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THE ARTIN-SPRINGER THEOREM FOR QUADRATIC FORMS

OVER SEMI-LOCAL RINGS WITH FINITE RESIDUE FIELDS

STEPHEN SCULLY

(Communicated by Matthew A. Papanikolas)

Abstract. Let R be a commutative and unital semi-local ring in which 2
is invertible. In this note, we show that anisotropic quadratic spaces over R
remain anisotropic after base change to any odd-degree finite étale extension of
R. This generalization of the classical Artin-Springer theorem (concerning the
situation where R is a field) was previously established in the case where all
residue fields of R are infinite by I. Panin and U. Rehmann. The more general

result presented here permits one to extend a fundamental isotropy criterion of
I. Panin and K. Pimenov for quadratic spaces over regular semi-local domains
containing a field of characteristic �= 2 to the case where the ring has at least
one residue field which is finite.

1. Introduction

Let R be a commutative and unital ring in which 2 is invertible. By a (free)
quadratic space over R, we mean a pair (V, q) consisting of a free R-module V of
finite rank and a non-degenerate quadratic form q on V (where, by non-degenerate,
we mean that the polar bilinear form bq of q (see §2.A) has trivial radical, i.e.,
that the R-linear map V → V ∗ given by v �→ bq(v,−) is bijective). Given an
extension of (commutative, unital) rings R ↪→ S, there is an induced base-change
procedure transforming quadratic spaces over R to quadratic spaces over S; namely,
to any quadratic space (V, q) over R, one associates the quadratic space (VS, qS)
over S obtained by setting VS = V ⊗R S and taking qS to be the unique (non-
degenerate) quadratic form on VS which restricts to q on V (via the canonical
inclusion V ↪→ VS).

A quadratic space (V, q) over R is said to be (strictly) isotropic if there exists a
unimodular vector v ∈ V for which q(v) = 0. If no such unimodular vector exists,
then we say that (V, q) is (strictly) anisotropic. In other words, (V, q) is anisotropic
if the projective quadric {q = 0} ⊆ P(V ) over R admits no R-valued points.

A basic, yet fundamental problem for the theory of quadratic spaces over rings is
that of understanding the isotropy behaviour of quadratic spaces after base change
to another ring of interest. In [P09], I. Panin proved the following important result
in this direction: If (V, q) is an anisotropic quadratic space over a regular semi-local
domain R containing a field of characteristic 0, then it remains anisotropic after
base change to the fraction field of R. Later, I. Panin and K. Pimenov ([PP10])
showed that the statement also holds if R is a regular semi-local domain of finite
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characteristic (different from 2), provided that all residue fields of R are infinite.
The significance of these results is that they permit one to reduce a variety of
problems concerning quadratic spaces over sufficiently nice semi-local domains to
the case of fields, where a rich and extensive theory is already available. Recent
applications to the study of Witt groups and Milnor-Witt K-groups of regular
equicharacteristic semi-local domains may be found in [6] and [GSZ16].

One of the main ingredients used in the aforementioned work of Panin and
Panin-Pimenov is the following generalization of the classical Artin-Springer theo-
rem ([Sp52]) concerning the existence of odd-degree points on quadrics: If (V, q) is
an anisotropic quadratic space over a semi-local ring R with infinite residue fields
(of characteristic �= 2), then (V, q) remains anisotropic after base change to any
odd-degree finite étale extension of R (the Artin-Springer theorem being the spe-
cial case where R is a field). This statement, which was established by Panin and
U. Rehmann in [PR07], was used by Panin and Pimenov to prove the following more
precise version of their result (cf. [PP10, Proof of Thm. 1.1]): If R is a regular
semi-local domain containing a field of characteristic �= 2, and the Artin-Springer
theorem holds for quadratic spaces over R, then anisotropic quadratic spaces over
R remain anisotropic after base change to the fraction field of R.

The purpose of this note is to show that the Artin-Springer theorem holds for
quadratic spaces over any semi-local ring in which 2 is invertible (see Theorem 4.1
below). In light of the above discussion, this makes the Panin-Pimenov isotropy
criterion available for quadratic spaces over any regular semi-local domain of finite
characteristic �= 2, which was our original objective. The stated extension of the
Artin-Springer theorem is achieved by means of an elementary reduction to the
case already treated in [PR07]. The key tool used to carry out this reduction is
Proposition 3.1 below, which is perhaps of some interest in its own right. Some
additional consequences of our extension results are also briefly discussed in §5.
Terminology. In this note, all rings are assumed to be commutative and unital.
By a variety, we mean an integral scheme of finite type over a field.

2. Preliminaries

In this section we recall some facts and fix some notation concerning quadratic
forms over rings (in which 2 is invertible). The main reference here is [Bae78], but we
do not assume much more than a basic knowledge of the theory of quadratic forms
over fields. Note that we only consider quadratic forms defined on free modules of
finite rank, as opposed to quadratic forms defined on arbitrary projective modules.
In particular, the Witt rings considered below are Witt rings of free quadratic
spaces.

