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Abstract. We classify link diagrams with Turaev genus one and two in terms
of an alternating tangle structure of the link diagram. The proof involves
surgery along simple loops on the Turaev surface, called cutting loops, which
have corresponding cutting arcs that are visible on the planar link diagram.
These also provide new obstructions for a link diagram on a surface to come
from the Turaev surface algorithm. We also show that inadequate Turaev
genus one links are almost-alternating.

1. Introduction

In [12], Turaev introduced the Turaev surface of a link diagram to use in a new
proof of Tait’s conjecture. Its minimal genus among all possible diagrams of a given
link is a link invariant, which is called the Turaev genus of the link. The Turaev
surface is a Heegaard surface of S3, such that the link diagram on its Turaev surface
is alternating and its projection divides the surface into a disjoint union of discs.
These properties imply that the Turaev genus measures how far a given link is from
being alternating (see [5, 6]).

In this paper, we classify link diagrams with low Turaev genus in terms of an
alternating tangle structure on the link diagram. An alternating tangle structure
on a diagram D on S2 provides a decomposition of D into maximally connected
alternating tangles, defined by Thistlethwaite [10] and below in section 3. Let
gT (D) denote the Turaev genus of D, which is defined in section 2 below.

Our main results are the following:

Theorem 1.1. Every prime connected link diagram D on S2 with gT (D) = 1 is a
cycle of alternating 2-tangles, as shown in Figure 1.

Figure 1

Theorem 1.2. Every prime connected link diagram D on S2 with gT (D) = 2 has
one of the eight alternating tangle structures shown below in Figure 2.
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Green discs represent maximally connected alternating tangles, and black arcs
are non-alternating edges of D. In Figure 2, ribbons denote an even number of

linearly connected alternating 2-tangles:
Armond and Lowrance [3] proved a similar classification independently at the

same time. They classified link diagrams with Turaev genus one and two in terms
of their alternating decomposition graphs up to graph isomorphism. While their
proof is primarily combinatorial, our proof is primarily geometric. Our result is also
somewhat stronger; we classify all possible embeddings of alternating decomposition
graphs into S2. Their graphs can be obtained from our Figure 2 simply by erasing
the colors from the ribbons and contracting the boundaries of the alternating tangles
into vertices. Our Cases 1, 3, 6 give their Case 2; our Cases 2, 5 give their Case 3;
and the other cases correspond bijectively, with our Cases 4, 7, 8 giving their Cases
1, 4, 5 respectively.

Figure 2

A non-trivial link diagram is almost-alternating if one crossing change makes
the diagram alternating. A non-trivial link is almost-alternating if it admits an
almost-alternating diagram. It is conjectured that all Turaev genus one links are
almost-alternating. This conjecture has been proved for non-alternating Montesinos
links and semi-alternating links [1, 2, 8]. We prove this conjecture for inadequate
links using our new geometric methods.

Theorem 1.3. Let L be an inadequate non-split prime link with gT (L) = 1. Then
L is almost-alternating.

2. Turaev genus

In this section, we introduce the Turaev surface of a link and describe its prop-
erties. A link diagram D on a surface F is a projection of a link L onto F , which
is a 4-valent graph on F such that each vertex is identified as an over or under
crossing of D. For each crossing in D, we put a crossing ball so that L lies on F
except near crossings of D, where L lies on a crossing ball as shown in Figure 3
(see [4, 9]). According to [4], we call this a crossing ball configuration of the link
L corresponding to the diagram D. With this configuration, we can obtain the

A-smoothing and the B-smoothing as shown:
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Figure 3

A state s of D on S2 is a choice of smoothing at every crossing, resulting in a
disjoint union of circles on S2. Let |s| denote the number of circles in s. Let sA
denote the all-A state, for which every crossing of D is replaced by an A-smoothing.
Similarly, sB is the all-B state of D.

Now, as we push sA up and sB down, each state circle sweeps out an annulus. We
can glue all such annuli and equatorial discs of each crossing ball to get a cobordism
between sA and sB. Note that each equatorial disc is a saddle of the cobordism.

For any link diagram D, the Turaev surface F (D) is obtained by attaching
|sA| + |sB| discs to all boundary circles of the cobordism above. Note that the
crossing ball configuration of D on S2 induces a crossing ball configuration of D on
F (D); hence, we can also consider D as a link diagram on F (D).

