Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Artin-Springer Theorem for quadratic forms over semi-local rings with finite residue fields


Author: Stephen Scully
Journal: Proc. Amer. Math. Soc. 146 (2018), 1-13
MSC (2010): Primary 11E81; Secondary 11E08
DOI: https://doi.org/10.1090/proc/13744
Published electronically: October 5, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a commutative and unital semi-local ring in which 2 is invertible. In this note, we show that anisotropic quadratic spaces over $ R$ remain anisotropic after base change to any odd-degree finite étale extension of $ R$. This generalization of the classical Artin-Springer theorem (concerning the situation where $ R$ is a field) was previously established in the case where all residue fields of $ R$ are infinite by I. Panin and U. Rehmann. The more general result presented here permits one to extend a fundamental isotropy criterion of I. Panin and K. Pimenov for quadratic spaces over regular semi-local domains containing a field of characteristic $ \neq 2$ to the case where the ring has at least one residue field which is finite.


References [Enhancements On Off] (What's this?)

  • [Bae78] Ricardo Baeza, Quadratic forms over semilocal rings, Lecture Notes in Mathematics, Vol. 655, Springer-Verlag, Berlin-New York, 1978. MR 0491773
  • [CP07] Vladimir Chernousov and Ivan Panin, Purity of $ G_2$-torsors, C. R. Math. Acad. Sci. Paris 345 (2007), no. 6, 307-312 (English, with English and French summaries). MR 2359087, https://doi.org/10.1016/j.crma.2007.07.018
  • [CP13] Vladimir Chernousov and Ivan Panin, Purity for Pfister forms and $ F_4$-torsors with trivial $ g_3$ invariant, J. Reine Angew. Math. 685 (2013), 99-104. MR 3181565
  • [4] A. Grothendieck,
    Eléments de géometrie algébrique. IV,
    Inst. Hautes Études Sci. Publ. Math.
  • [EKM08] Richard Elman, Nikita Karpenko, and Alexander Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008. MR 2427530
  • [6] S. Gille,
    On quadratic forms over semilocal rings,
    to appear, Trans. Amer. Math. Soc., DOI 10.1090/tran/7270.
  • [GSZ16] Stefan Gille, Stephen Scully, and Changlong Zhong, Milnor-Witt $ K$-groups of local rings, Adv. Math. 286 (2016), 729-753. MR 3415696, https://doi.org/10.1016/j.aim.2015.09.014
  • [Kne69] Manfred Knebusch, Isometrien über semilokalen Ringen, Math. Z. 108 (1969), 255-268 (German). MR 0252382, https://doi.org/10.1007/BF01112532
  • [OP99] Manuel Ojanguren and Ivan Panin, A purity theorem for the Witt group, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 1, 71-86 (English, with English and French summaries). MR 1670591, https://doi.org/10.1016/S0012-9593(99)80009-3
  • [P09] Ivan Panin, Rationally isotropic quadratic spaces are locally isotropic, Invent. Math. 176 (2009), no. 2, 397-403. MR 2495767, https://doi.org/10.1007/s00222-008-0168-0
  • [PP10] Ivan Panin and Konstantin Pimenov, Rationally isotropic quadratic spaces are locally isotropic: II, Doc. Math. Extra vol.: Andrei A. Suslin sixtieth birthday (2010), 515-523. MR 2804263
  • [PR07] I. Panin and U. Rehmann, A variant of a theorem by Springer, Algebra i Analiz 19 (2007), no. 6, 117-125; English transl., St. Petersburg Math. J. 19 (2008), no. 6, 953-959. MR 2411641, https://doi.org/10.1090/S1061-0022-08-01029-7
  • [Sc85] Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063
  • [Sp52] Tonny Albert Springer, Sur les formes quadratiques d'indice zéro, C. R. Acad. Sci. Paris 234 (1952), 1517-1519 (French). MR 0047021
  • [Wi37] Ernst Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1937), 31-44 (German). MR 1581519, https://doi.org/10.1515/crll.1937.176.31

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11E81, 11E08

Retrieve articles in all journals with MSC (2010): 11E81, 11E08


Additional Information

Stephen Scully
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton Alberta, Canada T6G 2G1
Email: stephenjscully@gmail.com

DOI: https://doi.org/10.1090/proc/13744
Keywords: Quadratic forms, semi-local rings, Artin-Springer theorem
Received by editor(s): February 26, 2016
Published electronically: October 5, 2017
Additional Notes: The author was supported by a PIMS postdoctoral fellowship held at the University of Alberta.
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society