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Abstract. Generalizing earlier work by Ros in ambient dimension three, we
prove an affine lower bound for the Morse index of closed minimal hyper-
surfaces inside a flat torus in terms of their first Betti number (with purely
dimensional coefficients).

1. Introduction

Motivated by a variety of recent constructions of closed minimal hypersurfaces in
positively curved Riemannian manifolds, and by the associated natural classification
questions, we presented in [1] a study of the relation between their Morse index and
their Betti numbers, namely those pieces of data respectively encoding the most
basic analytic and topological information concerning the hypersurface in question.
This relation is in fact the object of a conjecture due to Schoen and Marques-
Neves [8,11] that can be stated as follows: in any closed manifold of positive Ricci
curvature there is a linear lower bound of the Morse index of a minimal hypersurface
Mn in terms of its first Betti number, that is to say

(1.1) index(M) ≥ Cb1(M)

for some constant C only depending on the ambient manifold. We refer the reader
to the introduction of [1] for a broader contextualization of this problem and for a
discussion of the various cases for which we could verify this conjecture.

On the other hand, it is straightforward to observe that inequality (1.1) can-
not hold true in the special but fundamental case of flat manifolds, as is seen by
considering totally geodesic n-dimensional tori inside (n+ 1)-dimensional flat tori
(in which case one has index(M) = 0 and b1(M) = n for any n ≥ 2). In such a
setting, the best one can hope for is instead an affine bound with a negative addi-
tive constant on the right-hand side. Up to now, an estimate of that sort was only
obtained for n = 2 by A. Ros [12]. The scope of this note is to prove the following
generalization of such a result:

Theorem 1. Let Mn be a closed minimal hypersurface in an (n+ 1)-dimensional
flat torus. Assume there is a point p in Mn where all principal curvatures are
distinct. Then

index(M) ≥ 2

n(n+ 1)
(b1(M)− (2n− 1)).
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If n = 2 or n = 3, then the above inequality holds true without the assumption
on the principal curvatures.

Clearly, there is a natural correspondence between minimal hypersurfaces in flat
tori and (n + 1)-periodic minimal hypersurfaces in the Euclidean space R

n+1, a
topic that has been thoroughly investigated with several interesting results: we
refer the reader to the article by W. Meeks [9] and to the survey by D. Hoffman
[5] as well as the references therein for further details about the classical case
n = 2. Remarkably, lots of interesting examples in R

3 are actually known, the
most basic ones being provided by the Schwarz P and D surfaces, the latter class
ensuring that the estimate of Theorem 1 is actually sharp since in that case one
can find, in a fundamental domain, that the Morse index equals one (this follows
from the work of M. Ross [13]) while the topology is that of a genus three orientable
surface. By contrast, the construction of periodic minimal hypersurfaces in ambient
dimension at least four is a fascinating theme of current research: see in particular
the recent work by Choe and Hoppe [4] for certain higher-dimensional analogues of
the aforementioned classical surfaces and related comments therein.

In applying Theorem 1 to obtain classification results, it is also useful to know
that non-trivial minimal hypersurfaces inside a flat torus must have a sufficiently
large first Betti number:

Theorem 2 (Cf. Theorem 1 in [6], and Theorem 4.1 in [3]). Let Mn be a closed
minimal hypersurface in an (n + 1)-dimensional flat torus. Then b1(M) ≥ n + 1
unless Mn is a flat totally geodesic n-dimensional torus.

This fact follows from a more general statement that goes back at least to E. Kelly
[6], but see also Theorem 1 in [10] for an interesting generalization to harmonic maps
and Theorem 4.1 in [3] for a broad analysis of topological restrictions imposed by
the existence of minimal immersions into manifolds of Ricci curvature bounded
from below. For the sake of completeness, a simple and direct proof of Theorem 2
is presented in Subsection 2.2.