2.A. Quadratic spaces over rings. Let R be a ring in which 2 is invertible and
let V be an R-module. By a quadratic form on V , we mean a map q : V → R
such that (i) q(λv) = λ2q(v) for all (λ, v) ∈ R × V , and (ii) the symmetric form
bq : V × V → R given by bq(v, w) = q(v + w) − q(v) − q(w) is R-bilinear. If W is
an R-submodule of V , then the orthogonal complement of W in V (with respect
to q) is defined as the R-submodule W⊥ consisting of all vectors v ∈ V such that
bq(v, w) = 0 for all w ∈ W . If the R-linear map W → W ∗ given by w �→ bq(w,−) is
bijective, then we say that W is non-degenerate (with respect to q). In this case, V
decomposes as the internal direct sum of W and W⊥. If V itself is non-degenerate,
then we say that the quadratic form q is non-degenerate. In this note, we will be
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exclusively concerned with non-degenerate quadratic forms on free modules of finite
rank. To this end, it is worth noting the following:

Lemma 2.1. Let (V, q) be a pair consisting of an R-module V and a quadratic form
q on V , let W be an R-submodule of V , and let n be a positive integer. Then W is
free and non-degenerate of rank n if and only if there exist n R-module generators
w1, . . . , wn of W such that the matrix

(
bq(wi, wj)

)
is invertible over R.

Proof. The only point worthy of remark is that the invertibility of the matrix
M :=

(
bq(wi, wj)

)
implies the freeness of Rw1+ · · ·+Rwn ⊆ V . Observe, however,

that if r1w1 + · · ·+ rnwn = 0 for some r1, . . . , rn ∈ R, then the vector (r1, . . . , rn)
lies in the kernel of M , whence the claim. �

By a (free) quadratic space over R, we mean a pair (V, q) consisting of a free
R-module V of finite rank and a non-degenerate quadratic form q on V . The rank
of (V, q) is defined as the rank of the free R-module V . By a subspace of (V, q) we
mean a quadratic space (W, p) such that W is a free non-degenerate submodule of
V and p = q|W (i.e., p is the restriction of q to W ).

Given an R-algebra S, we can define a quadratic space (VS , qS) over S by setting
VS = V ⊗R S and taking qS to be the unique (non-degenerate) quadratic form on
VS which restricts to q on V (we suppress from the notation the dependency of this
construction on the fixed R-algebra structure on S). In the other direction, if S is a
free R-algebra of finite rank and we are given an R-linear map s : S → R such that
the quadratic form S → R, x �→ s(x2) is non-degenerate, then, given any quadratic
space (W, p) over S, the pair (RW, s ◦ p) is a quadratic space over R (where by RW
we mean W regarded as an R-module via the given R-algebra structure on S).

If (U, p) is another quadratic space over R, then an isometry from (U, p) to (V, q)
is an R-linear isomorphism φ : U → V such that q

(
φ(u)

)
= p(u) for all u ∈ U . If

such an isometry exists, then we say that (U, p) and (V, q) are isometric. The set
O(V, q) of all isometries from a fixed quadratic space (V, q) to itself is equipped with
a natural group structure, and is called the orthogonal group of (V, q). If w ∈ V is
such that q(w) is invertible in R, then the map v �→ v −

(
q(w)−1bq(v, w)

)
w is an

element of O(V, q). Self-isometries of this kind are called reflections.
The orthogonal sum (U⊕V, p ⊥ q) and tensor product (U⊗RV, p⊗q) of quadratic

spaces (U, p) and (V, q) over R are defined in the obvious way. These operations
descend to the level of isometry classes, thus equipping the set of all isometry classes
of quadratic spaces over R with the structure of a commutative unital semi-ring(
with unit given by the class of (R, x �→ x2)

)
. The Grothendieck completion of

this semi-ring is called the Grothendieck-Witt ring of (free) quadratic spaces over
R, and is denoted GW(R) (see [Bae78, §I.2] for more details).