The Turaev genus of D is defined by

(2.1) gT (D) = g(F (D)) = (c(D) + 2− |sA| − |sB |)/2.
The Turaev genus of any non-split link L is defined by

(2.2) gT (L) = min{ gT (D) |D is a diagram of L}.
The properties below follow easily from the definitions (see [5]).

(i) F (D) is an unknotted closed orientable surface in S3; i.e., S3 − F (D) is a
disjoint union of two handlebodies.

(ii) D is alternating on F (D).
(iii) L is alternating if and only if gT (L) = 0, and if D is a connected sum of

alternating diagrams, then F (D) = S2.
(iv) D gives a cell decomposition of F (D), for which the 2-cells can be checker-

board colored on F (D), with discs corresponding to sA and sB respectively
colored white and black.

(v) This cell decomposition is a Morse decomposition of F (D), for which D
and the crossing saddles are at height zero, and the |sA| and |sB| 2-cells
are the maxima and minima, respectively.

We will say that a link diagram D on a surface F is cellularly embedded if F −D
consists of open discs.

3. Definitions

In this section, we define our main geometric tools, the cutting arc and cutting
loop. Throughout this paper, let D be a connected link diagram on S2 which is
checkerboard colored. An edge of D, joining two crossings of D, is alternating if
one end is an underpass and the other end an overpass. Otherwise, an edge is non-
alternating. D is prime if every simple loop on S2 − {crossings} which intersects
D in two points bounds a disc on S2 which does not have any crossings inside.
Otherwise, D is said to be composite and any such simple loop that has crossings
on both sides is called a composite circle of D. We will say that a crossing of D
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is positive or negative, respectively, as shown: In each alternating tangle
all crossings have the same sign, so the tangle is either positive or negative.

An alternating tangle structure on a diagram D [10] is defined as follows. For
every non-alternating edge of D, take two points in the interior. Inside each face of
D containing non-alternating edges, pairs of such points are to be joined by disjoint
arcs in the following way: Every arc joins two adjacent points on the boundary of
the face, and these points are not on the same edge of D. Then the union Γ of
every arc is a disjoint set of simple loops on S2. Let Δ be the closure of one of the
components of S2 − Γ containing at least one crossing of D. Then each edge of D
entirely contained in Δ is alternating.

We will call the pair (Δ,Δ ∩D) a maximally connected alternating tangle of D.
Let n be the number of all the maximally connected alternating tangles of D. We
will call (D, Δ1∩D, Δ2∩D, · · · , Δn∩D) an alternating tangle structure of D and
the closure of a component of S2 − {Δ1, · · · ,Δn} a channel region of D.

An alternating tangle structure of D is a cycle of alternating 2-tangles if it
satisfies the following properties:

(i) Every maximally connected alternating tangle of D is a pair of a disc and
an alternating 2-tangle.

(ii) Any pair of maximally connected alternating tangles is connected with ei-
ther two arcs or zero arcs in the channel region.

Our key tools are the cutting loop and the cutting arc. As defined below, a
cutting loop is a simple loop on the Turaev surface which is a topological obstruction
for a given Heegaard surface with an alternating diagram on it to be the Turaev
surface. A cutting arc is a simple arc on S2 which is used to identify a cutting loop.

Let D be a prime diagram. We can isotope sA and sB so that sA ∩ sB ∩ D =
{midpoints of non-alternating edges of D}. A cutting arc δ is a simple arc in S2

such that ∂δ = δ ∩ D ∩ α ∩ β for a state circle α ⊂ sA and another state circle
β ⊂ sB (see Figure 4).

Figure 4

A cutting loop γ of a prime non-alternating diagram D is a simple loop on F (D)
satisfying the following properties :

(1) γ is non-separating on F (D),
(2) γ intersects D twice in F (D)− {equatorial discs},
(3) γ bounds a disc Uγ in one of the handlebodies bounded by F (D) such that

Uγ ∩ S2 is a cutting arc δ. The disc Uγ is called a cutting disc of D.

