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EXAMPLES OF NON-FSZ p-GROUPS FOR PRIMES GREATER

THAN THREE
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Abstract. For any prime p > 3 and j ∈ N we construct examples of non-

FSZpj groups of order pp
j+2j−1. In the special case of j = 1 this yields groups

of order pp+1, which is the minimum possible order for a non-FSZ p-group.

1. Introduction

The study of the representation categories of semisimple Hopf algebras, and many
other more general contexts, have brought forth an interesting invariant of monoidal
categories known as (higher) Frobenius-Schur indicators [1–3,5,9,12–17,19]. These
form generalizations of the classical Frobenius-Schur indicators for a finite group
G, which for a character χ of G over C and any m ∈ N are defined by

νm(χ) =
1

|G|
∑
g∈G

χ(gm).(1.1)

When applied to the Hopf algebra D(G), the Drinfel’d double of the finite group
G over C, these indicators can be expressed entirely in group theoretical terms.
Schauenburg [18] has obtained an intriguing description of the FS-indicators of
D(G) in terms of the character tables of centralizers, in particular. Thus, while the
FS-indicators are motivated by Hopf algebraic concerns, they also yield a new and
interesting invariant for finite groups. Frobenius-Schur indicators are guaranteed to
be algebraic integers in a certain cyclotomic field, and the Galois action on the field
also acts on the indicators [9, Proposition 3.3]. In full generality these indicators
need not even be real numbers [9, Example 7.5][7], but in the case of D(G) they are
guaranteed to be so [8, Remark 2.8]. All of the first examples computed in the case
of group doubles [4,10,11] yielded indicator values in Z. Since the higher indicators
for G itself are classically known to be integers, this raised the question of whether
or not the indicators for D(G) were always integers for arbitrary G.

Iovanov, Mason, and Montgomery [8] investigated this question, ultimately find-
ing that there were exactly 32 non-isomorphic groups of order 56 with non-integer
indicators. They dubbed the property of having all integer FS-indicators the FSZ
property. They also defined the FSZm property, which holds whenever all m-th
indicators are integers. For our purposes, Theorem 2.8 below will be taken as our
definition of the FSZm properties, and therefore the FSZ property. Iovanov et
al. [8] also established that several large families of groups were FSZ, including
but not limited to the symmetric groups Sn; PSL2(q) for a prime power q; and
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all regular p-groups. On the other hand, the regular wreath product Zp � Zp is an
irregular p-group for all primes p, and this was shown to be FSZ [8, Example 4.4],
thereby establishing that the class of FSZ p-groups properly contains the class of
regular p-groups. It is interesting to ask what can be said about the properties of
irregular non-FSZ p-groups, or alternatively of irregular FSZ p-groups.

It is the goal of this note to exhibit an infinite family of non-FSZ p-groups for
arbitrary primes p > 3. The construction, in particular, establishes that there are
always non-FSZ p-groups of order pp+1 when p > 3, which is well known to be the
minimum order possible for an irregular p-group.

We will take N = {1, 2, . . . } to be the set of positive integers.

2. The construction

Fix an odd prime p and an integer j ∈ N.
Consider the abelian p-group

Pp,j = Zpj+1 × Z
pj−2
p ,

with generators a1, . . . , apj−1 where a1 has order pj+1 and the rest have order p.
We define an endomorphism bp,j of Pp,j by

a1 �→ a1a
−1
2

ak �→ akak+1, 1 < k < pj − 1

apj−1 �→ apj−1a
−pj

1 .

It is convenient to write bp,j as a matrix Bp,j which acts on the left in the obvious
fashion, and whose first row of entries can be taken modulo pj+1 and the remaining
entries may be taken modulo p. We have

Bp,j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 −pj

−1 1 0 · · · 0 0 0
0 1 1 · · · 0 0 0
...

...
0 0 0 · · · 1 1 0
0 0 0 · · · 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The entries of Bk
p,j for 1 ≤ k ≤ pj − 2 are then naturally described by the values

Ti,k =

(
i

k

)

of Pascal’s Triangle. For example

B2
p,j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 −pj −2pj

−2 1 0 · · · 0 0 0
−1 2 1 · · · 0 0 0
...

