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FREE ORBITS FOR MINIMAL ACTIONS ON THE CIRCLE

JOAQUÍN BRUM, MATILDE MARTÍNEZ, AND RAFAEL POTRIE

(Communicated by Nimish Shah)

Abstract. We prove that if Γ is a countable group without a subgroup iso-
morphic to Z2 that acts faithfully and minimally by orientation-preserving
homeomorphisms on the circle, then it has a free orbit. We give examples
showing that this does not hold for actions by homeomorphisms of the line.

1. Introduction

Foliations of codimension one and groups of homeomorphisms of the circle are
closely related. A particular but illuminating example of a foliation can be obtained
via the suspension construction, by which an action of a surface group on the
circle gives rise to a foliation on a circle bundle over a surface. In this example,
fundamental groups of leaves correspond to stabilizers of points under the action,
so that simply connected leaves translate into free orbits. When these foliations are
minimal, either the generic leaf is simply connected or all leaves have a fundamental
group which is not finitely generated (see [ADMV]). With this motivation, it is
natural to ask if a minimal and faithful action of the fundamental group of a surface
on the circle must have some free orbit.

It turns out that this is true in some greater generality, and the purpose of this
note is to prove the following result:

Theorem 1. Let Γ be a countable group without a subgroup isomorphic to Z2. If
Γ acts faithfully and minimally by orientation-preserving homeomorphisms on the
circle, then there exists a free orbit.

Recall that a free orbit is the orbit of a point x ∈ S1 such that for every g ∈ Γ\{e}
one has that gx �= x.

Minimality of the action is necessary as is shown by an example in subsection
3.1. For actions on Homeo+(R) the result is also non-valid; see subsection 3.2.

It is natural to wonder whether a similar result will hold in higher dimensions.
For example, one can ask:

Question. Is there a faithful and minimal action of the free group in two generators
on a closed surface without free orbits?

As a direct consequence of these results one deduces that if f, g ∈ Homeo+(S
1)

are homeomorphisms such that f has a non-trivial interval of fixed points and g
is conjugate to an irrational rotation, then the group generated by f and g inside
Homeo+(S

1) is not free (and in particular contains a copy of Z2). It is illustrative
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to try to prove this consequence directly as it sheds light on the underlying ideas
of our proof.

Remark 1. One can also see that Z2 itself does not admit faithful minimal actions
on the circle without free orbits. In fact, any group admitting such an action must
be non-abelian, as we will see in section 4, where we give further conditions a group
acting minimally and without free orbits must satisfy.

2. Proof of Theorem 1

We start with a simple remark which works for general countable groups.

Remark 2. For each g ∈ Γ\{e}, consider the set Fix(g) = {x ∈ S1 : gx = x} of its
fixed points. The points with free orbit are exactly those in

⋂

g∈Γ\{e}
Fix(g)c.

If a countable group Γ acts minimally on the circle and the action has no free orbit,
then the following hold:

(1) By Baire’s Category Theorem there must exist g ∈ Γ\{e} such that Fix(g)
has non-empty interior.

(2) Since the Γ-action is minimal on S1, for every x ∈ S1 there exists h ∈ Γ\{e}
such that x is an interior point of Fix(h).

Notice that the fact that Γ is countable is crucial for the proof of this remark
as it uses the Baire category theorem. It is likely that arguments along the lines
of the ones presented in [BK] may help construct a non-countable group for which
Theorem 1 fails. However, we could not construct such an example and believe that
this would exceed the purposes of this note. The main difficulty we encountered in
approaching this problem can be summarized in the following question:

Question. Is it possible to construct a map ϕ : S1 → Homeo+(S
1) such that the

group generated by the elements in the image of ϕ is free?

We return to the proof of the theorem. The following lemma will be the tool to
obtain abelian subgroups.

Lemma 1. Let f and g be two non-trivial orientation-preserving homeomorphisms
of the circle. If Fix(f) �= Fix(g) and Fix(f) ∪ Fix(g) = S1, then the subgroup of
Homeo+(S

1) generated by f and g is isomorphic to Z2.

