Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On non-abelian Lubin-Tate theory and analytic cohomology


Author: Przemysław Chojecki
Journal: Proc. Amer. Math. Soc. 146 (2018), 459-471
MSC (2010): Primary 11F80
DOI: https://doi.org/10.1090/proc/13716
Published electronically: October 30, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the $ p$-adic local Langlands correspondence for
$ \operatorname {GL}_2(\mathbb{Q}_p)$ appears in the étale cohomology of the Lubin-Tate tower at infinity. We use global methods using recent results of Emerton on the local-global compatibility, and hence our proof applies to local Galois representations which come via a restriction from global pro-modular Galois representations.


References [Enhancements On Off] (What's this?)

  • [Be] Laurent Berger, La correspondance de Langlands locale $ p$-adique pour $ {\rm GL}_2({\bf Q}_p)$, Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012-1026, Astérisque 339 (2011), Exp. No. 1017, viii, 157-180 (French, with French summary). MR 2906353
  • [Bo] P. Boyer, Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale, Invent. Math. 138 (1999), no. 3, 573-629 (French). MR 1719811, https://doi.org/10.1007/s002220050354
  • [BP] Christophe Breuil and Vytautas Paškūnas, Towards a modulo $ p$ Langlands correspondence for $ {\rm GL}_2$, Mem. Amer. Math. Soc. 216 (2012), no. 1016, vi+114. MR 2931521, https://doi.org/10.1090/S0065-9266-2011-00623-4
  • [Br] Christophe Breuil, Invariant $ \mathcal{L}$ et série spéciale $ p$-adique, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 4, 559-610 (French, with English and French summaries). MR 2097893, https://doi.org/10.1016/j.ansens.2004.02.001
  • [Cas] William Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301-314. MR 0337789, https://doi.org/10.1007/BF01428197
  • [Cho] Przemysław Chojecki, On $ {\rm mod}\,p$ non-abelian Lubin-Tate theory for $ {\rm GL}_2(\mathbb{Q}_p)$, Compos. Math. 151 (2015), no. 8, 1433-1461. MR 3383163, https://doi.org/10.1112/S0010437X14008008
  • [DB] G. Dospinescu and A. Le Bras, Revetements du demi-plan de Drinfeld et correspondance de Langlands p-adique, preprint (2015).
  • [DS] Gabriel Dospinescu and Benjamin Schraen, Endomorphism algebras of admissible $ p$-adic representations of $ p$-adic Lie groups, Represent. Theory 17 (2013), 237-246. MR 3053464, https://doi.org/10.1090/S1088-4165-2013-00432-6
  • [Em1] Matthew Emerton, On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math. 164 (2006), no. 1, 1-84. MR 2207783, https://doi.org/10.1007/s00222-005-0448-x
  • [Em2] M. Emerton ``Local-global compatibility in the $ p$-adic Langlands programme for $ \operatorname {GL}_2(\mathbb{Q})$'', preprint (2011).
  • [Em3] Matthew Emerton, A local-global compatibility conjecture in the $ p$-adic Langlands programme for $ {\rm GL}_{2/{\mathbb{Q}}}$, Pure Appl. Math. Q. 2 (2006), no. 2, Special Issue: In honor of John H. Coates., 279-393. MR 2251474, https://doi.org/10.4310/PAMQ.2006.v2.n2.a1
  • [Em4] Matthew Emerton, Ordinary parts of admissible representations of $ p$-adic reductive groups I. Definition and first properties, Astérisque 331 (2010), 355-402 (English, with English and French summaries). MR 2667882
  • [EH] Matthew Emerton and David Helm, The local Langlands correspondence for $ {\rm GL}_n$ in families, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 4, 655-722 (English, with English and French summaries). MR 3250061, https://doi.org/10.24033/asens.2224
  • [Hu1] R. Huber, Continuous valuations, Math. Z. 212 (1993), no. 3, 455-477. MR 1207303, https://doi.org/10.1007/BF02571668
  • [Hu2] Roland Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30, Friedr. Vieweg & Sohn, Braunschweig, 1996. MR 1734903
  • [Pa] Vytautas Paškūnas, The image of Colmez's Montreal functor, Publ. Math. Inst. Hautes Études Sci. 118 (2013), 1-191. MR 3150248, https://doi.org/10.1007/s10240-013-0049-y
  • [RZ] M. Rapoport and Th. Zink, Period spaces for $ p$-divisible groups, Annals of Mathematics Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996. MR 1393439
  • [Sch1] Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245-313. MR 3090258, https://doi.org/10.1007/s10240-012-0042-x
  • [Sch2] Peter Scholze, $ p$-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi 1 (2013), e1, 77 pp.. MR 3090230, https://doi.org/10.1017/fmp.2013.1
  • [Sch3] Peter Scholze, On torsion in the cohomology of locally symmetric varieties, Ann. of Math. (2) 182 (2015), no. 3, 945-1066. MR 3418533, https://doi.org/10.4007/annals.2015.182.3.3
  • [Sch4] Peter Scholze, Perfectoid spaces: a survey, Current developments in mathematics 2012, Int. Press, Somerville, MA, 2013, pp. 193-227. MR 3204346
  • [Sch5] P. Scholze, On the $ p$-adic cohomology of the Lubin-Tate tower, preprint (2015).
  • [SW] Peter Scholze and Jared Weinstein, Moduli of $ p$-divisible groups, Camb. J. Math. 1 (2013), no. 2, 145-237. MR 3272049, https://doi.org/10.4310/CJM.2013.v1.n2.a1

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F80

Retrieve articles in all journals with MSC (2010): 11F80


Additional Information

Przemysław Chojecki
Affiliation: Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
Address at time of publication: Polish Academy of Sciences, ul. Sniadeckich 8 00-656, Warszawa, Poland
Email: chojecki@maths.ox.ac.uk

DOI: https://doi.org/10.1090/proc/13716
Received by editor(s): April 18, 2016
Received by editor(s) in revised form: November 27, 2016, and February 20, 2017
Published electronically: October 30, 2017
Communicated by: Romyar T. Sharif
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society