...
0 0 0 · · · 2 1 0
0 0 0 · · · 1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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and Bpj−2
p,j is given by⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −pj · · · −Tpj−2,pj−4p
j −Tpj−2,pj−3p

j

−Tpj−2,1 1 · · · 0 0
−Tpj−2,2 Tpj−2,1 · · · 0 0

...
...

...
...

...
−Tpj−2,pj−3 Tpj−2,pj−3 · · · 1 0

−1 Tpj−2,pj−3 · · · Tpj−2,1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Indeed, the entries of Bk
p,j are determined by Pascal’s Triangle for arbitrary k, just

that for k > pj − 2 we can no longer fit entire rows of the triangle in the rows or
columns. Nevertheless the pattern is straightforward. We remind the reader that

Tpt,k =
(
pt

k

)
is divisible by p for all t ∈ N and 0 < k < pt, and is equal to 1 for k = 0

and k = pt. This elementary property is essential to several of the calculations we
will do, as it regularly ensures that many entries are zero, and will be used without
further mention.

Lemma 2.1. The endomorphism bp,j ∈ End(Pp,j) is an automorphism of order
pj.

Proof. The formula for Bpj−2
p,j above shows that the upper left entry for Bpj−1 =

B ·Bpj−2 is pj + 1, which is not congruent to 1 modulo pj+1. Since the powers Bk

for 1 ≤ k < pj − 1 have a −1 entry in the first column, it follows that Bk is not the
identity matrix for 1 ≤ k ≤ pj − 1. To finish showing that B has order pj , we write

B = I + S,

where I is the identity matrix and S is the matrix

S =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −pj

−1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

.(2.1)

By the binomial formula,

Bpj

= I + Spj

+

pj−1∑
k=1

(
pj

k

)
Sk.

The binomial coefficients in the summation are all divisible by p, whence only the
first row of the powers Sk can possibly contribute a non-zero term to the summation.
S itself behaves very much like a circulant matrix, and in particular can have its
arbitrary powers computed easily: for each successive power, shift the entries of
the previous power to the left one column, set the last column to all zeros, and
multiply all entries in the new first column by −1. For example,

S2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −pj 0
0 0 · · · 0 0 0
−1 0 · · · 0 0 0
...

...
...

...
...

...
0 0 · · · 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

.
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We can then see that, for 1 ≤ k < pj , the first row of Sk has a single non-zero entry
which is equal to −pj for k < pj − 1, and is equal to pj for k = pj − 1. Since this
is multiplied by the binomial coefficient and taken modulo pj+1, we see that every

term in the summation vanishes. Lastly we see that Spj

is the zero matrix. Thus,

Bpj

is the identity matrix, as desired. �
We can now define the family of groups whose FSZ properties we wish to study.

Definition 2.2. Let p be an odd prime and j ∈ N. Define

S(p, j) = Pp,j � 〈bp,j〉.

This is a group of order pp
j+2j−1.

By considering the eigenvectors of B for the eigenvalue 1, we see that S(p, j)
has center 〈ap1〉 ∼= Zpj . We identify Pp,j and 〈bp,j〉 as subgroups of S(p, j) in the
usual fashion, and for simplicity we denote bp,j by simply b whenever convenient,
and similarly for Bp,j .

The group S(p, j) is defined in such a way as to make computing pj-th powers
relatively easy, after a bit of initial work. To help us investigate how to take pj-th
powers in S(p, j), we introduce the following.

Definition 2.3. For 0 ≤ k < j we define the matrices

Yp,j(p
k) =

pj−k−1∑
m=0

Bmpk

.

These can be viewed as endomorphisms of Pp,j by acting on the left, in the same
fashion that B acts.

Lemma 2.4. We have a block decomposition with a 1 × 1 entry in the upper left
corner

Yp,j(1) =

(
2pj 0
0 0

)
.(2.2)

Proof. We have the identity BYp,j(1) = Yp,j(1). Thus the columns of Yp,j(1) are all
eigenvectors of B with eigenvalue 1, and it is easily checked that all such eigenvectors
have zeros in every entry except (possibly) the first one, which must be divisible by
p. It follows that we have a block decomposition with a 1 × 1 entry in the upper
left corner given by

Yp,j =

(
c ∗ p v
0 0

)

for some integer c and some (row) vector of integers v. Indeed, every entry of v
must be divisible by p. As noted in the proof of Lemma 2.1, it is easily seen that the