Given an invertible element a in R, we write 〈a〉 for the rank-1 quadratic space
(R, x �→ ax2) over R. Given n invertible elements a1, . . . , an in R, we then write
〈a1, . . . , an〉 for the n-fold orthgonal sum 〈a1〉 ⊥ · · · ⊥ 〈an〉. A quadratic space
isometric to one of this kind is said to be diagonalizable. Note that every rank-1
quadratic space is diagonalizable. If a quadratic space (V, q) over R admits a free
non-degenerate rank-1 R-submodule L, then we have the orthogonal decomposition
(V, q) = (L, q|L) ⊥ (L⊥, q|L⊥). In light of the preceding remarks, this implies:

Lemma 2.2. If every quadratic space over R admits a free non-degenerate rank-1
R-submodule, then every quadratic space over R is diagonalizable.
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If (V, q) is a quadratic space over R, then a vector v ∈ V is said to be (strictly)
isotropic if v is unimodular (i.e., v generates a free rank-1 R-submodule of V ) and
q(v) = 0. A quadratic space which admits an isotropic vector is said to be (strictly)
isotropic, and (strictly) anisotropic otherwise. The most important example of an
isotropic quadratic space over R is the hyperbolic plane H = (R⊕ R, (x, y) �→ xy).
A quadratic space is said to be hyperbolic if it is isometric to an orthogonal sum of
hyperbolic planes. The set of isometry classes of hyperbolic spaces over R forms an
ideal in the Grothendieck-Witt ring GW(R). The quotient of GW(R) by this ideal
is called the Witt ring of (free) quadratic spaces over R, and is denoted by W(R).

If f : R → S is a homomorphism of rings, then the assignment (V, q) �→ (VS, qS)
descends to a ring homomorphism f∗ : W(R) → W(S) called restriction along f .
If f equips S with the structure of a free R-module of finite rank, and s : S → R
is an R-linear map such that the quadratic form S → R, x �→ s(x2) is non-
degenerate, then the assignment (W, p) �→ (RW, s ◦ p) gives rise to a ring homo-
morphism s∗ : W(S) → W(R), called (Scharlau) transfer along s. The pair (f∗, s∗)
then satisfies the obvious projection formula; in particular, the composition

W(R)
f∗

−→ W(S)
s∗−→ W(R)

coincides with multiplication by the element s∗(〈1〉) (see [Bae78, I.2.12]).

2.B. Quadratic spaces over finite direct products of rings. LetR1, . . . , Rs be
rings in which 2 is invertible, and letR = R1×· · ·×Rs be their direct product. Given
a quadratic space (V, q) over R, we obtain, for each 1 ≤ i ≤ s, an induced quadratic
space (Vi, qi) := (VRi

, qRi
) over Ri by restriction along the natural projection R →

Ri. Note that the s quadratic spaces (V1, q1), . . . , (Vs, qs) completely determine
(V, q). Indeed, for each i, the map Ri ↪→ R given by x �→ x · 1 gives rise to an
inclusion Vi ⊆ V under which q|Vi

= qi. Via these inclusions, an arbitrary vector
v ∈ V decomposes uniquely as a sum v = v1 + · · · + vs with vi ∈ Vi for each i.
The quadratic form q then acts on v by the formula q(v) = q1(v1) + · · · + qs(vs).
Note, furthermore, that the subsets Vi ⊆ V are pairwise mutually orthogonal with
respect to the quadratic form q. This readily implies the following statements:

Lemma 2.3. Let R and (V, q) be as above.

(1) If v ∈ V , then q(v) = 0 if and only if qi(vi) = 0 for all 1 ≤ i ≤ s.
(2) Vectors v1, . . . , vn ∈ V generate a free non-degenerate rank-n R-submodule of V

if and only if, for each 1 ≤ i ≤ s, (v1)i, . . . , (vn)i generate a free non-degenerate
rank-n Ri-submodule of Vi.

2.C. Quadratic spaces over semi-local rings. The basic strategy for studying
quadratic forms over general rings is that of reduction to the case of fields, where
a rich and extensive theory has been developing since its initiation by E. Witt in
[Wi37]. As expounded in the book [Bae78], this strategy can be applied successfully
to the study of quadratic forms over semi-local rings using reduction modulo the
Jacobson radical and the remarks of the previous subsection. For later reference,
we now point out some basic results which emerge from this philosophy. For the
remainder of this subsection, we let R be a semi-local ring in which 2 is invertible
and set R = R/Jac(R), where Jac(R) denotes the Jacobson radical of R. Then
R decomposes (essentially uniquely) as a finite direct product of fields, say R �
k1 × · · · × ks. If V is an R-module, then we write V for the R-module obtained
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by restricting V along the quotient map R �→ R. Similarly, for each 1 ≤ i ≤ s, we
write V i for the ki-vector space obtained from V by restriction along R → ki. The
image of a vector v ∈ V under the canonical projection V → V will be denoted
by v. In the same way, for each 1 ≤ i ≤ s, we write vi for the image of v under
the projection V → V i. Note that we have v = v1 + · · · + vs. Furthermore, v is
unimodular if and only if vi �= 0 for all 1 ≤ i ≤ s. If q is a quadratic form on V ,
then the induced quadratic form on V will be denoted by q. Similarly, for each
1 ≤ i ≤ s, the induced quadratic form on the ki-vector space V i will be denoted
by qi. In particular, given a quadratic space (V, q) over R, we obtain in this way
a quadratic space (V , q) over R and, for each 1 ≤ i ≤ s, a quadratic space (V i, qi)
over ki.

