open sets. Then, we
must show only that U ′ and V ′ are disjoint sets. For this, suppose by contradiction
that U ′ ∩ V ′ 
= ∅. That is, suppose that there exist n,m ≥ 0 such that

f−n(U ′
0) ∩ f−m(V ′

0) 
= ∅.
Let x ∈ f−n(U ′

0) ∩ f−m(V ′
0). Then fn(x) ∈ U ′

0 and fm(x) ∈ V ′
0 . Then, we have

the following possibilities:

• n ≥ m : fn−m(fm(x)) ∈ U ′
0 ⇒ f−n+m(U ′

0) ∩ V ′
0 
= ∅.

• n < m : By continuity of f , we can take a neighborhood B ⊆ U ′
0 of fn(x)

such that fm−n(B) ⊆ V ′
0 . Since Ω(f) = T

2, we can take B and k ≥ m− n
such that fk(B) ∩B 
= ∅. Hence, f−(k−m+n)(U ′

0) ∩ V ′
0 
= ∅.

In both cases, we have a contradiction.

The following statement will be used to choose the sets U and V .

Claim 2. f−1(U ′) is dense in U ′. The same holds for V ′.

Indeed, given any open subset B of T2 contained in U ′, since f is a non-wandering
endomorphism there exists n ≥ 1 such that fn(B)∩B 
= ∅. Then, f−n(B)∩B 
= ∅,
in particular, f−n(U ′) ∩ B 
= ∅. Therefore f−1(U ′) ∩ B 
= ∅ , since f−m(U ′) ⊆
f−1(U ′) for all m ≥ 1. In particular, U ′ = f−1(U ′). This proves Claim 2.

Finally, we define

(4.1) U = int(U ′) and V = int(V ′).

Claim 3. U and V satisfy:

(i) U and V are regular;
(ii) f−1(U) ⊆ U and f−1(U) ⊇ U ; the same holds for V .

Item (i) follows from the fact that U = U ′.

To prove item (ii), it is sufficient to show that

int(f−1(U ′)) = U,

because f−1(U) ⊆ int(f−1(U ′)), since f−1(U) = f−1(int(U ′)) ⊆ f−1(U ′). Hence,

we have f−1(U) ⊆ U and U = f−1(U) ⊆ f−1(U), by Claim 2.
Now, we will prove that

(∗) int(f−1(U ′)) = U.

Note that U = int(U ′) ⊆ int(f−1(U ′)), since U ′ = f−1(U ′) ⊆ f−1(U ′). Hence,
we have to show only that

(∗∗) int(f−1(U ′)) ⊆ U.

To prove this, let B be an open set contained in f−1(U ′). Suppose that B is not
contained in U ′. Then, we may take an open subset B′ of T2 contained in B such
that B′ ∩ U ′ = ∅. Since Ω(f) = T

2 and fn(B′) ⊆ fn(U ′) ⊆ U ′ for every n ≥ 1, we
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have a contradiction because fn(B′) ∩B′ 
= ∅ for n ≥ 1. Therefore, B is contained
in U ′. Thus, we conclude (∗∗), and so (∗). This proves Claim 3. �

Henceforth, we assume that f is a non-wandering endomorphism with topological
degree at least two and U, V are the sets given by the proof of item (b) of the lemma
above.

Remark 4.2. Note that as f−1(U) ⊆ U and f−1(U) ⊃ U , one gets f(U) = U
and, consequently, f(∂U) = ∂U . Moreover, since int(U) = U , ∂U = ∂U , one has
∂Ui ⊆ ∂U for every Ui connected component of U . Thus, given Ui a connected
component of U , we have f(∂Ui) ⊆ ∂U .

The following proposition shows that the points belonging to U whose images
are in the boundary of U are critical points.

Proposition 4.3. Let p ∈ U . If f(p) ∈ ∂U , then p ∈ Sf .

Proof. Suppose that there exists a neighborhood B of p contained in U such that
f : B → f(B) is a homeomorphism and f(B) is an open set contained in U . In
particular, f(B) ⊆ int(U) = U . �

The following lemma shows that the image of a component of U which intersects
two other components of U intersects the boundary of U in a unique point.

