A NOTE ON THE ERDŐS-HAJNAL PROPERTY FOR STABLE GRAPHS

ARTEM CHERNIKOV AND SERGEI STARCHENKO
(Communicated by Mirna Džamonja)

Abstract

In this note we give a proof of the Erdős-Hajnal conjecture for families of finite (hyper-) graphs without the m-order property. This theorem is in fact implicitly proved by M. Malliaris and S. Shelah (2014), however we use a new technique of independent interest combining local stability and pseudo-finite model theory.

1. Introduction

By a graph G we mean, as usual, a pair (V, E), where E is a symmetric subset of $V \times V$. If G is a graph, then a clique in G is a set of vertices all pairwise adjacent, and an anti-clique in G is a set of vertices such that any two different vertices from it are non-adjacent.

As usual, for a graph H we say that a graph G is H-free if G does not contain an induced subgraph isomorphic to H.

It is well known that every graph on n vertices contains either a clique or an anti-clique of size $\frac{1}{2} \log n$, and that this is optimal in general. However, the following famous conjecture of Erdős and Hajnal says that one can do much better in a family of graphs omitting a certain fixed graph H.

Conjecture 1.1 (Erdős-Hajnal conjecture [3). For every finite graph H there is a real number $\delta=\delta(H)>0$ such that every finite H-free graph $G=(V, E)$ contains either a clique or an anti-clique of size at least $|V|^{\delta}$.

It is known to hold for some choices of H, but is widely open in general (see [2,4] for a survey). A variation of this conjecture starts with a finite set of finite graphs $\mathcal{H}=\left\{H_{1}, \ldots, H_{k}\right\}$ and asks for the existence of a real constant $\delta=\delta(\mathcal{H})>0$ such that every finite graph G which is \mathcal{H}-free (that is, omits all of the $H_{i} \in \mathcal{H}$ simultaneously), contains either a clique or an anti-clique of size at least $|V|^{\delta}$. The aim of this note is to prove this conjecture for certain \mathcal{H} connected to the modeltheoretic notion of stability.

Definition 1.2. Given $m \in \mathbb{N}$, we say that a graph $G=(V, E)$ has the m-order property if there are some vertices $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}$ from V such that $a_{i} E b_{j}$ holds if and only if $i<j$.

[^0]Note that in this definition we make no requirement on the edges between a_{i}, a_{j} for $i \neq j$, and between b_{i}, b_{j} for $i \neq j$. The following theorem is implicitly proved in [6, Theorem 3.5].

Theorem 1.3. For every $m \in \mathbb{N}$ there is a constant $\delta=\delta(m)>0$ such that every finite graph $G=(V, E)$ without the m-order property contains either a clique or an anti-clique of size at least $|V|^{\delta}$.

In this note we provide a new model-theoretic proof of the above theorem (and a version of it for hypergraphs) using a new technique combining classical local stability with Hrushovski's pseudo-finite dimension.

Theorem 1.3 implies an instance of Conjecture 1.1 for certain \mathcal{H}. We consider the following graphs, for each $m \in \mathbb{N}$:
(1) Let H_{m} be the half-graph on $2 m$ vertices. Namely, the vertices of H_{m} are $\left\{a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}\right\}$, and the edges are $\left\{\left(a_{i}, b_{j}\right): i<j\right\}$.
(2) Let H_{m}^{\prime} be the complement graph of H_{m}. Namely, the vertices of H_{m}^{\prime} are $\left\{a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}\right\}$, and the edges are $\left\{\left(a_{i}, b_{j}\right): i \geq j\right\} \cup\left\{\left(a_{i}, a_{j}\right): i \neq\right.$ $j\} \cup\left\{\left(b_{i}, b_{j}\right): i \neq j\right\}$.
(3) Let $H_{m}^{\prime \prime}$ have $\left\{a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}\right\}$ as its vertices, and $\left\{\left(a_{i}, b_{j}\right): i<\right.$ $j\} \cup\left\{\left(a_{i}, a_{j}\right): i \neq j\right\}$ as its edges.
Finally, let $\mathcal{H}_{m}=\left\{H_{m}, H_{m}^{\prime}, H_{m}^{\prime \prime}\right\}$.
Corollary 1.4. For every $m \in \mathbb{N}$, the Erdös-Hajnal conjecture holds for the family of all \mathcal{H}_{m}-free graphs.