Proof. Let H ⊂ Homeo+(S
1) denote the subgroup generated by f and g. We will

begin by proving that H is abelian.
Notice that since Fix(f) ∪ Fix(g) = S1, we know that any point is either fixed

by f or fixed by g. Let x ∈ S1. Without loss of generality, assume that x ∈ Fix(g).
Therefore [f, g](x) = fgf−1(x). If x ∈ Fix(f), then x is fixed by both f and g and
therefore by [f, g]. Otherwise, f−1(x) is not fixed by f and is therefore fixed by
g, so [f, g](x) = x. This implies that every point is fixed by [f, g] and therefore
[f, g] = id, showing that f and g commute.

Next, remark that since Fix(f) �= Fix(g) the group H cannot be cyclic. Due
to the classification of abelian groups, all we have to see is that H is torsion-free.
Since the sets Fix(f) and Fix(g) are closed they cannot be disjoint, so any element
of H must have fixed points. This means that H does not contain an element of
finite order. �
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In order to prove Theorem 1, we will consider a countable group Γ acting faith-
fully and minimally on S1. Assuming that the action has no free orbit, we will
prove that Γ contains a subgroup isomorphic to Z2.

We will only use that Γ is countable in order to use Remark 2 so that there is
an element whose fixed point set has non-empty interior. Under this assumption,
the result does not further use countability of Γ.

Proof of Theorem 1. For every x ∈ S1, consider the set

Ax = {I : I is an open interval in S1 and x ∈ I ⊂ Fix(g) for some g ∈ Γ\{e}}.

Remark 2 guarantees that Ax is non-empty for every x ∈ S1. We fix an orien-
tation in S1. The orientation induces a total order on any interval I, and we can
therefore write I = (I−, I+). In particular, the interval S1\{x} has an order, which
allows us to consider suprema and infima of subsets of S1\{x}.

Assume that for a given x ∈ S1 the set Ax = {I+ : I ∈ Ax} is unbounded above
in the total order of S1\{x}. Consider f ∈ Γ\{e} such that x is an interior point of
Fix(f). Since Ax is unbounded, there exists g ∈ Γ whose set of fixed points contains
an interval I such that I ∪ Fix(f) = S1. In particular, Fix(f) ∪ Fix(g) = S1, and
Lemma 1 implies that Γ contains a free abelian group of rank 2.

Otherwise, Ax must be bounded for all x ∈ S1. In this case, we can define

h : S1 → S1, h(x) = supAx.

The map h has the following properties which follow directly from its definition:

(1) it is monotonically increasing (i.e. any lift of h to the line is a monotone
map);

(2) it is equivariant, meaning that for every g ∈ Γ and x ∈ S1 one has gh(x) =
h(gx).

Let us now show that h is a homeomorphism. By equivariance, it follows that
the image of h is invariant by the Γ action; therefore, by minimality it must be
dense as otherwise the closure of the image of h would provide a proper closed
invariant subset. Now we check that h has to be strictly monotonous. For this, let
U = {x : int(h−1(x)) �= ∅} and consider V =

⋃
x∈U int(h−1(x)). Observe that V

is an open, proper, Γ-invariant subset. The minimality of the action implies that V
is empty. Finally, since h is strictly monotonous and has dense image, one obtains
that h ∈ Homeo+(S

1).
Now, we distinguish cases according to the rotation number of h ([KH, Chapter

11]).
If ρ(h) is irrational, then hmust be either a Denjoy counterexample or conjugated

to an irrational rotation. In the former case, h has a countable union of intervals
in its wandering set, which must be Γ-invariant since h is equivariant. This is
inconsistent with the minimality of the Γ-action. Therefore, h is conjugated to an
irrational rotation, and Γ is isomorphic to a subgroup of the centralizer of h in
Homeo+(S

1), but the centralizer of an irrational rotation does not have non-trivial
elements with fixed points, which also gives a contradiction.