In [12], Ros proved that a non-orientable, compact stable minimal surface im-
mersed in a flat three-torus T 3 has the topology of a Klein bottle with a handle
(cf. Theorem 7 therein). Analogously, as a simple combined application of the two
theorems above one can prove that if M3 ⊂ T 4 is stable (but not totally geodesic),
then either b1 = 4 or b1 = 5 and M3 is non-orientable as can be checked directly by
means of the second variation formula. The question of classifying all such stable
minimal hypersurfaces remains a challenging open problem.

2. Proofs

2.1. Notation and ancillary results. Throughout this note, we consider the
ambient manifold Tn+1 := R

n+1/Γ, where Γ is a lattice group of maximal rank,
endowed with its (flat) Riemannian metric 〈·, ·〉 and the associated Levi-Civita
connection D. Furthermore, we let Mn denote a closed, embedded minimal hyper-
surface in Tn+1, that is to say a smooth, closed hypersurface of vanishing mean
curvature. For the sake of simplicity, and in order to streamline our arguments, we
shall assume that Mn is orientable or, equivalently, two-sided and we let N denote
a choice of its unit normal vector field. The case when Mn is one-sided, for which
the statement of Theorem 1 still holds, is discussed in Remark 6. The induced
Levi-Civita connection on the submanifold Mn will always be denoted by ∇, while
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Δ stands for the Laplace-Beltrami operator. Lastly, we convene that the second
fundamental form of Mn ⊂ Tn+1 is defined by the formula A(X,Y ) = 〈DXY,N〉
for any pair of smooth vector fields X,Y along Mn.

In our setting the Morse index can be defined as follows: the sections of the
normal bundle of Mn ⊂ Tn+1 can be identified with the set of smooth functions φ
on Mn, and the second variation of the area functional is given by the quadratic
form

Q(φ, φ) =

∫
M

(|∇φ|2 − |A|2φ2)dM,

so that the number of negative variations is encoded in the spectrum of the Jacobi
operator

JMφ = Δφ+ |A|2φ

and the index of Mn is by definition the number of (strictly) negative eigenvalues
of JM .

In a closed Riemannian manifold (Mn, g), the Hodge-Laplace operator is the
second order differential operator Δp acting on p-forms defined by

Δp = dd∗ + d∗d

where d : Ωp(M) → Ωp+1(M) is the exterior differential and d∗ : Ωp(M) →
Ωp−1(M) is the formal adjoint of d, defined with respect to the metric g. A p-
form ω is called harmonic when Δpω = 0 and we let Hp(M, g) denote the vector
space of harmonic p-forms on (Mn, g). When Mn is closed, ω is harmonic if and
only if it is closed and co-closed, that is to say when both dω = 0 and d∗ω = 0 hold
true. Hodge’s Theorem asserts that in a closed Riemannian manifold one has the
isomorphism H1(M, g) � H1(M ;R) so that the dimension of the space of harmonic
1-forms coincides with the first Betti number of the manifold. Also, we will use the
(special) Bochner-Weitzenböck formula relating the Hodge-Laplace operator with
the usual (rough) Laplacian on 1-forms:

(2.1) Δ1ω = −Δω +RicM (ω�, ·).

In this note we employ the usual musical isomorphisms to pass from vectors to
1-forms; see Remark 2.1 in [1] for further details.

The proof of our main result relies on the following proposition:

Proposition 3. Let Mn be a closed, orientable, minimal hypersurface in Tn+1 and
let ω be a harmonic 1-form on Mn. For every parallel 2-form θ on Tn+1 one has
the identity

(2.2) Δ〈N � ∧ ω, θ〉+ |A|2〈N � ∧ ω, θ〉 = −2

n∑
i,j=1

A(Ei, Ej)〈E�
j ∧ ∇Ei

ω, θ〉,

where the expression on the right-hand side is globally defined as it does not depend
on the particular choice of local orthonormal frame {Ei} on Mn.

Remark 4. The reader may want to compare this assertion with Lemma 1 in [12],
where similar computations were performed for the coordinates of ω rather than
N � ∧ ω (the two choices being essentially equivalent only if n = 2).
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Proof. Let {Ei} be a local orthonormal frame on Mn, which is geodesic at a point
p in Mn (that is to say (∇Ei

Ej)(p) = 0 for all i, j). We have

DEi
(N � ∧ ω) = DEi

N � ∧ ω +N � ∧DEi
ω = −

n∑
j=1

A(Ei, Ej)E
�
j ∧ ω +N � ∧∇Ei

ω.

