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DISCRETENESS OF F -JUMPING NUMBERS AT ISOLATED

NON-Q-GORENSTEIN POINTS

PATRICK GRAF AND KARL SCHWEDE

(Communicated by Irena Peeva)

Abstract. We show that the F -jumping numbers of a pair (X, a) in positive
characteristic have no limit points whenever the symbolic Rees algebra of −KX

is finitely generated outside an isolated collection of points. We also give a
characteristic zero version of this result, as well as a generalization of the
Hartshorne–Speiser–Lyubeznik–Gabber stabilization theorem describing the
non-F -pure locus of a variety.

1. Introduction

By now it is well understood that there is an interesting connection between
multiplier ideals in characteristic zero, defined via resolution of singularities, and
test ideals in positive characteristic, defined via the behavior of the Frobenius map.
Recall that for any complex pair (X, a), the multiplier ideal J (X, at) gets smaller
as t increases, but it does not change if we increase t just slightly: J (X, at) =
J (X, at+ε) for 0 < ε � 1. Hence it makes sense to define the jumping numbers of
(X, a) as those real numbers ti such that J (X, ati) � J (X, ati−ε) for ε > 0. By
analogy, the F -jumping numbers are the real numbers ti where the test ideal jumps
or changes: τ (X, ati) � τ (X, ati−ε) for ε > 0.

The discreteness and rationality of (F -)jumping numbers has been studied by
many authors, e.g. [ELSV04, BdFFU15, Har06, BMS08, BMS09, KLZ09, BSTZ10,
KZ14,ST14,KSSZ14]. In characteristic zero, discreteness and rationality of jumping
numbers is elementary if X is Q-Gorenstein, but rationality fails in general [Urb12,
Theorem 3.6]. Discreteness remains an open problem, with several special cases
known, e.g. if the non-Q-Gorenstein locus of X is zero-dimensional [Gra16, Theo-
rem 1.4] (and [Urb12, Theorem 5.2] for an earlier, weaker version). For test ideals,
discreteness and rationality are known whenever the algebra of local sections

R
(
X,−(KX +Δ)

)
:=

⊕
m≥0

OX

(
�−m(KX +Δ)�

)

(also known as the symbolic Rees algebra) is finitely generated [BSTZ10, Sch11b,
CEMS14]. In this paper, we prove the following result.
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Theorem A (Discreteness of F -jumping numbers, Theorem 4.2). Suppose that X
is a normal variety over an F -finite field k of positive characteristic and that Δ ≥ 0
is a Q-divisor such that R

(
X,−(KX+Δ)

)
is finitely generated except at an isolated

collection of points. Suppose a ⊆ OX is a non-zero coherent ideal sheaf. Then the
F -jumping numbers of (X,Δ, a) have no limit points.

The corresponding statement in characteristic zero is also new.

Theorem B (Discreteness of jumping numbers, Theorem 4.3). Suppose that X is
a normal variety over a field k of characteristic zero and that Δ ≥ 0 is a Q-divisor
such that R

(
X,−(KX + Δ)

)
is finitely generated except at an isolated collection

of points. Suppose a ⊆ OX is a non-zero coherent ideal sheaf. Then the jumping
numbers of (X,Δ, a) have no limit points.

We would like to point out that the question whether F -jumping numbers are
always rational is still open. However the characteristic zero counterexample men-
tioned above suggests that maybe one should expect a negative answer.

The method used to prove these results builds upon [Urb12] and [Gra16]. In
particular, we prove global generation of (Frobenius pushforwards of) sheaves used
to compute test ideals after twisting by a sufficiently ample divisor H. If X is
projective, discreteness of F -jumping numbers follows quickly, since the twisted
test ideals are globally generated by vector subspaces within the finite-dimensional
vector space H0(X,OX(H)). The general case is easily reduced to the projective
case by a compactification argument.