Every cutting loop has a corresponding cutting arc. We will prove the converse
in Theorem 4.1 below.
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Let τ be a simple arc on S2−{crossings} such that ∂τ = τ ∩D. A surgery along
τ is the procedure of constructing a new link diagram D′ as follows:

(3.1) D′ = (D − (∂τ × [−ε, ε])) ∪ (τ × {−ε, ε}).
Let γ be a cutting loop of D. A surgery along γ is the procedure of constructing

a new surface F ′(D) as follows:

(3.2) F ′(D) = (F (D)− (γ × [−ε, ε])) ∪ (Uγ × {−ε, ε})
and constructing a new diagram D′ both on F ′(D) and on S2:

(3.3) D′ = (D − (∂δ × [−ε, ε])) ∪ (δ × {−ε, ε}).
More generally, a surgery along any simple loop γ on F (D)− {equatorial discs}

can be defined similarly if γ satisfies conditions (2) and (3) in the definition of
cutting loops, with Uγ ∩ S2 = τ , where τ is a simple arc as above (see Figure 5
(right)).

Figure 5

4. Classification of Turaev genus one diagrams

In this section, we prove Theorem 1.1 and several related results.

Theorem 4.1. If D is a prime non-alternating diagram, then there exists a cutting
arc δ. Moreover, every cutting arc δ determines a corresponding cutting loop γ on
F (D). After surgery along δ and γ, we get F (D′) = F ′(D) and gT (D

′) = gT (D)−1.

Proof. First, we show the existence of a cutting arc. Consider a state circle α ⊂ sA
such that α ∩ sB �= ∅. Take the outermost bigon in the disc bounded by α which
is formed by α and sB. Near this bigon, we have two possible configurations of
D, α and β ⊂ sB as in Figure 6. If this bigon contains a part of D as in Figure
6 (right), then there exists at least one crossing for each side of the bigon. Then
the boundary of this bigon is a composite circle, so it contradicts our assumption
that D is prime. Therefore, the configuration should be as in Figure 6 (left), so we
can take a cutting arc δ by connecting the two vertices of the bigon as in Figure 6
(left).

Figure 6

Next, we prove that each cutting arc δ has a corresponding simple loop γ on
F (D) which satisfies conditions (2) and (3) of the definition of cutting loops. By
definition, two endpoints of δ lie on α, α ⊂ sA. Connect the two endpoints with
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an arc δA on the state disk α bounded by α. As in the proof of Lemma 3.1 in
[4], S2, crossing balls, and state disks cut S3 into disjoint balls. Among those
balls, we can find a ball whose boundary consists of α and a face of D containing
δ inside. Therefore, δ ∪ δA bounds a disc inside that ball. By construction, each
ball is contained in one of the handlebodies bounded by F (D), and so does the
disc bounded by δ ∪ δA. By the same argument, we can find another arc δB in the
state disk bounded by β ⊂ sB, and a loop δ ∪ δB which bounds a disk in the same
handlebody as δ ∪ δA. Then γ = δA ∪ δB is a simple loop on F (D) which satisfies
the conditions (2) and (3) of the definition of cutting loops.

Now, we show that F ′(D) = F (D′). Surgery along δ divides each state circle into
two pieces, and each of them is a state circle of D′ because the choice of smoothing
did not change. By definition, surgery along γ changes D into D′. So if we consider
a copy of the cobordism between sA and sB in F (D), surgery along γ changes this
cobordism into a cobordism between state circles of D′. Moreover, surgery along γ
divides state disks α and β into two disks respectively, so each boundary component
of the new cobordism is closed up with a disk. Therefore, F (D′) is equal to F ′(D).
See the last figure of section 3, which describes the cutting loop surgery.

Lastly, we prove that condition (1) of the definition of cutting loops holds. If γ is
separating, then F ′(D) is disconnected, which implies that D′ is disconnected since
F ′(D) = F (D′). Therefore, surgery along δ disconnects D, which implies that D is
not prime. This is a contradiction, so γ is non-separating, hence essential. By this
non-separating property, gT (D

′) = gT (D)− 1 is obvious. �

Lemma 4.2. Any two faces of a prime diagram D can share at most one edge.

Proof. Two edges determine a composite circle, contradicting that D is prime. �

Proof of Theorem 1.1.

Claim 1. A boundary of every face of D ⊂ S2 which contains a non-alternating
edge is an essential loop of F (D).

Note that from the proof of Theorem 3.4 of [4], the boundary of every face can be
isotoped along F (D) to intersect any other boundary transversally at the midpoints
of non-alternating edges of D. See Figure 7.