Lemma 4.4. Given U0, U1 and U2 connected components of U such that U1 and
U2 are disjoint, let U01 and U02 be connected components of f−1(U1), f

−1(U2)
contained in U0, respectively. If C := ∂U01 ∩ ∂U02 is a non-empty set contained in
U0, then f(C) is a point.

Proof. Consider C ′ := f(C). Then without loss of generality, suppose that C is a
non-trivial connected set. Then, as f(∂Ui) ⊆ ∂U , we have that C ′ ⊆ ∂U1 ∩ ∂U2 is
a connected set.

Figure 1. Components U01 and U02 in U0.

Given y ∈ C ′, denote by Bε(y) a ball in T
2 centered in y and with radius ε.

Claim 1. For every ε � 1, we have that Bε(y) ∩ U1 or Bε(y) ∩ U2 has infinitely
many connected components.

Indeed, suppose that for every ε > 0, Bε(y)∩U1 and Bε(y)∩U2 has finitely many
connected components. Denote by W+ the connected component of Bε(y)∩U1 and
by W− the connected component of Bε(y) ∩ U2 which intersect C ′. Note that, up
to subsets of C ′, we may suppose that C ′ ⊆ Bε(y) and that C ′ = W+ ∩W−.

Hence, we can choose ε0 > 0 such that W+∪W− contains an open set and Bε(y)
is contained in W+ ∪W− for every 0 < ε < ε0. In particular, Bε(y) is contained
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Figure 2. Connected components.

in U1 ∪ U2, contradicting the fact that U = int(U) and U1, U2 are connected
components of U . This proves Claim 1.

To finish the proof of the lemma, we may suppose, without loss of generality, that
Bε0(y) ∩ U1 has infinitely many connected components. Then, we know, by conti-
nuity of f , that for 0 < ε < ε0

2 there is δ > 0 such that

d(x, y) < δ ⇒ d(f(x), f(y)) < ε, ∀x, y ∈ T
2.

Now, we consider x ∈ C such that y = f(x) and a curve γ in Bδ(x) that intersects
C at x and γ(0) ∈ U01, γ(1) ∈ U02. Then f(γ) is a curve such that f(γ) ∩ Bε0(y)
has infinitely many components. In particular, there exist t, s ∈ [0, 1] such that

d(f(γ(t)), f(γ(s))) ≥ ε0 > ε,

which is a contradiction, because f is uniformly continuous. The desired result
follows. �

Figure 3. Connected components.

The lemma below is important because it shows the existence of critical points
that are not generic for f .

Corollary 4.5. Let U01 and U02 be as in Lemma 4.4. If p belongs to
C = ∂U01 ∩ ∂U02, then p is not a generic critical point.

Proof. By item (b) of Lemma 4.1 and by Remark 4.2, U and V are disjoint f -
backward invariant open sets satisfying:

• T
2 = U ∪ V ;

• f(∂U) = ∂U and f(∂V ) = ∂V .
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Then, f−1(f(p)) has empty interior. Otherwise, f(int(f−1(f(p))) = f(p) ∈ ∂U
that is f -forward invariant, contradicting the fact that f is a non-wandering en-
domorphism. Now, we can choose a neighborhood B of p contained in U0 such
that B\{f−1(f(p))} has at least two connected components which are contained in
U01 and U02. By Lemma 4.4, it follows that the boundary component of U0i con-
tained in U0 has as image a point where U0i is a component connected to f−1(Ui)
contained in U0. Then, as U0 = {U0i : U0i ⊂ U0}, we have that

f(B)\{f(p)} = f(B\{f−1(f(p))}) ⊂ {f(B ∩ U0i) : U0i ⊂ U0}.
In particular, f(B ∩ U01) ⊆ U1 and f(B ∩ U02) ⊆ U2.

Figure 4. p is not a generic critical point.

Therefore, one has that p is not a generic critical point (see Figure 4.) �
In the following lemma we will show that f satisfies: for each Ui connected

component of U there exists a unique connected component Uj of U such that

U j = f(U i). Hence, we will say that f preserves the connected components of U .
Now, we suppose, in addition to the hypothesis of f being a non-wandering

endomorphism of degree at least two, that the critical points of f are generic.

Lemma 4.6. f preserves the connected components of U . Moreover, every con-
nected component Ui of U is periodic (i.e., ∃ni ≥ 1 such that fni(U i) = U i and
f−ni(Ui) ⊆ Ui).