Hence, exploiting the fact that θ is parallel, one has at the point p

Δ〈N � ∧ ω, θ〉 =
n∑

i=1

EiEi〈N � ∧ ω, θ〉 =
n∑

i=1

Ei〈DEi
(N � ∧ ω), θ〉

=
n∑

i=1

Ei〈−
n∑

j=1

A(Ei, Ej)E
�
j ∧ ω +N � ∧ ∇Ei

ω, θ〉

= −
n∑

i,j=1

Ei(A(Ei, Ej))〈E�
j ∧ ω, θ〉 −

n∑
i,j=1

A(Ei, Ej)〈DEi
E�

j ∧ ω, θ〉

−
n∑

i,j=1

A(Ei, Ej)〈E�
j ∧DEi

ω, θ〉+
n∑

i=1

〈DEi
(N � ∧ ∇Ei

ω), θ〉.

Since Mn is minimal, by the Codazzi equation for flat ambient manifolds (eval-
uating, once again, at p)

n∑
j=1

Ej(A(Ei, Ej)) =
n∑

j=1

Ei(A(Ej, Ej)) = EiH = 0.

Thus, we can deduce

Δ〈N � ∧ ω, θ〉 =−
n∑

i,j=1

A(Ei, Ej)A(Ei, Ej)〈N � ∧ ω, θ〉

−
n∑

i,j=1

A(Ei, Ej)〈E�
j ∧ ∇Ei

ω, θ〉

−
n∑

i,j=1

A(Ei, Ej)A(Ei, ω
�)〈E�

j ∧N �, θ〉

−
n∑

i,j=1

A(Ei, Ej)〈E�
j ∧ ∇Ei

ω, θ〉

+
n∑

i=1

〈N � ∧∇Ei
∇Ei

ω, θ〉.

We can rewrite the above as

Δ〈N � ∧ ω, θ〉+ |A|2〈N � ∧ ω, θ〉 =〈Δω, iNθ〉+ 〈A ◦A(ω�), (iNθ)�〉

− 2

n∑
i,j=1

A(Ei, Ej)〈E�
j ∧ ∇Ei

ω, θ〉.

Now, the Gauss equation for a minimal hypersurface in flat ambient manifolds
yields

RicM (ω�, (iNθ)�) = −〈A ◦A(ω�), (iNθ)�〉,
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while, on the other hand, the Bochner formula (2.1) for harmonic 1-forms on Mn

reads

〈Δω, iNθ〉 = RicM (ω�, (iNθ)�)

so that formula (2.2) follows at once. �

Inspired by Chao Li (see [7], Proposition 5.1), we prove the following result.

Proposition 5. Let Mn be a closed minimal hypersurface in an (n+1)-dimensional
flat torus. Assume there is a point p in Mn where all the principal curvatures are
distinct. The set of all harmonic 1-forms ω on Mn such that

(2.3)
n∑

i,j=1

A(Ei, Ej)E
�
j ∧∇Ei

ω = 0

has dimension at most 2n− 1.

Before proceeding with its proof, we want to remind the reader of a general fact
about harmonic forms: in a Riemannian manifold (Mn, g) a 1-form ω ∈ Ω1(Mn) is
closed and co-closed if and only if ∇ω is a symmetric trace-free tensor.

Proof. By virtue of our assumption on Mn, we can certainly find a positive number
ρ (smaller than the injectivity radius of Mn at p) such that the principal curvatures
of Mn are all distinct in the geodesic ball Bρ(p) and, furthermore, there exists a
local orthonormal frame {E1, . . . , En} diagonalizing the second fundamental form
A at every point of such ball (namely: A(Ei, Ej) = kiδij for all i, j = 1, . . . , n with
k1 < k2 < . . . < kn). Now, given a harmonic 1-form ω, equation (2.3) and the fact
that the tensor ∇ω is symmetric imply

(ki − kj)(∇Ei
ω)(Ej) = 0 for all i, j = 1, . . . , n,

so that

(2.4) (∇Ei
ω)(Ej) = 0 for all i �= j

on the whole geodesic ball in question. In particular, since ∇ω is also trace-free we
deduce that the functions ∇ω(E1, E1), . . . ,∇ω(En−1, En−1) completely determine
the tensor ∇ω on Bρ(p).