Lemma 2.4. Let (V, q) be a quadratic space over R. Then v1, . . . , vn ∈ V generate
a free non-degenerate rank-n R-submodule of V if and only if, for each 1 ≤ i ≤ s,
(v1)i, . . . , (vn)i generate a non-degenerate rank-n ki-linear subspace of V i.

Proof. In view of Lemma 2.3 (2), it suffices to show that v1, . . . , vn generate a free
non-degenerate rank-n R-submodule of V if and only if v1, . . . , vn generate a free
non-degenerate rank-n R-submodule of V . This follows from Lemma 2.1, since an
element of R (in this case the determinant of the matrix

(
bq(vi, vj)

)
) is invertible

in R if and only if its image under the projection R → R is invertible in R. �
Any quadratic space over a field of characteristic �= 2 admits a non-degenerate

subspace of rank-1 (see [EKM08, Prop. 7.29]). By the preceding lemma, it follows
that every quadratic space over the semi-local ring R admits a free non-degenerate
submodule of rank 1. Lemma 2.2 therefore implies:

Lemma 2.5. Every quadratic space over R is diagonalizable.

A slightly more subtle observation is the following important lemma:

Lemma 2.6. Let (V, q) be a quadratic space over R, and let v, w ∈ V be unimodular
vectors such that qi(wi) = qi(vi) for all 1 ≤ i ≤ s. Then there exists u ∈ V such
that q(u) = q(v) and ui = wi for all 1 ≤ i ≤ s.

Remark 2.7. The condition that qi(wi) = qi(vi) for all 1 ≤ i ≤ s just means that

q(w) = q(v). Similarly, the assertion that ui = wi for all 1 ≤ i ≤ s simply means
that u = w. We choose to state the lemma this way for later reference.

Proof. The rank-1 case is trivial, so we can assume that (V, q) has rank at least 2.
Since v and w are unimodular, we have vi �= 0 �= wi for all 1 ≤ i ≤ s. Thus, by
an observation of E. Witt (see [EKM08, §II.8]), there exists, for each 1 ≤ i ≤ s,
an isometry τi ∈ O(V i, qi) which is a product of (at most 2) reflections and which
satisfies τi(vi) = wi. Since rank(V ) ≥ 2, every reflection in O(V i, qi) extends to
a reflection in O(V , q) which fixes vj for all j �= i. It follows that there exists

τ ∈ O(V , q) which is a product of reflections and which sends v to w. Since an
element of R is invertible if and only if its image in R is invertible, every reflection in
O(V , q) lifts to a reflection in O(V, q). As a result, τ lifts to an isometry φ ∈ O(V, q).
The vector u := φ(v) then has the desired properties. �
Remark 2.8. Using the Cartan-Dieudonné theorem on the generation of the orthog-
onal group of a quadratic space over a field by reflections (see [Sc85, Theorem I.5.4]),
one can show by similar means that the natural projection SO(V, q) → SO(V , q)
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on special orthogonal groups is surjective. This observation is due to M. Knebusch
(see [Kne69]). If R is a local ring, then O(V, q) → O(V , q) is also surjective.

It is worth stating explicitly the following special case of Lemma 2.6 which will
be needed later:

Lemma 2.9. Let (V, q) be an isotropic quadratic space over R. Suppose that, for
each 1 ≤ i ≤ s, we are given a non-zero vector vi ∈ V i such that qi(vi) = 0. Then
there exists a (strictly) isotropic vector v ∈ V such that vi = vi for all 1 ≤ i ≤ s.

Now, using Lemma 2.6 (see also Remark 2.8), one can readily show that Witt’s
cancellation and decomposition theorems hold for (free) quadratic spaces over R
(see [Bae78, Ch. III]). As a result, the standard characterizations of isotropy for
quadratic spaces over fields are all valid over the semi-local ring R:

Lemma 2.10. Let (V, q) be a quadratic space over R and let Q ⊆ P(V ) be the pro-
jective R-quadric defined by the vanishing of q. Then the following are equivalent:

(1) (V, q) is isotropic.
(2) (V, q) � H ⊥ (W, p) for some quadratic space (W, p) over R.
(3) There exists a quadratic space (W, p) over R with rank(W ) < rank(V ) such

that (V, q) = (W, p) in W(R).
(4) Q has an R-valued point.
(5) Q is rational over R.
(6) The affine quadric {q = 0} ⊆ A(V ) is rational over R.