Proof. Suppose that f(Ui) intersect at least two connected components of U . Then,
by Corollary 4.5, it follows that there exists a non-generic critical point, contra-
dicting that Sf is a generic critical set. Thus, we have that for each connected
component Ui of U , f(Ui) must intersect a unique connected component Uji of U .

In particular, since f(∂Ui) ⊆ ∂U , one has f(U i) ⊆ U ji . More precisely, one has
that for each connected component Ui of U there exists a unique Uji such that

f(Ui) ⊆ U ji .
We want to prove that every connected component Ui of U is periodic, but before

that, we prove that for each Ui there exists a unique Uj such that f−1(Ui) ⊆ Uj .
Indeed, suppose that f−1(Ui) intersects at least two connected components Uj

and Uk of U . Then, by what we saw above, we have that f(U j) ⊆ U i and f(Uk) ⊆
U i. Since Ω(f) = T

2, there exist ni, nk ≥ 1 such that fnj (U j) ⊆ U j and fnj (U j) ⊆
U j imply that fnj−1(Ui) ⊆ Uj and fnk−1(Ui) ⊆ Uk. Hence, one has nj = nk and
Uj = Uk.

Therefore, for each connected component Ui of U there exist unique Uji and Uki

such that f−1(Ui) ⊆ Uji and f(U i) ⊆ Uki
, implying that f preserves the connected

components of U , fni(U i) = U i, and f−ni(Ui) ⊆ Ui. �
Corollary 4.7. There is a finite number of connected components of U .
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Proof. By definition of U (see equation (4.1)), we can take a connected component

U0 of U such that U =
⋃

n≥0 f
−n(U0). Hence by Lemma 4.6, for each connected

component Uj of U there exists nj ≥ 1 and n0 ≥ 1 such that fnj (U j) = U0 and

fn0(U0) = U0. Therefore, U has finitely many connected components. �

5. Essential sets

Now, our goal is to show that f for a non-wandering endomorphism with topo-
logical degree at least two and generic critical set that is not itself transitive, every
connected component of U has fundamental group with just one generator in the
fundamental group of the torus. Before we formalize this idea, let us fix some nota-
tion. Let L be the linear part of f which is an invertible matrix in M2(Z) and has
determinant of modulus at least two. Let π : R2 → T

2 be the universal covering of
the torus and let f̃ : R2 → R

2 be a lift of f . It is known that f̃(x̃+v) = L(v)+ f̃(x̃)
for every x̃ ∈ R

2 and v ∈ Z.

Definition 5.1. We say that a connected open set A in T
2 is essential if for every

connected component Ã of π−1(A) in R
2,

π := π|
˜A : Ã → A

is not a homeomorphism. Otherwise, we say that A is inessential.

The following proposition shows properties of the essential sets.

Proposition 5.2. Let W ⊆ T
2 be a connected open set. Then the following are

equivalent:

(i) W is essential;
(ii) W contains a loop homotopically non-trivial in T

2;
(iii) there is a non-trivial deck transformation Tw : R2 → R

2 such that every
connected component of π−1(W ) is Tw-invariant.

Moreover, if W is path connected in T
2, then i∗ : π1(W,x) → π1(T

2, x) is a non-
trivial map, where x ∈ W and i : W ↪→ T

2 is the inclusion.

Heuristically, an essential set is a set such that every connected component of
its lift has infinite volume.

The following lemma is fundamental in the proof of the Main Theorem. That
lemma is interesting, because it shows that every closure of a connected component
of U contains a closed curve homotopically non-trivial in T

2.

Lemma 5.3. Let Uj be any connected component of U . Then U j contains a closed
curve homotopically non-trivial in T

2.

Proof. By Corollary 4.7, we can suppose U j = f j(U0) and Un0
= U0. If U0

is essential there is nothing to prove. Now, suppose that U0 is inessential. Let

Ũ0 ⊂ R
2 be a connected component of π−1(U0); then π : Ũ0 → U0 is injective.

Consider w ∈ Z
2\L(Z2); such w exists because | det(L)| ≥ 2. We denote by W ′

the interior of the set π(f̃−1(w + f̃(Ũ0))) that is non-empty, because f(U0) has an
interior that is non-empty. Then

f(W ′) = f ◦ π(f̃−1(w + f̃(Ũ0))) = π(w + f̃(Ũ0)) = f(U0).
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But as W ′ is an open set and f(W ′) ⊂ U1, then W ′ ⊂ U . Then,

fn(W ′) ∩W ′ 
= ∅ ⇐⇒ n = kn0, for some k ≥ 1.