(1, 1) entry of Bpj−1
p,j = B ∗ Bpj−2 is exactly pj + 1, from which it follows that the

(1, 1) entry of Yp,j(1) is 2p
j . It remains to show that v is the zero vector (modulo

pj+1).
To this end we note that we also have Yp,j(1)B = Yp,j(1), or equivalently that

Yp,j(1)(B − I) = 0, where I is the identity matrix. As in Lemma 2.1, we write
S = B − I, which takes the form given in (2.1). Thus the row vectors of Yp,j are
annihilated by S when acted on from the right. Writing v = (v1, . . . , vpj−2), we see

that (2pj , v)S = (−v1, v2, . . . , vpj−2, 0) = 0 mod pj+1. This shows that v is the
zero vector, as desired, and so completes the proof. �
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We also have the following relations for the remaining Yp,j(p
k).

Lemma 2.5. For all 0 < k < j we have a block decomposition with a 1 × 1 entry
in the upper left corner

pkYp,j(p
k) =

(
pj 0
0 0

)
, 1 ≤ k < j.(2.3)

Proof. Since all rows but the first are taken modulo p, the scalar multiplication by
pk automatically forces all entries of Yp,j(p

k) other than possibly those on the first
row to be zero. In particular, we have established the bottom row of the desired
decomposition. Indeed, the scalar multiplication by pk means we need only consider
the elements in the first row to calculate pkYp,j(p

k).
We now consider the entries in the first row. We easily see that, by assumptions

on k, the (1, 1) entry of every matrix in the sum defining Yp,j(p
k) is 1, and there

are pj−k matrices in the summation, whence the (1, 1) entry of pkYp,j(p
k) is pj .

Recall that the first row is always taken modulo pj+1. In the first row of Bpk

the
only non-zero entries are the first and last ones, which are 1 and −pj respectively.

Indeed, all entries on the diagonal of Bpk

are 1, and the only non-zero entries below
the diagonal are ±1 modulo p. If follows that every entry in the first row of any

power of Bpk

, other than the first entry, is divisible by pj . Subsequently, every
entry in the first row of pkYp,j(p

k), except the first one, is divisible by pj+k ≡ 0
mod pj+1 since k ≥ 1. This completes the proof. �

We can now state how these matrices are used to describe arbitrary pj-th powers
in S(p, j). Namely, fixing q ∈ Pp,j and bk ∈ 〈b〉 with |bk| = pj−t, then

(qbk)p
j

= ptYp,j(p
t)q.(2.4)

The fact that Pp,j is abelian is essential to this formula. In particular, it is needed
to be sure that the value depends only on the order of bk. The reader may find it
worthwhile to see how this holds in the particular case of k ≡ −1 mod pj+1, as we
have previously noted that this is the only power of B for which the (1, 1) entry is
not congruent to 1. As a result of this identity, all pj-th powers in S(p, j) yield the

subgroup 〈apj 〉 ⊆ Z(S(p, j)).

Remark 2.6. The matrices pkYp,j(p
k), in particular Yp,j(1), are higher dimensional

analogues of the integer parameter d appearing in [10]. The parameter d controlled
the existence of negative indicators in the double of the groups under consideration
in [10], in much the same way that Yp,j will dictate the existence of non-integer
indicators here. More generally, such objects naturally arise when considering the
FSZ property for groups of the form A � C where A is abelian and C is cyclic,
such as in [8, Example 4.4].

Now that we understand how to take pj-th powers in S(p, j), we can begin
investigating what Iovanov et al. [8] called the FSZpj property of S(p, j). We
recall the following.

Definition 2.7. For any group G, n ∈ N, and g, u ∈ G, define

Gn(u, g) = {a ∈ G : an = (au−1)n = g}.
Of necessity, Gn(u, g) �= ∅ implies [u, g] = 1, and indeed for fixed g they are

subsets of CG(g). These sets characterize the FSZn properties, as shown by the
following.
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Theorem 2.8 ([8, Corollary 3.2]). Let n ∈ N and G be a finite group. Then G
is an FSZn-group if and only if for all commuting pairs of elements u, g and all
integers m coprime to |G| we have

|Gn(u, g)| = |Gn(u, g
m)|.

We can now state and prove the main result of the paper.