Figure 7

Consider a pair of faces which share a non-alternating edge. By Lemma 4.2,
this is the only edge shared by those two faces. The boundaries of these two faces
can be isotoped to intersect only at the midpoint of such a non-alternating edge.
Hence, these curves are essential on F (D).
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By Theorem 4.1, we can find a cutting arc δ of D and its corresponding cutting
loop γ which is a boundary of a compressing disc of F (D). Assume that δ is in a
black face B of D and that γ is a meridian of F (D).

Claim 2. Only two white faces of D have non-alternating edges of D on their
boundaries.

By Claim 1 and the hypothesis that gT (D) = 1, a boundary of every face which
contains non-alternating edges is either a meridian or a longitude. There are only
two white faces W and W ′ which each intersect γ once on its boundary. This
implies that ∂W and ∂W ′ are longitudes. Any two faces with the same color are
contained in the same handlebody bounded by F (D), so a boundary of every white
face is either longitude or trivial on F (D). Since F (D) is a torus, every longitude
intersects a meridian, so these are the only two white faces which contain non-
alternating edges on their boundaries.

Connect every pair of adjacent midpoints of non-alternating edges with a simple
arc entirely in a black face. Then by Claim 2, all such arcs are parallel to δ in
S2 − (W ∪W ′), so they cut D into 2-tangles (see Figure 8 (right)). Furthermore,
each 2-tangle is alternating because all edges of the 2-tangle other than the four half
edges are alternating. Hence, D is a cycle of alternating 2-tangles. This completes
the proof of Theorem 1.1. �

Figure 8

Below are corollaries of Theorem 4.1. Corollary 4.3 was proved by Turaev in
[12], but our short proof illustrates the useful features of cutting loops.

Corollary 4.3 ([12]). For a prime non-alternating diagram D ⊂ S2, gT (D) > 0.

Proof. By Theorem 4.1, D has a cutting arc. Then the corresponding cutting loop
is an essential curve of F (D), hence gT (D) > 0. �
Corollary 4.4. Let D be a cellularly embedded alternating link diagram on a Hee-
gaard surface F of S3 with g(F ) ≥ 1. If F is the Turaev surface of L which is
represented by D, then there exists an essential simple loop on F which intersects
D twice and bounds a disc in one of the handlebodies bounded by F .

For example, Figure 9 (left) is an alternating link diagram on a torus. There
is no simple loop on the torus which intersects the link diagram twice. Hence, by
Corollary 4.4, this link diagram on the torus cannot come from the Turaev surface
algorithm.

In [7], Hayashi defined the following complexity of a cellularly embedded, reduced
alternating diagram on a closed orientable surface with positive genus.

Definition 4.5 ([7]). The complexity a(F,D) of a cellularly embedded, reduced
alternating link diagram D on F is defined by

a(F,D) = min{|l ∩D|; l is an essential simple loop on F−{crossings}}.
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Figure 9

Corollary 4.6. Let D be a connected prime non-alternating link diagram on S2.
Then a(F (D), D) = 2.

Note that even if we have a cellularly embedded, reduced alternating diagram
D on some Heegaard surface F such that a(F,D) = 2, it might not be a Turaev
surface. For example, the connected diagram in Figure 9 (right) has four crossings
on F , but any connected planar diagram of this split link has more than four
crossings. Hence, this link diagram on the torus also cannot come from the Turaev
surface algorithm.

5. Inadequate links with Turaev genus one

In this section, we prove Theorem 1.3 and discuss the unknotting sequence of
every Turaev genus one diagram of the trivial knot.

Definition 5.1. A crossing c of D is called an A-loop (resp. B-loop) crossing if
it corresponds to a loop of an all-A ribbon graph (resp. an all-B ribbon graph) of
D. We say c is a loop crossing if it is an A-loop or a B-loop crossing. If c is both
an A-loop crossing and a B-loop crossing, then c is called an AB-loop crossing. If
there are no loop crossings, then D is called an adequate diagram. A diagram with
no A-loop or no B-loop crossings is called a semi-adequate diagram. Otherwise, it
is called an inadequate diagram. A link is adequate if it has an adequate diagram.
A link is semi-adequate if it has a semi-adequate diagram but does not have an
adequate diagram. Otherwise, a link is inadequate.

