Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some characterizations on critical metrics for quadratic curvature functions


Authors: Guangyue Huang and Li Chen
Journal: Proc. Amer. Math. Soc. 146 (2018), 385-395
MSC (2010): Primary 51H25; Secondary 53C21
DOI: https://doi.org/10.1090/proc/13740
Published electronically: August 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Under some integral conditions, we classify closed $ n$-dimensional manifolds of which the metrics are critical for quadratic curvature functions. Moreover, under some curvature conditions, we also obtain that a critical metric must be Einstein.


References [Enhancements On Off] (What's this?)

  • [1] Michael T. Anderson, Extrema of curvature functionals on the space of metrics on $ 3$-manifolds, Calc. Var. Partial Differential Equations 5 (1997), no. 3, 199-269. MR 1438146, https://doi.org/10.1007/s005260050066
  • [2] Marcel Berger, Quelques formules de variation pour une structure riemannienne, Ann. Sci. École Norm. Sup. (4) 3 (1970), 285-294 (French). MR 0278238
  • [3] Arthur L. Besse, Einstein manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008. Reprint of the 1987 edition. MR 2371700
  • [4] Jean-Pierre Bourguignon, The ``magic'' of Weitzenböck formulas, Variational methods (Paris, 1988) Progr. Nonlinear Differential Equations Appl., vol. 4, Birkhäuser Boston, Boston, MA, 1990, pp. 251-271. MR 1205158
  • [5] Giovanni Catino, On conformally flat manifolds with constant positive scalar curvature, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2627-2634. MR 3477081, https://doi.org/10.1090/proc/12925
  • [6] Giovanni Catino, Some rigidity results on critical metrics for quadratic functionals, Calc. Var. Partial Differential Equations 54 (2015), no. 3, 2921-2937. MR 3412398, https://doi.org/10.1007/s00526-015-0889-z
  • [7] Andrzej Derdziński, On compact Riemannian manifolds with harmonic curvature, Math. Ann. 259 (1982), no. 2, 145-152. MR 656660, https://doi.org/10.1007/BF01457307
  • [8] Dennis DeTurck and Hubert Goldschmidt, Regularity theorems in Riemannian geometry. II. Harmonic curvature and the Weyl tensor, Forum Math. 1 (1989), no. 4, 377-394. MR 1016679, https://doi.org/10.1515/form.1989.1.377
  • [9] Georges de Rham, Sur la reductibilité d'un espace de Riemann, Comment. Math. Helv. 26 (1952), 328-344 (French). MR 0052177, https://doi.org/10.1007/BF02564308
  • [10] Matthew J. Gursky and Jeff A. Viaclovsky, A new variational characterization of three-dimensional space forms, Invent. Math. 145 (2001), no. 2, 251-278. MR 1872547, https://doi.org/10.1007/s002220100147
  • [11] Matthew J. Gursky and Jeff A. Viaclovsky, Rigidity and stability of Einstein metrics for quadratic curvature functionals, J. Reine Angew. Math. 700 (2015), 37-91. MR 3318510, https://doi.org/10.1515/crelle-2013-0024
  • [12] Emmanuel Hebey and Michel Vaugon, Effective $ L_p$ pinching for the concircular curvature, J. Geom. Anal. 6 (1996), no. 4, 531-553 (1997). MR 1601401, https://doi.org/10.1007/BF02921622
  • [13] Zejun Hu, Seiki Nishikawa, and Udo Simon, Critical metrics of the Schouten functional, J. Geom. 98 (2010), no. 1-2, 91-113. MR 2739189, https://doi.org/10.1007/s00022-010-0057-8
  • [14] Zejun Hu and Haizhong Li, A new variational characterization of $ n$-dimensional space forms, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3005-3023. MR 2052939, https://doi.org/10.1090/S0002-9947-03-03486-X
  • [15] Guangyue Huang and Yong Wei, The classification of $ (m,\rho )$-quasi-Einstein manifolds, Ann. Global Anal. Geom. 44 (2013), no. 3, 269-282. MR 3101859, https://doi.org/10.1007/s10455-013-9366-0
  • [16] Guangyue Huang and Bingqing Ma, Riemannian manifolds with harmonic curvature, Colloq. Math. 145 (2016), no. 2, 251-257. MR 3557136
  • [17] Gerhard Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 21 (1985), no. 1, 47-62. MR 806701
  • [18] Jerry L. Kazdan, Unique continuation in geometry, Comm. Pure Appl. Math. 41 (1988), no. 5, 667-681. MR 948075, https://doi.org/10.1002/cpa.3160410508
  • [19] François Lamontagne, Une remarque sur la norme $ L^2$ du tenseur de courbure, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 3, 237-240 (French, with English and French summaries). MR 1288410
  • [20] François Lamontagne, A critical metric for the $ L^2$-norm of the curvature tensor on $ S^3$, Proc. Amer. Math. Soc. 126 (1998), no. 2, 589-593. MR 1425130, https://doi.org/10.1090/S0002-9939-98-04171-9
  • [21] Paolo Mastrolia, Dario D. Monticelli, and Marco Rigoli, A note on curvature of Riemannian manifolds, J. Math. Anal. Appl. 399 (2013), no. 2, 505-513. MR 2996728, https://doi.org/10.1016/j.jmaa.2012.10.044
  • [22] Masafumi Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207-213. MR 0353216, https://doi.org/10.2307/2373587
  • [23] N. K. Smolentsev, Spaces of Riemannian metrics, Sovrem. Mat. Prilozh. 31, Geometriya (2005), 69-147 (Russian, with Russian summary); English transl., J. Math. Sci. (N.Y.) 142 (2007), no. 5, 2436-2519. MR 2464555, https://doi.org/10.1007/s10958-007-0185-3
  • [24] Shükichi Tanno, Deformations of Riemannian metrics on 3-dimensional manifolds, Tôhoku Math. J. (2) 27 (1975), no. 3, 437-444. MR 0436209, https://doi.org/10.2748/tmj/1203529253

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 51H25, 53C21

Retrieve articles in all journals with MSC (2010): 51H25, 53C21


Additional Information

Guangyue Huang
Affiliation: Department of Mathematics, Henan Normal University, Xinxiang 453007, People’s Republic of China
Email: hgy@henannu.edu.cn

Li Chen
Affiliation: Faculty of Mathematics and Statistics, Hubei University, Wuhan, 430062, People’s Republic of China
Email: chernli@163.com

DOI: https://doi.org/10.1090/proc/13740
Keywords: Critical metric, quadratic functionals, Einstein
Received by editor(s): September 13, 2016
Received by editor(s) in revised form: January 5, 2017, March 1, 2017, and March 12, 2017
Published electronically: August 1, 2017
Additional Notes: The research of the authors was supported by NSFC (No. 11371018, 11671121, 11201131) and Hubei Key Laboratory of Applied Mathematics (Hubei University)
Communicated by: Guofang Wei
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society