Proof. In view of Theorem 1.3 it is enough to show that for every $m \in \mathbb{N}$ there is some $m^{\prime} \in \mathbb{N}$ such that if a finite graph G is \mathcal{H}_{m}-free, then it doesn't have the m^{\prime}-order property.

Assume that G has the m^{\prime}-order property. That is, there are some vertices $a_{1}, \ldots, a_{m^{\prime}}, b_{1}, \ldots, b_{m^{\prime}}$ in V such that $a_{i} E b_{j}$ holds if and only if $i<j$. If m^{\prime} is large enough with respect to m, by the Ramsey theorem we can find some subsequences $A=\left\{a_{i_{1}}, \ldots, a_{i_{m+1}}\right\}$ and $B=\left\{b_{j_{1}}, \ldots, b_{j_{m+1}}\right\}, 1 \leq i_{1}<\ldots<i_{m+1} \leq m^{\prime}, 1 \leq j_{1}<$ $\ldots<j_{m+1} \leq m^{\prime}$, such that each of A, B is either a clique or an anti-clique.

If both are anti-cliques, then the graph induced on $(A \cup B) \backslash\left\{a_{i_{m+1}}, b_{j_{m+1}}\right\}$ is isomorphic to H_{m}. If both are cliques, let $a_{k}^{\prime}:=b_{j_{k+1}}$ and $b_{l}^{\prime}:=a_{i_{l}}$ for $1 \leq$ $k, l \leq m$. Then the graph induced on $\left\{a_{1}^{\prime}, \ldots, a_{m}^{\prime}, b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right\}$ is isomorphic to H_{m}^{\prime}. If A is a clique and B is an anti-clique, then the graph induced on $(A \cup B) \backslash$ $\left\{a_{i_{m+1}}, b_{j_{m+1}}\right\}$ is isomorphic to $H_{m}^{\prime \prime}$. Finally, if A is an anti-clique and B is a clique, let $a_{k}^{\prime}:=b_{j_{m+1-k}}$ and $b_{l}^{\prime}:=a_{i_{m+1-l}}$ for $1 \leq k, l \leq m$. Then the graph induced on $\left\{a_{1}^{\prime}, \ldots, a_{m}^{\prime}, b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right\}$ is again isomorphic to $H_{m}^{\prime \prime}$. In any of the cases, G is not \mathcal{H}_{m}-free.

Remark 1.5. We remark that the (strong) Erdős-Hajnal property for semialgebraic graphs (and more generally, for graphs definable in arbitrary distal structures) can also be established using model-theoretic methods [1] and that the strong Erdős-Hajnal property need not hold under the assumptions of Theorem 1.3 (see [1. Section 6]).

2. Preliminaries

In this paper by a pseudo-finite set V we mean an infinite set that is an ultraproduct $V=\prod_{i \in I} V_{i} / \mathcal{F}$ of finite sets $V_{i}, i \in I$, with respect to a non-principal ultrafilter \mathcal{F} on I.

Working in "set theory", for a pseudo-finite set $V=\prod_{i \in I} V_{i} / \mathcal{F}$ and a subset $A \subseteq V^{k}$ we say that A is definable (or "internal", in the terminology of non-standard analysis) if $A=\prod_{i \in I} A_{i} / \mathcal{F}$ for some $A_{i} \subseteq V_{i}^{k}$.

Let $V=\prod_{i \in I} V_{i} / \mathcal{F}$ be pseudo-finite and $A \subseteq V$ a definable non-empty subset. We define the "dimension" $\delta(A)\left(\delta_{C_{0}}(A)\right.$ in the notation of [5]) to be the number in $[0,1]$ that is the standard part of $\log (|A|) / \log (|V|)$. As an alternative definition, write A as $A=\prod_{i \in I} A_{i} / \mathcal{F}$, where each A_{i} is a non-empty subset of V_{i}. For each $i \in I$ let $l_{i}=\log \left(\left|A_{i}\right|\right) / \log \left(\left|V_{i}\right|\right)$ (so $\left.\left|A_{i}\right|=\left|V_{i}\right|^{l_{i}}\right)$. Then $\delta(A)$ is the unique number $l \in[0,1]$ such that for any $\varepsilon>0$ in \mathbb{R}, the set $\left\{i \in I: l-\varepsilon<l_{i}<l+\varepsilon\right\}$ is in \mathcal{F}. We extend δ to the empty set by setting $\delta(\emptyset):=-\infty$.