Lemma 5.2. Let c be a loop crossing and l(c) be a corresponding loop of the ribbon
graph. Then a core μ of l(c) bounds a disc V in one of the handlebodies bounded
by F (D). Furthermore, we can perturb V to intersect S2 in a simple arc ν on S2

such that ν ∩D = ∂ν.

Proof. Both the all-A and all-B ribbon graphs are naturally embedded in F (D),
so each core loop is a simple loop on F (D). Then it bounds a disc in one of the
handlebodies bounded by F (D). Using the same argument as in Theorem 4.1, we
can show that V can be isotoped to intersect S2 in a simple arc ν. �
Lemma 5.3. Let D be a prime link diagram with gT (D) = 1. Let l be a longitude of
F (D). If a cutting loop of D is a meridian of F (D), then min |l∩D| = #{maximally
connected alternating tangles of D}.
Proof. From the cycle of alternating tangle structure of D, the link diagram on
F (D) is as shown in Figure 10. In this figure, vertical lines correspond to the
cutting loops. Then the longitudes are isotopic to the horizontal lines. Each circle
represents an alternating 2-tangle, which has at least one crossing inside. Therefore,
the horizontal lines minimize the number of intersections. Thus, min|l ∩ D| =
#{maximally connected alternating tangle of D}. �
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Figure 10

Lemma 5.4. Let D be a prime link diagram with gT (D) = 1 which is not adequate.
Let c be a loop crossing of D and μ a simple loop on F (D) as in Lemma 5.2. Then
there exists a cutting loop γ of F (D) which is isotopic to μ.

Proof. From Lemma 5.2, μ is either meridian or longitude. If the number of max-
imally connected alternating tangles of D is two, then we can find a cutting loop
which is isotopic to the meridian and another cutting loop which is isotopic to the
longitude. If the number of maximally connected alternating tangles of D is greater
than two and if μ is not isotopic to γ, then by Lemma 5.3, |μ ∩D| > 2. Therefore
μ is isotopic to γ. �

Remark 5.5. Lemma 5.4 implies that the cutting arc δ and the simple arc ν in
Lemma 5.2 are parallel, as in Figure 11 (left). In other words, if we surger D along
ν, it reduces the Turaev genus of D by one.

Figure 11

Proof of Theorem 1.3. Let D1 be a prime link diagram of L with gT (L) = 1. As-
sume that D1 has more than two maximally connected alternating 2-tangles and
cutting loops are isotopic to the meridian. By Lemma 5.4 and Remark 5.5, we
can flype D1 as in Figure 11 to collect all loop crossings into one twist region and
reduce all possible pairs of crossings in the twist region by Reidemeister-II moves.
Note that these flypes and Reidemeister-II moves do not change the Turaev genus.

If the resulting diagram D2 has more than two maximally connected alternating
tangles, then the set of all loop crossings of D2 and the set of crossings in the
twist region are the same. Moreover, by Lemma 5.3, none of them can be an AB-
loop crossing. All loop crossings have the same sign; hence D2 is a semi-adequate
diagram, which contradicts our assumption that L is inadequate. Hence, D2 has
two maximally connected alternating tangles, so there are two non-isotopic cutting
loops. Therefore, D2 can have loop crossings which are not in the twist region
above. Then without loss of generality, the configuration of D2 is one of the figures
in Figure 12 (left), in which the crossings in the figures are possible loop crossings.
Then we can see from Figure 12 (right) that D2 has B-loop crossings if and only
if one of the maximally connected alternating 2-tangles contains only one crossing.
Therefore, D2 is an almost-alternating diagram. �
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Figure 12

Corollary 5.6. Let D be a reduced Turaev genus one diagram of a trivial knot.
Then there exists a sequence of Turaev genus one diagrams

D = D1 → . . .Dk = D′
1 → . . . D′

l = or

which satisfy the following :

(1) Di+1 is obtained from Di by a flype or a Reidemeister II-move,
(2) each D′

i is almost-alternating,
(3) D′

i+1 is obtained from D′
i by a flype, an untongue [11] or an untwirl move

[11].