Proof. If (2) holds, then we can choose coordinates (x : y : z1 : · · · : zn) on V ∗

so that q(x, y, z1, . . . , zn) = xy + p(z1, . . . , zn). The open complement in Q of the
principal divisor {x = 0} is then isomorphic to A

n
R, and so (5) holds. The remaining

implications are either trivial or straightforward consequences of Lemma 2.6 and
standard facts concerning quadratic forms over fields; for the sake of brevity we
omit the details and refer the reader instead to [Bae78, Ch. III]. �

3. Key proposition

The key ingredient needed to extend the Artin-Springer theorem to quadratic
spaces over arbitrary semi-local rings in which 2 is invertible is the (n = 3 case of
the) following proposition, which is of some interest in its own right:

Proposition 3.1. Let R be a semi-local ring in which 2 is invertible, and let S be
a degree-n finite étale extension of R for some (not necessarily odd) integer n ≥ 2.
If (V, q) is a quadratic space of rank > n over R such that (VS, qS) is isotropic, then
(V, q) contains a rank-n subspace which becomes isotropic over S.

The case where n = 2 is well known and can be made rather more precise (see
[Bae78, Thm. V.4.2]). The general case of Proposition 3.1 follows immediately
from the more specific Lemma 3.1 below. Before proceeding, let us pause to fix
some notation and terminology which will also be used in the next section:

Notation and terminology. Let R and S be as in the statement of Proposition
3.1. By [4, 18.4.5], we can write S = R[t]/

(
f(t)

)
, where f is a monic separable

polynomial of degree n over R. By monic, we mean that the leading coefficient of f
is invertible in R; by separable, we mean that the discriminant of f is invertible in
R. Both conditions are local in the following sense: a polynomial over R is monic
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(resp. separable) if and only if it is monic (resp. separable) when restricted to every
residue field of R. The image of the variable t in S will be denoted by θ. Note that
S is a free rank-n R-module with basis 1, θ, . . . , θn−1.

Our refinement of Proposition 3.1 may now be stated as follows:

Lemma 3.1. In the situation of Proposition 3.1, there exist vectors v0, v1, . . . , vn−1

∈ V such that

(1) v0 + θv1 + · · ·+ θn−1vn−1 ∈ VS is a (strictly) isotropic vector for qS .
(2) v0, v1, . . . , vn−1 generate a free non-degenerate rank-n submodule of V .

Proof. Let us first remark that the unimodularity of the vector in (1) is guaranteed
by condition (2), and so we will suppress this point in the discussion that follows.

We begin the proof with some reductions. First, since S is a finite étale extension
ofR, its Jacobson radical is generated (as an ideal of S) by the Jacobson radical ofR.
Thus, by Lemmas 2.4 and 2.9, the problem reduces immediately to the case where
R is a field, which we will now choose to denote by k. Before proceeding, we make
one further reduction to the case where the u-invariant of k is ≤ 2 (that is, every
quadratic space of rank ≥ 3 over k is isotropic). If k is finite, then it has u-invariant
2, and so no reduction is necessary (see [EKM08, Ex. 36.2 (3)]). To treat the case
where k is infinite, consider the affine quadric XqS = {qS = 0} ⊆ A(VS). Since
qS admits a (strictly) isotropic vector, XqS is a rational S-scheme (Lemma 2.10).
The Weil restriction Y := RS/k(XqS ) is therefore a rational k-variety. Note that

Y is a closed subvariety of A(V ⊕n): if A is a k-algebra, then an n-tuple of vectors

(v0, v1, . . . , vn−1) ∈ (VA)
⊕n lies in Y (A) if and only if qS⊗kA(

∑n−1
i=0 θivi) = 0.

Consider now the k-morphism g : A(V ⊕n) → A
1
k given by (v0, v1, . . . , vn−1) �→

det
(
bq(vi, vj)

)
. By Lemma 2.1, n-vectors v0, v1, . . . , vn−1 in V generate a non-

degenerate rank-n subspace of V if and only if g(v0, v1, . . . , vn−1) �= 0. Thus, in
light of the above remarks, the lemma holds if and only if U(k) �= ∅, where U is
the open subvariety of Y given by U = Y ∩ g−1(A1

k \ {0}). Now Y is a rational
k-variety, and so if k is infinite, then U(k) �= ∅ if and only if U is non-empty
as a scheme. In particular, in order to prove the lemma in this case, we may
assume that k is algebraically closed. Since any quadratic space of rank 2 or more
over an algebraically closed field is evidently isotropic, we have made the necessary
reduction.