In particular, W ′ must intersect U0. Hence W ′ is contained in U0.

Since W ′ is contained in U0, we have that f̃−1(w + f̃(Ũ0)) is contained in Ũ0.

Thus, f̃(Ũ0) contains w + f̃(Ũ0) and f̃(Ũ0). Hence, there exist x̃ and ỹ in Ũ0 such

that f̃(ỹ) = w + f̃(x̃), and so taking a curve γ̃ in Ũ0 joining x̃ to ỹ, one has that

f̃(γ̃) is a curve joining f̃(x̃) to f̃(ỹ). In particular, γ := π ◦ γ̃ is a curve such that
γf := f ◦ γ is a closed curve whose homology class is w. Therefore, f j−1 ◦ γf is a

closed curve in U j whose homology class is Lj−1(w). �
The next lemma is important because it shows that the closure of the connected

components of U and V obtained in Lemma 4.1 are essential sets.

Lemma 5.4. If Uj is a connected component of U such that fn(U j) = U j for some
n ≥ 1, then, Uj is essential.

Proof. Suppose, without loss of generality, that j = 0. Let Ũ0 be a connected
component of π−1(U0) in R

2. Suppose that U0 is an inessential set. Since the

degree of f is at least two and f(∂U0) ⊆ ∂U , one has that f̃(Ũ0) contains at

least two connected components of π−1(U0) and f̃(∂Ũ0) ⊆ ∂π−1(U0). Then, there
exist at least two connected components of π−1(U0). Suppose, without loss of

generality, that Ũ0 and Ũ0 + v for some v ∈ Z
2 are contained in f̃(Ũ0) and that

the components Ũ00 and Ũ0v of f̃−1(Ũ0) and f̃−1(Ũw), respectively, are contained

in Ũ0 so that C̃ = ∂Ũ00 ∩ ∂Ũ0w is a non-empty set in Ũ0.

Figure 5. The components Ũ0 and Ũv.

Then, from the proof of Lemma 4.4, f(π(C̃)) is a point and, by the proof of

Corollary 4.5, there exists p ∈ π(C̃) so that p is not a generic critical point, contra-
dicting that Sf is a generic critical set. �

The lemma below shows what happens when two essential sets are linearly in-
dependent.

Lemma 5.5. Suppose that γ and σ are loops in T
2 such that [γ] and [σ] are linearly

independent in Z
2. Then γ and σ intersect.

Proof. See Lemma 4.2 in [And16]. �
The lemma below shows the existence of integer eigenvalues of L.

Lemma 5.6. The eigenvalues of L are integers.
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Proof. By Lemma 5.4, the connected components Uj and Vi of U and V are essen-
tials. We consider two loops γ and σ in Uj and Vi such that [γ] and [σ] are different
from zero in Z

2. As Uj ∩ Vi = ∅, it follows, by Lemma 5.5, that [γ] and [σ] are

linearly dependent in Z
2. Analogously, as U j+1∩Vi = ∅ and f ◦γ is a loop in U j+1,

we have that [f ◦ γ] = L[γ] and [σ] are linearly dependent in Z
2; in particular, L[γ]

and [γ] are linearly dependent in Z
2. Therefore, there exists k ∈ Z\{0} such that

L[γ] = k[γ]. This proves the lemma. �

The lemma below is fundamental. It shows that all connected components of U
and V are essential.

6. The proof of the Main Theorem

Let f : T2 → T
2 be a non-wandering endomorphism with generic critical set and

degree at least two which is not transitive. Then we know from Lemma 4.1 that
there exist U and V in T

2 f -backward invariant regular open sets such that U and
V are f -forward invariant sets. Since all critical points are generic, from Lemma 5.4
and Corollary 4.7 it follows that all connected components of U and V are essential
and that U0 is periodic. Let U0, f(U0), . . . , f

n−1(U0) be all connected components

of U with U0 = fn(U0). Then, consider two connected components Ũ0 and Ṽ0 of

π−1(U0) and π−1(V0), respectively, and choose f̃ : R2 → R
2 a lift of f such that

f̃n(Ũ0) ⊆ cl(Ũ0).