We can therefore assume that ρ(h) is rational. We first claim that h has to be
conjugate to a rigid rotation (e.g. there exists n > 0 so that hn = id): indeed, if it
were not the case, then the closed set of periodic points would be a proper closed
invariant set for Γ, contradicting minimality.
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So, take n the smallest positive integer such that hn = id. Note that by equiv-
ariance and definition of h, we must have that h(x) < h2(x) < · · · < hn−1(x) on
S1\{x}. We will find g and g′ in Γ whose set of fixed points is different and whose
union is S1. For this, consider x ∈ S1 and g ∈ Γ \ {id} such that Fix(g) contains x
in its interior. It follows that Fix(g) contains at least n connected components each
containing respectively x, h(x), . . . , hn−1(x). Choose a point y in (x, h(x)) which is
in the interior of the component of Fix(g) containing x. Therefore, on S1\{x} we
have y < h(x) < h(y) < h2(x) < · · · < hn−1(x) < hn−1(y).

Now, we will see that there exists g′ ∈ Γ \ {id} such that Fix(g) ∪ Fix(g′) = S1

and both g and g′ are not the identity. Indeed, by definition of h we can find
g′ �= id so that its set of fixed points contains y in its interior and has a connected
component containing y and a point arbitrarily close to h(y). In particular, we
can assume it covers the set of points not fixed by g in the interval (x, h(x)]. This
implies that the set of Fix(g) ∪ Fix(g′) covers the whole interval [x, h(x)] and by
equivariance it covers the whole S1.

This allows one to apply Lemma 1 to conclude the proof. �

3. Counterexamples

3.1. A non-minimal action on S1 without free orbits. We construct here a
faithful action of the fundamental group of a surface on the circle with no free
orbits. The same can be obtained by adding a global fixed point to the example
in the next subsection, but we present this example for the particular relevance of
surface groups in actions on the circle.

Let Γ be the fundamental group of an oriented compact surface of genus greater
than one. It does not contain any subgroup isomorphic to Z2. Surface groups are
known to be ω-residually free (see [CG]), which means that for any finite subset X
of Γ there exists a homomorphism from Γ to a free group whose restriction to X is
injective.

Consider a free subgroup F of Homeo+(R). Write Γ =
⋃∞

n=0 Xn as an increasing
union of finite subsets, and for each n let ϕn : Γ → F be a homomorphism that
sends Xn injectively into F . Notice that, since Γ is non-free, the Nielsen-Schreier
theorem (see, for example, [S, section 2.2.4]) implies that ϕn must have a non-
trivial kernel. Take an increasing sequence of points (xn)

∞
n=1 in R which does not

accumulate in R. Taking S1 to be R ∪ {∞} and setting x0 = ∞, the circle is the
union of the intervals [xn, xn+1], for n ≥ 0. We will identify each open interval
(xn, xn+1) with the real line, so that ϕn can be seen as a representation of Γ in
Homeo+(xn, xn+1).

We will define

ϕ : Γ → Homeo+(S
1)

as follows:

∗ for any g ∈ Γ, ϕ(g) fixes {xn : n ≥ 0},
∗ restricted to (xn, xn+1), ϕ(g) coincides with ϕn(g) ∈ Homeo+((xn, xn+1)).

It is clear that ϕ is a faithful representation, since each ϕn is injective on Xn.
We will see that the Γ-action defined by ϕ has no free orbits. Let x ∈ S1. If x is
not fixed by Γ, it belongs to (xn, xn+1) for some n, and it is therefore fixed by the
non-trivial subgroup ker(ϕn).
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3.2. The main theorem does not hold in R. The following example shows that
Theorem 1 is not true if we consider actions on the line. We will construct a faithful
action of the free group F2 = 〈a, b〉 on the line that is minimal and such that every
point is stabilized by some non-trivial element.

We will start by defining three different F2 actions and later we will “glue” them.
Consider:

• φ1 : F2 → R such that φ1(a)(x) = x and φ1(b)(x) = x+ 1.
• φ2 : F2 → R such that φ2(a)(x) = x+ α and φ2(b)(x) = x+ β for α and β
rationally independent over Q. We also ask that 0 < α < 1 and 0 < β < 1.