In the following lemma we state some basic properties of δ that we need. Their proofs are not difficult and we refer to [5] for more details.

Lemma 2.1. Let V be a pseudo-finite set.
(1) $\delta(V)=1$.
(2) $\delta\left(A_{1} \cup A_{2}\right)=\max \left\{\delta\left(A_{1}\right), \delta\left(A_{2}\right)\right\}$ for any definable $A_{1}, A_{2} \subseteq V$.
(3) Let $Y \subseteq V \times V^{m}$ and $Z \subseteq V$ be definable. Assume that $\delta(Z)=\alpha$ and for all pairwise distinct $a_{1}, \ldots, a_{m} \in Z$ we have $\delta\left(\left\{x \in V:\left(x, a_{1}, \ldots, a_{m}\right) \in\right.\right.$ $Y\}) \leq \beta$. Then

$$
\delta\left(\left\{x \in V: \exists z_{1}, \ldots, z_{m} \in Z \bigwedge_{i \neq j} z_{i} \neq z_{j} \&\left(x, z_{1}, \ldots z_{m}\right) \in Y\right\}\right) \leq m \alpha+\beta
$$

In the next section we will prove the following "non-standard" version of the main theorem (and in fact a more general version of it for hypergraphs).

Theorem 2.2. Let V be a pseudo-finite set and $E \subseteq V \times V$ a definable symmetric subset. Assume that the graph (V, E) does not have the m-order property for some $m \in \mathbb{N}$. Then there is definable $A \subseteq V$ such that $\delta(A)>0$ and either $\left(a, a^{\prime}\right) \in E$ for all $a \neq a^{\prime} \in A$ or $\left(a, a^{\prime}\right) \notin E$ for all $a \neq a^{\prime} \in A$.

We explain how Theorem 1.3 follows from Theorem 2.2. Assume that Theorem 1.3 fails. This means that for a fixed m, for every $r \in \mathbb{N}$ there is some finite graph $G_{r}=\left(V_{r}, E_{r}\right)$ of size at least r which does not have the m-order property and does not have a homogeneous subset of size at least $\left|V_{r}\right|^{\frac{1}{r}}$. Let $G=(V, E)$ be an ultraproduct of the G_{r} 's modulo some non-principal ultrafilter \mathcal{F} on \mathbb{N}. It follows by Łos's theorem that G also does not have the m-order property. Thus, we can apply Theorem 2.2 and obtain a definable homogeneous set $A \subseteq V$, let's say a clique, with $\delta(A)>\alpha>0$. By definability $A=\prod_{r \in \mathbb{N}} A_{r} / \mathcal{F}$ for some $A_{r} \subseteq V_{r}$, and by the definition of the δ-dimension we have that $\left|A_{r}\right| \geq\left|V_{r}\right|^{\alpha}$ for almost all r, contradicting the assumption.

3. Proof of Theorem 2.2

We fix a pseudo-finite set $V=\prod_{i \in I} V_{i} / \mathcal{F}$ and a definable symmetric subset $E=$ $\prod_{i \in I} E_{i} / \mathcal{F}$ of V^{n} (where "symmetric" means that it is closed under permutation of the coordinates).