Proof. Every reduced diagram of a trivial knot is inadequate. The proof of Theorem
1.3 implies that every reduced prime diagram D of the trivial knot with gT (D) = 1
can be changed to an almost-alternating diagram by flypes and Reidemeister II-
moves. In Theorem 5 of [11], Tsukamoto proved that every almost-alternating
diagram of the trivial knot can be changed to Cm by flypes, untongue moves and
untwirl moves via a sequence of almost-alternating diagrams. �

6. Classification of Turaev genus two diagrams

In this section, we prove Theorem 1.2. A set of disjoint simple loops on S2 is
said to be concentric if the annular region on S2 bounded by any two curves does
not contain a curve which bounds a disc inside the region.

Theorem 6.1. Let δ be a cutting arc of a prime non-alternating diagram D with
gT (D) = g. Assume that δ is in a black face of D. If we surger D along δ to get
D1, then D1 satisfies the following :

(1) The composite circles of D1 are concentric.
(2) Let D2 be a link diagram obtained from D1 by surgery along every arc which

is the intersection of a black face and a composite circle of D1. Then each
component of D2 is prime and the sum of Turaev genera of all components
is g − 1.

Proof. Let B be a black face of D which contains δ. Let W and W ′ be white faces
of D such that ∂δ ∩ ∂W �= ∅ and ∂δ ∩ ∂W ′ �= ∅. Surgery along δ joins W and W ′

into W1 and divides B into B1 and B′
1 (see Figure 13). Every other face of D is

not changed by surgery, so it is a face of D1 as well.

Claim 1. Every composite circle of D1 intersects W1.

Assume there exists a composite circle of D1 which does not intersect W1. Then
there exists a different white face W ′

1 of D1 which shares two edges with some black
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face B′ of D1. W
′
1 can be considered as a white face of D, and by Lemma 4.2, W ′

1

shares only one edge with other black faces of D, so B′ is a join of two black faces of
D. However, surgery along δ cannot join two black faces, which is a contradiction.

Claim 2. Every black face of D1 intersects at most one composite circle of D1.

By Claim 1, every black face which intersects composite circles is adjacent toW1.
Every black face of D except B is not changed by surgery, so Lemma 4.2 implies
each black face intersects at most one composite circle. Now, B shares one edge
each with W and W ′. After surgery, those two edges are changed to two edges e
and e′ in D1, each on the boundary of different black faces. Therefore, W1 shares
one edge each with B1 and B′

1, so B1 and B′
1 do not intersect with any composite

circle of D1. See Figure 13.

Figure 13

Claim 3. The composite circles of D1 are concentric.

Let {γi} be the set of composite circles of D1. By Claim 2, ∀i, j, i �= j, γi ∩ γj ⊂
W1. The number of intersections is even, so we can remove all intersections by
perturbing composite circles inside W1. By Lemma 4.2, ∂γi ∩W1 consists of two
points, one in ∂W and another in ∂W ′. By the proof of Claim 2, γi∩e = γi∩e′ = ∅.
Then we can connect midpoints of e and e′ with a simple arc θ such that |θ ∩ γi| =
1, ∀i (see Figure 13). If the composite circles are not concentric, then there exists
a triple (γ1, γ2, γ3) such that γ2 bounds a disc inside an annulus on S2 bounded by
γ1 and γ3. Then θ intersects γ2 an even number of times, which is a contradiction.

Now we will complete the proof by showing (2). The sum of Turaev genera of
all components of D2 is gT (D)− 1 by Theorem 4.1 and additivity of Turaev genera
of diagrams under connected sum. Assume that one of the components of D2 is
composite. Suppose W1 is changed to W2, which is homeomorphic to an n-holed
disc after surgery. By the same argument as in Claim 2, every black face of D1

which intersects composite circles of D1 is divided into two faces and each face
shares exactly one edge which appears after surgery with W2. Therefore, every
composite circle of D2 intersects with edges of D1. Now consider each composite
circle as a union of two arcs, each of them intersecting a face of D2. Using the
checkerboard coloring of D2, we can label each arc as a black or white arc. Every
face of D2 except W2 is a subset of a face of D1. Therefore, every black and white
arc except the one inside W2 is a simple arc inside a face of D1. For the white
arc inside W2, we can choose another arc with the same endpoints, which is an
arc inside W1 because its endpoints are on the edges of D1. Then the black and
white arcs form a composite circle of D1, which contradicts our assumption that we
surgered along all composite circles to get D2. This completes the proof of Theorem
6.1. �
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Proof of Theorem 1.2. Let D be a prime link diagram on S2 with gT (D) = 2.
Choose a cutting arc δ using an algorithm from the proof of Theorem 4.1 and assume
that δ is in a black face of D. We surger D along δ to get D1 with gT (D1) = 1. D1