Now, let us consider the functions defined on Bρ(p) by

φi(q) =

{
ω(Ei)(q) for 1 ≤ i ≤ n,

∇ω(Ei−n, Ei−n)(q) for n+ 1 ≤ i ≤ 2n− 1.

We claim that if ω satisfies (2.3), then for every q ∈ Bρ(p) the values (φ1, . . . ,
φ2n−1)(q) are uniquely determined by (φ1, . . . , φ2n−1)(p), hence the space of har-
monic forms in Bρ(p) satisfying (2.3) has dimension at most 2n−1 and the general
statement over Mn follows by unique continuation.

To check the claim, we proceed as follows: given q ∈ Bρ(p) let γ : [0, τ ] → Mn

be the only geodesic connecting p to q in Bρ(p) and consider the functions (of one
real variable) obtained by restriction of (φ1, . . . , φ2n−1) along γ, namely set

fi(t) = φi(γ(t)), for i = 1, . . . , 2n− 1.

Then, we claim that (f1, . . . , f2n−1) solves a linear ODE system (in normal form)
so that (by Cauchy-Lipschitz) the value at p uniquely determines the value along
the curve γ, which is enough to check the claim above.
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Notice that γ′(t) =
∑n

j=1 α
j(t)Ej(γ(t)) where the coefficients αj , j = 1, . . . , n

are smooth and bounded (since the frame {E1, . . . , En} is orthonormal) hence by
linearity

(2.5)
d

dt
fi(t) = ∇γ′(t)φi(γ(t)) =

n∑
j=1

αj(t)∇Ej
φi(γ(t))

so that it suffices for our scopes to check that for every choice of the indices 1 ≤ i ≤
2n− 1 and 1 ≤ j ≤ n the function ∇Ej

φi can be expressed as a linear combination
of φ1, . . . , φ2n−1, with smooth coefficients.

First of all, for i ≤ n we have

(2.6) ∇Ej
φi = δijφn+i +

n∑
k=1

Γk
jiφk.

This can be justified as follows:

∇Ej
(ω(Ei)) = (∇Ej

ω)(Ei) + ω(∇Ej
Ei)

= ∇ω(Ei, Ej) +

n∑
k=1

Γk
jiω(Ek) = δijφn+i +

n∑
k=1

Γk
jiφk

where the last step relies on equation (2.4). Also, observe that for i = n the right-

hand side of (2.6) needs to be suitably interpreted, namely with −
∑n−1

l=1 φn+l in
lieu of φ2n.

On the other hand, the differential equation for φn+i takes for 1 ≤ i ≤ n− 1 one
of the following three forms:

Case 1: 1 ≤ j ≤ n− 1, i �= j.

∇Ej
φn+i = (2Γi

ji − Γi
ij)φn+i − Γj

iiφn+j −
n∑

k=1

Rikijφk.

Case 2: j = n.

∇Ej
φn+i = (2Γi

ni − Γi
in)φn+i +

n−1∑
k=1

Γk
iiφn+k −

n∑
k=1

Rikinφk.

Case 3: j = i.