We follow standard model-theoretic notation. For $v_{1}, \ldots, v_{n-1} \in V$ and a subset $X \subseteq V$ we let $E\left(v_{1}, \ldots, v_{n-1}, X\right):=\left\{x \in X: V \models E\left(v_{1}, \ldots, v_{n-1}, x\right)\right\}$. By a partitioned formula we mean a first-order formula $\phi\left(x_{1}, \ldots, x_{k} ; y_{1}, \ldots, y_{l}\right)$ with two distinguished groups of variables \bar{x} and \bar{y}, and it is stable if the bi-partite graph $\left(R, V^{k}, V^{l}\right)$ with $R:=\left\{(\bar{a}, \bar{b}) \in V^{k} \times V^{l}: V \models \phi(\bar{a} ; \bar{b})\right\}$ does not have the m-order property for some m. We say that a definable set $X \subseteq V$ is large if $\delta(X)>0$, and we say that X is small if $\delta(X) \leq 0$.

We prove the following proposition, in particular establishing Theorem 2.2.
Proposition 3.1. Assume that $E\left(x_{1} ; x_{2}, \ldots, x_{n}\right)$ is stable. Then there is a large definable set $A \subseteq V$ such that either $\left(a_{1}, \ldots, a_{n}\right) \in E$ for all pairwise distinct $a_{1}, \ldots, a_{n} \in A$ or $\left(a_{1}, \ldots, a_{n}\right) \notin E$ for all pairwise distinct $a_{1}, \ldots, a_{n} \in A$.

We will use some basic local stability such as definability of types and Shelah's 2-rank $R_{\Delta}(-):=R(-, \Delta, 2)$ (and refer to [7] Chapter II] for the details).

We will use Δ to denote a finite set of (non-partitioned) formulas. By a Δ formula $\psi(\bar{x})$ over a set of parameters $W \subseteq V$ we mean a Boolean combination of formulas of the form $\phi(\bar{x}, \bar{a})$ where $\phi(\bar{x}, \bar{y})$ is a formula from Δ and \bar{a} is a tuple of elements from W. We let $\Delta(W)$ denote the set of all Δ-formulas over W. By a complete Δ-type $p(\bar{x})$ over W we mean a maximal consistent collection of Δ-formulas of the form $\psi(\bar{x})$ over W (p is axiomatized by specifying, for every $\phi(\bar{x}, \bar{y}) \in \Delta$ and $\bar{a} \in W^{|\bar{y}|}$, whether $\phi(\bar{x}, \bar{a}) \in p$ or $\left.\neg \phi(\bar{x}, \bar{a}) \in p\right)$.

For any permutation $\sigma \in \operatorname{Sym}(n)$, let $\phi_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=E\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$. From now on we fix $\Delta=\left\{\phi_{\sigma}\left(x_{1}, \ldots, x_{n}\right): \sigma \in \operatorname{Sym}(n)\right\} \cup\left\{x_{1}=x_{2}\right\}$.

Our assumption is that the partitioned formula $\phi(x ; \bar{y})=E\left(x, y_{1}, \ldots, y_{n-1}\right)$ is stable. By the basic properties of stable formulas we then have the following:
(1) Every partitioned $\Delta(V)$-formula $\phi(x ; \bar{y})$ is stable, where x is a single variable. This follows from the assumption since E is symmetric and the set of stable formulas is closed under Boolean combinations and under replacing some of the variables by a fixed parameter.
(2) Every complete Δ-type $p(x)$ over V, with x a single variable, is definable using Δ-formulas over V. Indeed, for a partitioned $\Delta(V)$-formula $\phi(x ; \bar{y})$, which is stable by (1), the type $p \upharpoonright \phi$ is definable by a Boolean combination of instances of the formula $\phi^{*}(\bar{y} ; x)=\phi(x ; \bar{y})$, with parameters in V, which is also a $\Delta(V)$-formula.
(3) For any complete Δ-type $p(x)$ over V and $k \in \mathbb{N}$ we have a complete Δ-type $p^{(k)}\left(x_{1}, \ldots, x_{k}\right)$ over V - the type of a Morley sequence in p. Namely, as p is definable by (2), say using $\Delta\left(V_{0}\right)$-formulas for some countable $V_{0} \subseteq V$, we take $p^{(k)}=\bigcup\left\{\operatorname{tp}_{\Delta}\left(a_{k}, \ldots, a_{1} / V^{\prime}\right): V_{0} \subset V^{\prime} \subset V\right.$ countable, $a_{i+1} \models$ $p \upharpoonright_{V^{\prime} a_{0} \ldots a_{i}}$ for $\left.i<k\right\}$. By a standard argument $p^{(k)}$ is well defined.