has a checkerboard coloring induced by the checkerboard coloring of D.
Let D′ be obtained from D by surgery along an arc τ . We define the attaching

edge τ ′ to be midpoint(τ )× [−ε, ε], with (τ, ε) as in the definition of surgery along
a cutting arc, as indicated by a dotted arc. Note that if we do surgery along τ ′,
then the attaching edge is τ , and we get D again.

Consider every composite circle of D1. We surger D1 along black arcs to get D2,
which consists of exactly one prime diagram T with gT (T ) = 1 and several prime
alternating diagrams. Choose the checkerboard coloring of T that comes from D.
Note that every attaching edge is in one white face of T . See Figure 14.

Figure 14

Now we need to reconstructD from T and the alternating diagrams. Theorem 6.1
implies components of D2 are pairwise connected by exactly one attaching edge, if
any, and no more than two attaching edges in total. Below, we consider all possible
cases for attaching T and the alternating components of D2:

Figure 15

Case 1. Every cutting arc of T is inside a black face of T .

Every other component of D2 is inside a white face W of T , so we have four
different sub-cases.
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i) W has non-alternating edges on its boundary. See Figure 15(a), where W is
the yellow face shown.

If two attaching edges are connected to two alternating edges of the same al-
ternating tangle of T , then we have an alternating 4-tangle, and the alternating
tangle structure of D is shown in Figure 2(a). If the two attaching edges are con-
nected to two alternating edges in different alternating tangles of T , then we have
two alternating 3-tangles, and the alternating tangle structure of D is shown in
Figure 2(b). If one of the attaching edges is connected to a non-alternating edge
of ∂W ⊂ T , then the sign of crossings of such an alternating diagram is the same
as one of the alternating tangles adjacent to such a non-alternating edge. Hence,
we can merge the alternating tangles, as shown in Figure 16(a). Therefore, in this
case, the alternating tangle structure is the same as one of the above cases.

Figure 16.

ii) W is contained in one of the alternating tangles, and W is adjacent to a black
face B which has a cutting arc inside, as in Figure 15(b).

If one of the attaching edges is connected to ∂B, then we have two possibilities.
First, if the sign of the alternating tangle of T and of the alternating diagram
are different, then the alternating tangle structure changes as illustrated in Figure
16(b).

Then we have one alternating 4-tangle, and the alternating tangle structure of D
is shown in Figure 2(c). If the signs are the same, then we have one alternating 4-
tangle which is not simply connected, and the alternating tangle structure is shown
in Figure 2(d). If there is no attaching edge connected to ∂B, then the alternating
tangle structure is the same as Figure 2(d).

iii) W is contained in one of the alternating tangles and adjacent to black faces
B and B′ which each have a cutting arc inside, as in Figure 15(c).

If one attaching edge is connected to ∂B and another attaching edge is connected
to ∂B′, then we have three possibilities. First, if the sign of the alternating tangle
of T and of two alternating diagrams connected to T by two attaching edges are dif-
ferent, then the alternating tangle structure changes as in Figure 17(a). Therefore,
every maximally connected alternating tangle is a 2-tangle, and the alternating
tangle structure of D is shown in Figure 2(h).

If the sign of one of the alternating diagrams is the same as the sign of the
alternating tangle of T , then we can merge them into one maximally connected
alternating tangle as in Figure 17(b). Then we have one alternating 4-tangle, and
the alternating tangle structure of D is shown in Figure 2(c).

If the signs of two alternating diagrams are the same as the sign of the alternating
tangle of T , then we can merge them into one maximally connected alternating
tangle as in Figure 17(c). This maximally connected alternating tangle is not
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Figure 17.

simply connected, and the alternating tangle structure of D is shown in Figure
2(d). Other cases are just the same as case ii) above.

iv) A black face adjacent to W cannot have non-alternating edges on its bound-
ary. This case is the alternating tangle structure shown in Figure 2(d).