Figure 6. The sets U0 and V0.

Let us now prove that L has a real eigenvalue of modulus one. First, note that
as U0 and V0 are disjoint, Lemma 5.6 implies that L has integer eigenvalues l and
k. Let w and u be the eigenvectors of L associated to l and k, respectively, in

Z
2. Suppose, without loss of generality, that w and u = e2. That is, as Ũ0 is

Tu-invariant, we have that Ũ0 is a “vertical” component of π−1(U0).
To finish, suppose that |k| ≥ 2. Then, consider in R

2 a curve γ̃ with γ̃(0) ∈
Ũ0 and γ̃(1) = γ̃(0) + e1. Thus, f̃n ◦ γ̃ is a curve with f̃n ◦ γ̃(0) ∈ Ũ0 and

f̃n ◦ γ̃(1) = f̃n ◦ γ̃(0) + Ln(e1). However, there exist a and b in Z with b dif-
ferent from zero such that e1 = ae2 + bw. Hence, we have L(e1) = ake2 + blw and,
in particular,

f̃(Ũ0 + e1) ⊆ cl(Ũ0 + L(e1)).

Then, if |l| ≥ 2, we have that the first coordinate of L(e1) has modulus at least

two. Hence there is a c ∈ Z such that Ũr+ce1 is between Ũ0 and Ũ0+L(e1), and so
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Figure 7. The curves γ̃ and f̃ ◦ γ̃.

we have a contradiction because the Ur’s are disjoint and fn-backward invariant.

Hence there is no set W between Ũ0 and Ũ0 + e1 such that f̃n(W ) = Ũ0 + ce1.
Therefore, |l| = 1, and so L is not an Anosov endomorphism, a contradiction.

This proves the Main Theorem.

7. Examples

Consider a map f on S
1 itself of the form

Figure 8. The graph of f .

such that f is not a transitive map but is volume preserving. Let g : S1 → S
1

be any volume preserving degree 2 map and let H : T
2 → T

2 be any volume
preserving endomorphism without critical points homotopic to (x, y) �→ (2x, y).
Then F : T2 → T

2 given by

F (x, y) = H(f(x), g(y))

is a volume preserving endomorphism with generic critical points and homotopic
to (x, y) �→ (2x, 2y). Therefore, by the Main Theorem, F is transitive. More
generally, given endomorphisms f and g on S

1 itself where f has critical points
and g is expanding such that f × g : T

2 → T
2, f × g(x, y) = (f(x), g(y)) is a

volume preserving endomorphism, then for every H : T2 → T
2 a volume preserving

covering map such that F = H ◦ (f × g) is homotopic to an Anosov endomorphism
of degree at least two, we have that F is transitive.

Acknowledgments

The author would like to express his gratitude to Professor Enrique Pujals and
to Rafael Potrie, as well as to Professor Cristina Lizana, for their helpful comments



136 WAGNER RANTER

and appropriate advice. He would also like to thank Martin Andersson and Andres
Koropecki for discussions about this work.

References

[AH94] N. Aoki and K. Hiraide, Topological theory of dynamical systems: recent advances, North-
Holland Mathematical Library, vol. 52, North-Holland Publishing Co., Amsterdam, 1994.
MR1289410

[And16] Martin Andersson, Transitivity of conservative toral endomorphisms, Nonlinearity 29
(2016), no. 3, 1047–1055, DOI 10.1088/0951-7715/29/3/1047. MR3465993

[Mas89] William S. Massey, Algebraic topology: an introduction, reprint of the 1967 edition,
Graduate Texts in Mathematics, vol. 56, Springer-Verlag, New York-Heidelberg, 1977.
MR0448331

[Shu74] M. Shub, Dynamical systems, filtrations and entropy, Bull. Amer. Math. Soc. 80 (1974),
27–41, DOI 10.1090/S0002-9904-1974-13344-6. MR0334284

[Whi55] Hassler Whitney, On singularities of mappings of euclidean spaces. I. Mappings of the
plane into the plane, Ann. of Math. (2) 62 (1955), 374–410, DOI 10.2307/1970070.
MR0073980

Univesidade Federal de Alagoas–UFAL, Maceió-AL, 57072-900, Brazil
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