Consider $\Delta^{\prime}=\{\phi(x ; \bar{y}): \phi(x, \bar{y}) \in \Delta,|x|=1\}$, a finite set of partitioned formulas. Slightly abusing the notation, we will write $R_{\Delta}(-)$ to refer to $R_{\Delta^{\prime}}(-)$. As every partitioned formula in Δ^{\prime} is stable by (1), $R_{\Delta}(x=x)$ is finite. Let $S \subseteq V$ be a large definable subset of the smallest R_{Δ}-rank. By Lemma 2.1(2), S cannot be covered by finitely many definable sets of smaller R_{Δ}-rank, hence by compactness there is a complete Δ-type $p(x)$ over V such that $R_{\Delta}(S(x) \cap p(x))=R_{\Delta}(S)$ (and in fact p is the unique type with this property).

Claim 3.2. For any formula $r\left(x_{1}, \ldots, x_{k}\right) \in \Delta(V)$, if $p^{(k)} \vdash r\left(x_{1}, \ldots, x_{k}\right)$, then there is a large definable $A \subseteq S$ such that $\models r\left(a_{1}, \ldots, a_{k}\right)$ holds for any pairwise distinct a_{1}, \ldots, a_{k} from A.

Proof. We prove the claim by induction on k.
Case $k=1$. If $p\left(x_{1}\right) \vdash r\left(x_{1}\right)$ and $r\left(x_{1}\right) \in \Delta(V)$, then by the choice of p we have $R_{\Delta}\left(r\left(x_{1}\right) \cap S\left(x_{1}\right)\right)=R_{\Delta}\left(S\left(x_{1}\right)\right)$. Thus $R_{\Delta}\left(\neg r\left(x_{1}\right) \cap S\left(x_{1}\right)\right)<R_{\Delta}\left(S\left(x_{1}\right)\right)$ by the definition of rank, so $\delta\left(\neg r\left(x_{1}\right) \cap S\left(x_{1}\right)\right)=0$ by the choice of S, so $\delta\left(r\left(x_{1}\right) \cap S\left(x_{1}\right)\right)>$ 0 . Thus we can take $A=r(S)$.

Assume $k>1$.
By the definition of $p^{(k)}$ in (3) above, there is some $\psi\left(x_{1}, \ldots, x_{k-1}\right) \in \Delta(V)$ such that $p \upharpoonright_{r\left(x_{1}, \ldots, x_{k-1} ; x_{k}\right)}$ is defined by $\psi\left(x_{1}, \ldots, x_{k-1}\right)$, i.e.,

$$
r\left(v_{1}, \ldots, v_{k-1} ; x_{k}\right) \in p\left(x_{k}\right) \Longleftrightarrow V \models \psi\left(v_{1}, \ldots, v_{k-1}\right)
$$