Case 2. Every cutting arc of T is inside a white face of T .

i) W contains a cutting arc of T , as in Figure 15(d).
If two attaching edges are connected to alternating edges of T , and the two alter-

nating edges of T are in different tangles, then we have two alternating 3-tangles,
and the alternating tangle structure is shown in Figure 2(e). If two attaching edges
are connected to alternating edges of T , and the two alternating edges of T are
in the same alternating tangle, then we have one alternating 4-tangle, and the al-
ternating tangle structure is shown in Figure 2(f). If at least one attaching edge
is connected to a non-alternating edge of T , then the alternating tangle structure
changes as in the figure in the proof of Case(1i), which implies the same alternating
tangle structure as in Figure 2(e) or 2(f).

ii) W does not contain a cutting arc but is adjacent to two black faces B and B′

which have non-alternating edges on their boundaries, as in Figure 15(e).
Assume that the two alternating tangles adjacent to W are positive tangles, as

in Figure 15(e). If two attaching edges are not connected to the edges of ∂B or
∂B′, then the alternating tangle structure is the same as in Figure 2(d). If exactly
one attaching edge is connected to an edge of either B or B′ and an alternating
diagram attached to it has negative crossings, then the alternating tangle structure
changes as in the figure in the proof of Case 1(ii). Therefore, we have one alter-
nating 4-tangle, and the alternating tangle structure is shown in Figure 2(f). If
the alternating diagram has positive crossings, then the alternating diagram and
the alternating tangle of T merge. Therefore, it has the same alternating tangle
structure as in Figure 2(d). If two attaching edges are connected to the edges of
B and B′ and both alternating diagrams attached to T along them have negative
crossings, then the alternating tangle structure changes as in the left figure in the
proof of Case 1(iii). Therefore, every alternating tangle of D is a 2-tangle, and the
alternating tangle structure is shown in Figure 2(g). Otherwise, the alternating
tangle structure of D can be as in Figure 2(d) or Figure 2(f).

iii) W is adjacent to exactly one black face B which has non-alternating edges on
its boundary as in Figure 15(f) : If two attaching edges are not connected to ∂B,
then the alternating tangle structure is shown in Figure 2(d). If one attaching edge
is connected to ∂B, then it is as shown in Figure 2(d) or Figure 2(f), depending on
the sign of the alternating tangle attached to that attaching edge.
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iv) A black face adjacent to W cannot have non-alternating edges on its bound-
ary. This is the same case as 1(iv), which is the alternating tangle structure in
Figure 2(d).

To show that we have considered all the possible cases, we need to show all
faces of T are used in the proof. First, all faces of D in the channel region are
considered in Case 1(i) and Case 2(i). It remains to show that all the faces in the
alternating tangles are used in the proof. From the checkerboard coloring and the
cycle of alternating 2-tangle structure, we can show that every face in the alternating
tangle can be adjacent to at most two faces in the channel region. Therefore we
can categorize every face in the alternating tangle by the number of adjacent faces
in the channel region and the existence of cutting arcs in adjacent faces. These are
considered in Cases 1(ii)-(iv) and Cases 2(ii)-(iv).

Lastly, we show that all eight cases are distinct up to isotopy on S2. First,
Case 4 is distinct from all others because it has a non-simply connected alternating
tangle. If every ribbon contains no alternating tangles, then Cases 1, 3 and 6 have
the same alternating tangle structure. Similarly, Cases 2 and 5 have the same
alternating tangle structure. Cases 1, 3, 6 have a 4-tangle, and Cases 2, 5 have two
3-tangles, so they are distinct. Cases 7 and 8 are distinct from the others because
their alternating tangle structure consists of only 2-tangles. Case 8 has 2-tangles
adjacent to four others which Case 7 does not, so Cases 7 and 8 are distinct. We now
distinguish Cases 1, 3 and 6. With many alternating tangles in every ribbon, the
single 4-tangle is connected to four different alternating 2-tangles. If we orient the
boundary of the 4-tangle, non-alternating edges connected to the boundary have
a cyclic ordering. If we compare the three cyclic orderings, then they are distinct
up to a cyclic permutation. Therefore, Cases 1, 3 and 6 are all distinct. Similarly,
Cases 2 and 5 are distinct. This completes the proof of Theorem 1.2. �
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