Working under the assumption that the u-invariant of k is ≤ 2, we will now show
that there exist vectors v0, v1, . . . , vn−1 ∈ V satisfying conditions (1) and (2) in the
statement of the lemma. Let s = [n2 ]. Note that (V, q) has rank strictly greater
than 2s by assumption. Since every rank-3 quadratic space over k is isotropic, it
follows that V admits a non-degenerate subspace W of dimension 2s+ 1 such that

(W, q|W ) � H ⊥ · · · ⊥ H︸ ︷︷ ︸
s times

⊥ 〈a〉

for some a ∈ k∗ (see Lemma 2.10). More explicitly, this means that we can find
vectors e1, f1, e2, f2, . . . , es, fs and w in V such that

• q(ei) = q(fi) = 0 for all i,
• q(w) = a,
• bq(ei, ej) = bq(fi, fj) = 0 for all i �= j,



8 STEPHEN SCULLY

• bq(ei, fj) = δij for all i, j (where δ is the Kronecker delta), and
• bq(ei, w) = bq(fi, w) = 0 for all i

(the (ei, fi) are hyperbolic pairs in the sense of [EKM08, p. 40]). To finish the
proof, let us now separate the case where n is even from that where n is odd:

Case 1 (n = 2s). Suppose first that s = 1, and let α, β ∈ k be such that θ2 = α+βθ
in S. A direct calculation shows that if we set

v0 = (−α− β2

4
)ae1 + f1 −

β

2
w and v1 = w,

then qS(v0 + θv1) = 0, i.e., condition (1) of the statement holds for this choice of
v0 and v1. At the same time, the determinant of the Gram matrix

(
bq(vi, vj)

)
is

in this case equal to −a2(β2 + 4α), which is non-zero because S/k is étale. Thus,
condition (2) also holds for this choice of v0 and v1.

Suppose now that s > 1. Let λ1, . . . , λs ∈ k∗ be such that
∑s

i=1 λi = 0, and set

vi =

{
λi+1ei+1 if 0 ≤ i ≤ s− 1,

fn−i if s ≤ i ≤ n− 1.

Then, by construction, we have

qS

( n−1∑
i=0

θivi

)
=

n−1∑
i=0

q(vi)θ
2i +

∑
i<j

bq(vi, vj)θ
i+j =

s∑
i=1

λiθ
n−1 = 0,

and so the vi satisfy the first condition of the statement. Condition (2) is also
satisfied, since the restriction of q to the subspace spanned by the vi is a hyperbolic
form.

Case 2 (n = 2s+ 1). Let λ1, . . . , λs ∈ k∗ be such that
∑s

i=1 λi = −a, and set

vi =

⎧⎪⎨⎪⎩
λi+1ei+1 if 0 ≤ i ≤ s− 1,

w if i = s,

fn−i if s+ 1 ≤ i ≤ n− 1.

Then, by construction, we have

qS

( n−1∑
i=0

θivi

)
=

n−1∑
i=0

q(vi)θ
2i +

∑
i<j

bq(vi, vj)θ
i+j

= q(w)θn−1 +
s∑

i=1

λiθ
n−1 = (a− a)θn−1 = 0,

and so the vi satisfy condition (1) of the statement. Again, condition (2) is also
satisfied, since the subspace of V spanned by the vi is nothing else but W . �

4. The Artin-Springer theorem

We are now ready to prove our main result:

Theorem 4.1. Let R be a semi-local ring in which 2 is invertible. If (V, q) is an
anisotropic quadratic space over R, then (VS , qS) is anisotropic for any odd-degree
finite étale extension S of R.
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As discussed in §1, the particular case where R is a field is due (independently)
to E. Artin (unpublished) and T. A. Springer ([Sp52]), while the case where all
residue fields of R are infinite was proved in [PR07] by I. Panin and U. Rehmann.
Our purpose is to treat the case where at least one residue field of R is finite. We
will argue by reduction to the case where all residue fields are “large enough”. The
key ingredient here is (the n = 3 case of) Proposition 3.1 above. We continue with
the notation of §3, but, as per the statement of Theorem 4.1, we now assume that
n is odd. We present the proof of Theorem 4.1 in a series of short steps:

4.A. The hyperbolicity analogue of Theorem 4.1. Let i denote the natural
inclusion of R into S. Below, we will make use of the following hyperbolicity
analogue of Theorem 4.1, which is well known and straightforward to prove (see
[OP99, §3]):

Proposition 4.1. The natural restriction homomorphism i∗ : W(R) → W(S) is
injective. In other words, if (V, q) is a quadratic space over R such that (VS , qS) is
hyperbolic, then (V, q) is hyperbolic.

Proof. Let s : S → R be the R-linear map defined by setting s(θn−1) = 1 and
s(θi) = 0 for all 0 ≤ i ≤ n − 2. A straightforward calculation shows that the
quadratic form S → R, x �→ s(x2) is isometric to 〈1〉 ⊥ n−1

2 ·H (here n−1
2 ·H denotes

the orthogonal sum of n−1
2 copies of H). In particular, it is non-degenerate, and so

we can consider the Scharlau transfer s∗ : W(S) → W(R). Recall from §2.1 above

that the composition W(R)
i∗−→ W(S)

s∗−→ W(R) coincides with multiplication by
the element s∗(〈1〉). However, by the above remarks, we have s∗(〈1〉) = 〈1〉 in
W(R), and so we see that s∗ is a section of i∗. Hence i∗ is injective, as claimed. �

4.B. Proof of Theorem 4.1 for quadratic spaces of rank ≤ 3. Using Propo-
sition 4.1, we now show that Theorem 4.1 holds for quadratic spaces of rank ≤ 3.