∇Ej
φn+i =

n∑
k=1,k �=i

Γi
kkφn+i −

n−1∑
k=1,k �=i

(2Γk
ik − Γk

ki)φn+k

+ (2Γn
in − Γn

ni)

n−1∑
k=1

φn+k +

n∑
k=1

Rkiφk.
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Indeed, for all j �= i by the Ricci formula for commuting covariant derivatives
(no summation on repeated indexes i and j) we obtain

∇Ej
(∇ω(Ei, Ei)) =∇2ω(Ei, Ei, Ej) + 2∇ω(∇Ej

Ei, Ei)

=∇2ω(Ei, Ej , Ei)−
n∑

k=1

Rikijω(Ek) + 2Γi
ji∇ω(Ei, Ei)

=∇Ei
(∇ω(Ei, Ej))−∇ω(∇Ei

Ei, Ej)

−∇ω(Ei,∇Ei
Ej)−

n∑
k=1

Rikijω(Ek) + 2Γi
ji∇ω(Ei, Ei)

=− Γj
iiφn+j + (2Γi

ji − Γi
ij)φn+i −

n∑
k=1

Rikijφk

where the very last equality was implied by (2.4). Thereby, the first equation
is verified and the second one follows along similar lines exploiting the fact that
the tensor ∇ω is trace-free. Lastly, following the same pattern, one has for all
i = 1, . . . , n− 1

∇Ei
(∇ω(Ei, Ei)) =

n∑
k=1,k �=i

−Ei(∇ω(Ek, Ek))

=

n−1∑
k=1,k �=i

Γi
kk∇ω(Ei, Ei)− (2Γk

ik − Γk
ki)∇ω(Ek, Ek)

+ Γi
nn∇ω(Ei, Ei)− (2Γn

in − Γn
ni)∇ω(En, En)

+

n−1∑
k=1,k �=i

n∑
l=1

Rklkiω(El) +

n∑
k=1

Rnkniω(Ek)

=
n∑

k=1,k �=i

Γi
kkφn+i −

n−1∑
k=1,k �=i

(2Γk
ik − Γk

ki)φn+k

+ (2Γn
in − Γn

ni)

n−1∑
k=1

φn+k +

n∑
k=1

Rkiφk.

This finishes the proof of the claim and thus the whole argument. �

2.2. Proofs of Theorem 1 and Theorem 2. As stated in the introduction, we
first present a short proof of Theorem 2.

Proof. Let V be the space of all parallel 1-forms on the flat (n + 1)-dimensional
torus. This space consists precisely of the forms df , where f is a linear function on
the universal cover of the flat torus (viz. (n+ 1)-dimensional Euclidean space). In
particular, its dimension is n+ 1.

Since Mn is minimal and the elements of V are parallel, the restriction of any
df ∈ V is a harmonic 1-form. Moreover, df = 0 onMn if and only ifMn is contained
in the quotient of level sets of the linear map f by the action of the lattice subgroup
of translations of the Euclidean space that generates the flat torus in question. Our
assertion follows at once. �
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We then deduce from Proposition 3 and Proposition 5 our main result, Theo-
rem 1. To that scope, we need to recall a rigidity theorem proved by do Carmo
and Dajczer [2] for minimal hypersurfaces Mn in R

n+1 such that some principal
curvature has multiplicity at least n− 1 at all points: any such hypersurface must
be part of a higher-dimensional catenoid, or flat (see Corollary 4.4 in their paper).
In particular, in a four dimensional torus (n = 3), the assumption on the principal
curvatures given in the statement of Theorem 1 (namely the assumption that all
principal curvatures are pairwise distinct) holds for all closed minimal hypersurfaces
that are not totally geodesic.

Proof. Given an orthonormal basis {θ1, . . . , θn+1} of parallel 1-forms on Tn+1, let
Mn be a closed, orientable minimal hypersurface of a flat (n+1)-dimensional torus
whose principal curvatures are all distinct at least at one point. Let us denote by
k its Morse index, and by {φq}kq=1 an L2-orthonormal basis of eigenfunctions of

the Jacobi operator JM = Δ + |A|2 of Mn generating the eigenspace where the
operator is negative definite. Let then Φ denote the linear map defined by

Φ : H1(Mn) → R
n(n+1)k/2

ω �→
[∫

M
〈N � ∧ ω, θi ∧ θj〉φqdμ

]
,

where 1 ≤ i < j ≤ n+ 1 and q varies from 1 to k. Clearly,

dimH1(M, g) ≤ dimKer(Φ) +
n(n+ 1)

2
k.