Theorem 2.9. Let notation be as above and set G = S(p, j) for any odd prime

p > 3 and j ∈ N. Then Gpj (ba1, a
pj

1 ) = ∅ and Gpj (ba1, a
2pj

1 ) �= ∅.
In particular, S(p, j) is non-FSZpj .

Proof. We first note that the assumption p > 3 is necessary, since when p = 3 we

have a2p
j

1 = a−pj

1 and by [8, Lemma 2.7] we always have a bijection Gn(u, g) →
Gn(u, g

−1) for any G, n ∈ N, and u, g ∈ G.
Fix u = ba1 and set Y = 〈a2, . . . , apj−1〉 for the remainder of the proof. Every

element a ∈ G can be uniquely written in the form a = aj11 yb−k ∈ G for some

y ∈ Y . By equations (2.2) to (2.4) the value of ap
j

does not depend on y, so
we may suppress elements of Y for the rest of the proof. It follows that when
determining the membership of Gpj (ba1, g) we will naturally break things down

into cases, depending on the orders of bk and bk+1.
First consider the case that |bk| = 1. Then

ap
j

= aj1p
j

1 = g,

while

(au−1)p
j

= Yp,j(1)(a
j1−1
1 ) = a

2(j1−1)pj

1 = g.

These equalities are consistent if and only if j1 ≡ 2 mod p. In particular, we have

no contribution from elements of this form when g = ap
j

1 , but do have contributions

from such elements when g = a2p
j

1 .
Now suppose |bk| = |bk+1| = pj . Then

ap
j

= Yp,j(1)a
j1
1 = a2j1p

j

1

and

(au−1)p
j

= Yp,j(1)a
j1−1
1 = a

2(j1−1)pj

1 .

We point out to the reader that this identity holds even when k = 1, as in this
case putting au−1 into the desired form requires we apply B−1 to a1, and we have
previously noted that this is the unique power of B whose (1,1) is pj +1 instead of
1. Regardless, these values can never be equal, so we have no contributions from
elements of this form to the sets Gpj (u, g) for any choice of g.

Next suppose k ≡ −1 mod pj . Then

ap
j

= Yp,j(1)a
j1
1 = a2j1p

j

1

while

(au−1)p
j

= a
(j1−1)pj

1 .

These are equal if and only if j1 ≡ −1 mod p. Since p > 3, we conclude that for

g ∈ {ap
j

1 , a2p
j

1 } there are no contributions from elements of this form.
For the next case, suppose |bk| = pj−t for some 0 < t < j, which implies

|bk+1| = pj . It follows that

ap
j

= aj1p
j

1
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and

(au−1)p
j

= a
2(j1−1)pj

1 .

These are equal if and only if j1 ≡ 2 mod p. Therefore for g = ap
j

1 there are

no contributions from elements of this form. But for g = a
2pj

1 contributions from
elements of this form do exist.

Finally, suppose |bk+1| = pj−t for some 0 < t < j, which implies |bk| = pj . Then
we have

ap
j

= a2p
jj1

1

while

(au−1)p
j

= a
pj(j1−1)
1 .

These values are equal if and only if j1 ≡ −1 mod p, so again since p > 3 we

conclude that for g ∈ {ap
j

1 , a2p
j

1 } there are no contributions from elements of this
form.

This completes the proof except for the final claim, which follows immediately
from Theorem 2.8. �

Example 2.10. For p > 3 we have that S(p, 1) is a group of order pp+1 that is not
FSZp, and this is the minimum possible order for any non-FSZ p-group. Indeed,
S(5, 1) is SmallGroup(56,632) in GAP [6], which is the smallest id number amongst
the 32 non-FSZ groups of order 56 found by Iovanov et al. [8].

For p > 3 and j > 1 we do not know if S(p, j) has minimal order amongst the
non-FSZpj p-groups.

Example 2.11. Iovanov et al. [8] used GAP [6] to verify that there are no non-
FSZ 2-groups of order at most 29. The author has verified, with the help of the
GAP functions in [8,18], that there are no non-FSZ 3-groups of order at most 37.
It remains an open question if non-FSZ 2-groups or 3-groups exist, and if they do
what their minimum orders are. The constructions here, and several attempts at
modifications thereof, run into the usual issues for the primes 2, 3.
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