Proposition 4.2. Theorem 4.1 holds when (V, q) has rank ≤ 3.

Proof. For quadratic spaces of rank 1, the statement is trivial. Next, an isotropic
space of rank 2 over a semi-local ring is hyperbolic (see Lemma 2.10), and so the
rank-2 case of the statement follows from Proposition 4.1. Assume now that (V, q)
has rank 3. For ease of notation, we simply denote the pair (V, q) by q. Now,
by Lemma 2.5, we can write q � 〈a, b, c〉 for some a, b, c ∈ R∗. Then the form
π = q ⊥ 〈abc〉 = 〈a, b, c, abc〉 is similar to (i.e., isometric to a unit multiple of)
the 2-fold Pfister form 〈1, ab〉 ⊗ 〈1, ac〉. By the main property of Pfister forms (see
[Bae78, Cor. IV.3.2]), πS is either anisotropic or hyperbolic. Suppose that πS is
hyperbolic. Then, by Proposition 4.1, π is already hyperbolic, and so q = −〈abc〉
in the Witt ring W(R). But, by Lemma 2.10, this implies that q is isotropic,
thus contradicting our initial hypothesis. We can therefore conclude that πS is
anisotropic. Since qS is a restriction of πS , it must be anisotropic as well. �

4.C. Proof of Theorem 4.1 for extensions of degree 3. Next, we use Propo-
sition 4.2 to show that Theorem 4.1 holds in the case where S has degree 3 (with
no restriction on the rank of (V, q)):

Proposition 4.3. Theorem 4.1 holds when S is a degree 3 extension of R.
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Proof. The case where (V, q) has rank ≤ 3 was treated in Proposition 4.2 above.
If (V, q) has rank strictly greater than 3, then Proposition 4.2 at least implies that
every rank-3 subspace of (V, q) remains anisotropic over S. In view of the n = 3
case of Proposition 3.1, however, this is all that is needed to make the desired
conclusion. �

4.D. Proof of Theorem 4.1 in the general case. We now conclude the proof of
Theorem 4.1. The main ingredient, together with Proposition 4.3, is the following
statement due (essentially) to I. Panin and U. Rehmann:

Lemma 4.2 (Panin-Rehmann). There exists a natural number Mn for which the
following holds: Assume that all residue fields of R contain at least Mn elements.
Then, for any quadratic space (V, q) over R such that (VS , qS) is isotropic, there
exist v0, v1, . . . , vn−1 ∈ V with the following properties:

(1) v0 + θv1 + · · ·+ θn−1vn−1 ∈ VS is a (strictly) isotropic vector for qS.
(2) qR[t](v0 + tv1 + · · ·+ tn−1vn−1) ∈ R[t] is monic and separable of degree 2n− 2

(here R[t] denotes the polynomial ring in a single variable t over R).

Proof. This is a mild extension of [PR07, Prop. 1.1]. In fact, the statement is proved
in [PR07] under the stronger hypothesis that R is local with infinite residue field.
Note, however, that since S is a finite étale extension of R, its Jacobson radical is
generated (as an ideal of S) by that of R. Thus, in view of Lemma 2.9 and the fact
that condition (2) can be checked locally (see the remarks at the beginning of this
section), everything reduces immediately to the case where R is a field (regardless
of whether R is local or not). Moreover, under the assumption that R is a field,
it was shown in [PR07, §3] that there exists a non-empty rational R-variety U
with property that U(R) �= ∅ if and only if the conclusion of the lemma holds. This
conclusion is therefore valid providing that R contains “enough” elements; the term
“enough” is made formal here by the integer Mn in the statement of the lemma (in
particular, it is not necessary for R to be infinite). �

We now give the proof of Theorem 4.1:

Proof of Theorem 4.1. Suppose first that at least one residue field of R is finite. Let
h(x) ∈ R[x] be a monic separable polynomial of degree 3 in a single variable x over

R which is irreducible when restricted to any finite residue field of R. Then R̃ :=
R[x]/

(
h(x)

)
is a degree-3 étale extension of R such that the minimal cardinality

of the finite residue fields of R̃ is strictly greater than that of the finite residue
fields of R. Now, in order to show that (VS , qS) is anisotropic, it is sufficient to

show that (V
˜S, q˜S) is anisotropic, where S̃ = S⊗R R̃. By Proposition 4.3, however,

(V
˜R, q ˜R) is anisotropic. We can therefore replace R by R̃, and, by repeating this

process sufficiently many times, we ultimately reduce to the case where all residue
fields of R contain at least Mn elements (where Mn is the natural number in the
statement of Lemma 4.2). Having made this reduction, the proof proceeds as in
[PR07]. For the reader’s convenience, we give the details. Thus, suppose for the
sake of contradiction that (VS , qS) is isotropic, and let v0, v1, . . . , vn be as in Lemma
4.2 so that