Since H1(M, g) � H1(M ;R), Theorem 1 will follow once we analyze the dimen-
sion of the kernel of the map Φ and show that indeed dimKer(Φ) ≤ 2n− 1.

Let ω be an element of the kernel of the map Φ. This precisely means that every
function uij = 〈N �∧ω, θi∧θj〉 is L2-orthogonal to each of the first k eigenfunctions
of JM . Since index(M) = k, we must have

Q(uij , uij) ≥ λk+1

∫
M

u2
ijdμ ≥ 0 for all 1 ≤ i < j ≤ n+ 1,

by the standard variational characterization of eigenvalues. Hence, thanks to Propo-
sition 3 we have

0 ≤
∑

1≤i<j≤n+1

Q(uij , uij) = −
∑

1≤i<j≤n+1

∫
M

uijJM (uij)dμ

= 2

∫
M

∑
1≤i<j≤n+1

〈N � ∧ ω, θi ∧ θj〉〈
n∑

k,l=1

A(Ek, El)E
�
l ∧∇Ek

ω, θi ∧ θj〉 dμ

= 2

∫
M

n∑
k,l=1

A(Ek, El)〈E�
l ∧ ∇Ek

ω,N � ∧ ω〉dμ = 0,

the last equality relying on the fact that trivially, by orthogonality, iN (E�
l∧∇Ek

ω) =

0 for any choice of the indices k and l. It follows that 〈N � ∧ ω, θi ∧ θj〉 are all
eigenfunctions of the Jacobi operator JM , associated to the eigenvalue λk+1 = 0.
By Proposition 3, this implies that ω satisfies equation (2.3). Thus, to complete
the proof, it is enough to invoke Proposition 5, which ensures that the dimension
of Ker(Φ) cannot exceed 2n− 1.

Lastly, to obtain an unconditional result when n = 2, 3, we need to observe that
when the condition on the principal curvatures of Mn is not fulfilled, then Mn
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is totally geodesic and therefore a stable n-dimensional torus, in which case our
inequality is also satisfied. This claim is clear when n = 2 and is a consequence of
the result by do Carmo and Dajczer when n = 3. Thereby the proof is complete. �

Remark 6. Let us discuss the modifications needed to obtain this index bound for
non-orientable minimal hypersurfaces inside Tn+1. First of all, by orientability of
Tn+1 we know that any such Mn is also one-sided. In this case, it is customary to
introduce the two-sheeted covering π : M̂n → Mn (given by couples (x,N) where
x ∈ Mn and N attains one of the two possible choices for the unit normal of Mn at
x) and the associated two-sided immersion ι : M̂n → Tn+1 (with a well-defined unit

normal field N̂ given by N̂(x,N) = N). As discussed (for instance) in Subsection

2.3 of [1] one can then consider the restriction of the Jacobi operator of M̂n to

the space of odd functions, namely to all u : M̂n → R satisfying u ◦ τ = −u for
τ : M̂n → M̂n the natural deck transformation of the covering in question. Hence,
the Morse index of Mn is defined to be the number of negative eigenvalues of JM̂
acting on odd functions, in the sense above.

These comments being made, our arguments go through in the non-orientable
case as well without any substantial modification once it is checked that for any
harmonic form ω ∈ H1(M, g) one has that each of the test functions uij = 〈N̂ � ∧
π∗(ω), ι∗(θi) ∧ ι∗(θj)〉 are indeed odd, which is done in the proof of Theorem A of
[1].
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E-mail address: alessandro.carlotto@math.ethz.ch

Department of Mathematics, University of Warwick, Gibbet Hill Road, Coventry

CV4 7AL, United Kingdom

E-mail address: b.sharp@warwick.ac.uk

http://www.ams.org/mathscinet-getitem?mr=2260928
http://www.ams.org/mathscinet-getitem?mr=1245555

	1. Introduction
	2. Proofs
	2.1. Notation and ancillary results
	2.2. Proofs of Theorem 1 and Theorem 2

	Acknowledgments
	References