• φ3 : F2 → R any action with a free orbit and without global fixed points.

Take p > 4 such that φ3(a)(p) > 4 + α and φ3(b)(p) > 4 + β. Define f ∈
Homeo+(R) satisfying f(x) = φ1(a)(x) if x < 0, f(x) = φ2(a)(x) if x ∈ [1, 4] and
f(x) = φ3(a)(x) if x > p. Now we define g ∈ Homeo+(R) satisfying g(x) = φ2(a)(x)
if x < 0, g(x) = φ2(b)(x) if x ∈ [1, 4] and g(x) = φ3(b)(x) if x > p. Finally define f
and g over [0, 1] ∪ [4, p] so that Fix(f) ∩ Fix(g) = ∅.

Consider ψ : F2 → Homeo+(R) defined as ψ(a) = f and ψ(b) = g. Since φ3 has
a free orbit and φ3 has no global fixed point, for any g ∈ F2−{e} there exists x ∈ R

greater than p such that φ3(g)(x) �= x and therefore ψ(g)(x) �= x. This implies that
ψ is a faithful action.

Now, the fact that ψ has no global fixed points implies that given x ∈ R there
exists g ∈ F2 so that ψ(g)(x) < 0 and therefore ψ(g−1ag)(x) = x, which proves
that ψ has no free orbit.

It remains to check the minimality of ψ. Observe that given any x ∈ [1, 2] it is
clear that the ψ orbit of x is dense on [1, 2]. Now, since ψ(a)([1, 2])∩ [1, 2] �= ∅ and
ψ(b)([1, 2]) ∩ [1, 2] �= ∅ we can deduce that OF2

([1, 2]), the union of the ψ orbits of
points in [1, 2], is a connected set. Also, since ψ has no global fixed points OF2

([1, 2])
is unbounded in both directions and therefore OF2

([1, 2]) = R. Finally, any orbit
accumulates on [1, 2] and therefore on R as claimed.

Remark 3. Since any action on R can be seen as an action on S1 = R ∪ {∞} with
a global fixed point, this is also an example of how Theorem 1 can fail when the
action is not minimal.

4. Further properties of minimal actions without free orbits

Remark 4. If Γ is a non-cyclic group acting minimally and faithfully without free
orbits on the circle, then it is non-abelian.

To see this, consider an element f ∈ Γ\{e} such that Fix(f) is non-empty. If Γ
were abelian, the set Fix(f) would be invariant by all elements of Γ, so the action
would not be minimal.

Proposition 1. If Γ is a countable group acting minimally and faithfully without
free orbits on the circle, then it contains a free group in two generators.

Proof. A result conjectured by Ghys and later proved by Margulis (see [M] or
[N]) states that any group of circle homeomorphisms either preserves a probability
measure on S1 or contains a free group in two generators. If Γ acts without free
orbits, it must be non-abelian.

Suppose there is a Γ-invariant probability measure μ. Since the action is minimal,
it must have full support and no atoms. There is a homeomorphism sending μ to
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the Lebesgue measure. This means Γ must be conjugated to a group of rotations
and therefore abelian, which gives a contradiction. �

Proposition 2. If Γ is a countable group acting minimally and faithfully without
free orbits on the circle, then it contains free abelian groups of arbitrarily large rank.

Proof. This follows by further inspection of the proof of our main theorem. We
just sketch the proof.

First, notice that h is defined by contradiction, and if it cannot be constructed it
means that for every x ∈ S1 there are elements for which there exist arbitrarily large
intervals of fixed points containing x (they contain the complement of arbitrarily
small neighbourhoods of x). Notice that to obtain the conclusion and in view of
Lemma 1 it is enough to find, for a given n > 0, elements γ1, . . . , γn ∈ Γ so that
their fixed point sets are different and pairwise cover S1. This is possible under
this assumption.

Otherwise, one can construct h and discuss similarly as in the proof of Theorem
1. We first recall that ρ(h) must be rational. In this case one can argue as in the
last paragraph to obtain such abelian groups. This completes the sketch of the
proof. �
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