for any $v_{1}, \ldots, v_{k-1} \in V$.
Also $p^{(k-1)} \vdash \psi\left(x_{1}, \ldots, x_{k-1}\right)$ as $p^{(k)} \vdash r\left(x_{1}, \ldots, x_{k}\right)$. By the inductive assumption, there is some large definable $B \subseteq S$ such that $V \models \psi\left(b_{1}, \ldots, b_{k-1}\right)$ holds for all pairwise distinct $b_{1}, \ldots, b_{k-1} \in B$. As B is definable, there are some $B_{i} \subseteq S_{i}$ such that $B=\prod_{i \in I} B_{i} / \mathcal{F}$. For each i, let $A_{i} \subseteq B_{i}$ be maximal (under inclusion) such that $r_{i}\left(a_{1}, \ldots, a_{k}\right)$ holds for all pairwise distinct $a_{1}, \ldots, a_{k} \in A_{i}$, and let $A:=\prod_{i \in I} A_{i} / \mathcal{F}$. We have:
(i) $A \subseteq B$.
(ii) $V \models r\left(a_{1}, \ldots, a_{k}\right)$ for any pairwise distinct $a_{1}, \ldots, a_{k} \in A$.
(iii) For any $b \in B \backslash A$ there are some pairwise distinct a_{1}, \ldots, a_{k-1} in A such that $V \not \vDash r\left(a_{1}, \ldots, a_{k}, b\right)$.
We claim that A is large, so satisfies the conclusion of the claim. In fact, we show that $\delta(A) \geq \frac{1}{k-1} \delta(B)$. Assume not, say $\delta(A)=\alpha_{1}<\frac{1}{k-1} \delta(B)$. For all pairwise distinct $a_{1}, \ldots, a_{k-1} \in A$ we have $V \models \psi\left(a_{1}, \ldots, a_{k-1}\right)$, so $r\left(a_{1}, \ldots, a_{k-1}, x_{k}\right) \in p$. By the choice of p, the R_{Δ}-rank of $r\left(a_{1}, \ldots, a_{k-1}, S\right)$ is equal to the R_{Δ}-rank of S, so the R_{Δ}-rank of $\neg r\left(a_{1}, \ldots, a_{k-1}, S\right)$ has to be smaller than the R_{Δ}-rank of S, which implies that $\delta\left(B \backslash r\left(a_{1}, \ldots, a_{k-1}, B\right)\right)=0$ by the choice of S. By the property (iii) above, the set $B \backslash A$ is covered by the family $\left\{B \backslash r\left(a_{1}, \ldots, a_{k-1}, B\right)\right.$: $\left.a_{1}, \ldots, a_{k-1} \in A, \bigwedge_{i \neq j} a_{i} \neq a_{j}\right\}$.

Then by Lemma 2.1(3),

$$
\delta(B \backslash A) \leq(k-1) \delta(A)+0 \leq(k-1) \alpha_{1}
$$

which implies by Lemma 2.1(2) that $\delta(B) \leq(k-1) \alpha_{1}<\alpha-$ a contradiction.
Finally, as both $E\left(x_{1}, \ldots, x_{n}\right)$ and $\neg E\left(x_{1}, \ldots, x_{n}\right)$ are in Δ and either $p^{(n)} \vdash$ $E\left(x_{1}, \ldots, x_{n}\right)$ or $p^{(n)} \vdash \neg E\left(x_{1}, \ldots, x_{n}\right)$, the proposition follows.

Acknowledgments

We thank Darío Alejandro García and Itay Kaplan for their comments on an earlier version of the article.

References

[1] Artem Chernikov and Sergei Starchenko, Regularity lemma for distal structures, Journal of the European Mathematical Society, accepted (arXiv:1507.01482) (2015).
[2] Maria Chudnovsky, The Erdös-Hajnal conjecture-a survey, J. Graph Theory 75 (2014), no. 2, 178-190, DOI 10.1002/jgt.21730. MR3150572
[3] P. Erdős and A. Hajnal, Ramsey-type theorems, Discrete Applied Mathematics (1989).
[4] Jacob Fox and Benny Sudakov, Induced Ramsey-type theorems, Adv. Math. 219 (2008), no. 6, 1771-1800, DOI 10.1016/j.aim.2008.07.009. MR2455625
[5] Ehud Hrushovski, On pseudo-finite dimensions, Notre Dame J. Form. Log. 54 (2013), no. 3-4, 463-495, DOI 10.1215/00294527-2143952. MR3091666
[6] M. Malliaris and S. Shelah, Regularity lemmas for stable graphs, Trans. Amer. Math. Soc. $\mathbf{3 6 6}$ (2014), no. 3, 1551-1585, DOI 10.1090/S0002-9947-2013-05820-5. MR3145742
[7] S. Shelah, Classification theory and the number of nonisomorphic models, 2nd ed., Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam, 1990. MR 1083551

Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095-1555

E-mail address: chernikov@math.ucla.edu
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556 E-mail address: Starchenko.1@nd.edu

[^0]: Received by the editors December 10, 2016.
 2010 Mathematics Subject Classification. Primary 03C45, 05C35, 05C69.
 The first author was partially supported by ValCoMo (ANR-13-BS01-0006), by the Fondation Sciences Mathematiques de Paris (FSMP) and by the Investissements d'avenir program (ANR-10-LABX-0098).

 The second author was partially supported by the NSF Research Grant DMS-1500671.