(1) v0 + θv1 + · · ·+ θn−1vn−1 ∈ VS is a (strictly) isotropic vector for qS .
(2) qR[t](v0 + tv1 + . . . + tn−1vn−1) ∈ R[t] is monic and separable of degree

2n− 2.
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Let v(t) = v0+ tv1+ . . . tn−1vn−1 ∈ V ⊗RR[t]. By (1), the polynomial qR[t]

(
v(t)

)
∈

R[t] is divisible by f(t), say

qR[t]

(
v(t)

)
= f(t)g(t)

with g(t) ∈ R[t]. By (2), g(t) is monic and separable of degree n − 2 over R. Let
S′ = S[t]/

(
g(t)

)
. Then S′ is a degree-(n− 2) étale extension of R. We claim that

(VS′ , qS′) is isotropic. Note first that if θ′ denotes the image of t in S′, then we
have

qS′
(
v(θ′)

)
= f(θ′)g(θ′) = 0

in S′. To prove the claim, it therefore suffices to check that v(θ′) ∈ VS′ is unimodu-
lar. We claim that this follows from the separability part of (2). Since unimodularity
of vectors and separability of polynomials can be checked locally (see §2.3 and the
remarks at the beginning of §3), we are, to this end, free to assume that R is a field.
Then g(t) decomposes into a product of pairwise coprime irreducible polynomials
over R, say g(t) = g1(t) · · · gk(t). If v(θ′) were not unimodular, then v(t) would be
divisible by some gi(t), whence qR[t] would be divisible by gi(t)

2 in R[t]. As this
would contradict the separability part of (2), the claim follows. Thus, (VS′ , qS′) is
isotropic. Now S′ is an odd-degree étale extension of R which has strictly smaller
degree than S. By repeating the above argument sufficiently many times, we come
to the conclusion that (V, q) is isotropic, thus contradicting our original hypothesis.
This completes the argument. �

5. The Panin-Pimenov isotropy criterion and applications

5.A. The Panin-Pimenov isotropy criterion. As an immediate application of
our extension of the Artin-Springer theorem (Theorem 4.1 above), we obtain the
following extension of an important result due to I. Panin and K. Pimenov:

Theorem 5.1. Let R be a regular semi-local domain containing a field of charac-
teristic �= 2. If (V, q) is an anisotropic quadratic space over R, then (VK , qK) is
anisotropic, where K denotes the fraction field of R.

This theorem was originally proved by I. Panin in [P09] under the stronger
assumption that R contains a field of characteristic 0. In [PP10], I. Panin and
K. Pimenov treated the case where R has finite characteristic different from 2, but
under the assumption that all residue fields of R are infinite. In order to extend
the statement to the case where some residue field of R is finite (which was our
original goal), the arguments presented in [PP10] showed that it would suffice to
prove that the Artin-Springer theorem holds for quadratic spaces over R. This
extension therefore follows from our Theorem 4.1 above. In more detail:

Proof of Theorem 5.1. Let (V, q) be a quadratic space over R. If (VK , qK) is
isotropic, then it is shown in [PP10, Proof of Thm. 1.1] that (V, q) becomes isotropic
over an odd-degree finite étale extension of R (in fact, over R⊗k k

′, where k denotes
the prime subfield of R and k′ is some finite extension of k of degree prime to 2 and
the characteristic of k). By Theorem 4.1, this implies that (V, q) is isotropic. �

5.B. Applications. The Panin-Pimenov isotropy criterion is of fundamental im-
portance for the study of quadratic forms over (nice) semi-local rings, since it
permits to reduce many problems to the case of fields, where an extensive literature
is already available (see, e.g., [EKM08]). Let R be a regular semi-local domain
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containing a field of characteristic �= 2. To conclude this note, we now mention
(without proof) some consequences of our extension of the Panin-Pimenov crite-
rion to the case where at least one residue field of R is finite (Theorem 5.1). These
statements were known previously in the case where the residue fields of R are all
infinite.

• All results proved in [6, §3] are valid for quadratic spaces over R; these include
the linkage theorem (analogous to the original result of R. Elman and T. Y. Lam
concerning quadratic spaces over fields) as well as certain other purity-type state-
ments for Pfister forms.

• If, moreover, R local, then the purity theorem of [PP10, Cor. 1] holds for qua-
dratic spaces over R, i.e., unramified quadratic spaces over K := Frac(R) are
defined over R (on the level of quadratic spaces themselves, and not only Witt
groups).

• If R is local, then the main results of [CP07] and [CP13] (concerning purity
statements for G2-torsors and certain F4-torsors, respectively) are valid over R.
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