Using these same methods, we also obtain a generalization of the Hartshorne–
Speiser–Lyubeznik–Gabber stabilization theorem. Let us motivate the result briefly.
Notice that if R is a ring, we have canonical maps HomR(F

e
∗R,R) −→ R obtained

by evaluation at 1. These images yield a descending chain of ideals Je. If KR

is Cartier, it follows from [HS77, Lyu97, Gab04] that these images stabilize, giv-
ing a canonical scheme structure to the non-F -pure locus of X = SpecR. Blickle
and Böckle also proved a related stabilization result for arbitrary rings (and even
more) [BB11, Bli09] but their result does not seem to imply that Je = Je+1 for
e � 0 (Blickle obtained another result which implies stabilization of a different set
of smaller ideals). However, as a corollary of our work, we obtain the following
generalization; also see [CEMS14, Proposition 3.7].

Theorem C (HSLG-type stabilization, Theorem 4.4). Suppose that X is a normal
variety over an F -finite field k of characteristic p > 0. Set

Je := Image
(
F e
∗OX

(
(1− pe)KX

) ∼= HomOX
(F e

∗OX ,OX)
eval@1−−−−→ OX

)
⊂ OX .

If R(X,−KX) is finitely generated except at an isolated collection of points, then
Je = Je+1 for all e � 0.

Remark 1.1. There should be a more general version of Theorem 4.4 with
R
(
X,−(KX + Δ)

)
in place of R(X,−KX), but for the proof one would proba-

bly need to generalize Theorem 3.1 further.

We end the introduction by pointing out some geometric and cohomological
conditions on the singularities of X which ensure that our assumptions on the
anticanonical algebra of X are satisfied.
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Proposition 1.2 (Klt or rational singularities and finite generation). Let X be a
normal variety over a field k. Assume any of the following:

(a) char(k) = 0 and there is a Q-divisor D ≥ 0 such that the pair (X,D) is klt
except at an isolated collection of points.

(b) dimX ≤ 3 and X has pseudorational singularities except at an isolated
collection of points.

Then for any Q-Weil divisor B on X, the algebra of local sections R(X,B) is
finitely generated except at an isolated collection of points. Hence the assumptions
of Theorems 4.2, 4.3 and 4.4 are satisfied in this case.

For the definition of pseudorational singularities, see [LT81, Section 2, p. 102].
An equivalent condition, emphasizing the point of view of extendability of differ-
ential forms, is given in [LT81, Section 4, Corollary on p. 107]. From the latter
condition, it is easy to see that for a klt threefold pair (X,D), the space X has
pseudorational singularities except at an isolated collection of points since X is
Cohen–Macaulay in codimension two anyways.

2. Preliminaries

Convention 2.1. Throughout this paper, all schemes are Noetherian and separated
and of finite type over a field which in characteristic p > 0 is always assumed to be
F -finite. In characteristic p > 0, F : X −→ X denotes the absolute Frobenius map,
acting on an affine scheme U = SpecR by r �→ rp.

The material in this section is mostly well known to experts, and collected for
the convenience of the reader.

2.1. Grothendieck duality. We will use the following special case of Grothendieck
duality [KM98, Proposition 5.67]. Let f : X −→ Y be a finite map and F ,G co-
herent sheaves on X and on Y , respectively. Then there is a natural f∗OX-linear
isomorphism

(2.1.1) HomOY
(f∗F ,G ) = f∗HomOX

(F , f !G ),

where f !G := HomOY
(f∗OX ,G ). Furthermore we will use the fact that if X is

essentially of finite type over an F -finite field, then F !ωX
∼= ωX where ωX is the

canonical sheaf of X.
Suppose now that X is a normal integral scheme of finite type over an F -finite

field of characteristic p > 0. Then we have a canonical map (called the trace map)

F e
∗ωX −→ ωX

which under (2.1.1) corresponds to id ∈ F e
∗ HomOX

(ωX , ωX). Let KX be a canonical
divisor on X. Twisting by OX(−KX) and reflexifying yields

F e
∗OX

(
(1− pe)KX

)
−→ OX

and then for any effective Weil divisor D ≥ 0 by restriction we obtain a map

(2.1.2) tr : F e
∗OX

(
(1− pe)KX −D

)
−→ OX .

Using (2.1.1) again, the left-hand side sheaf is identified with HomOX

(
F e
∗OX(D),OX

)
.

It is straightforward to check that under this identification, (2.1.2) becomes the
“evaluation at 1” map

HomOX

(
F e
∗OX(D),OX

) eval@1−−−−→ OX .
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2.2. Test ideals. We recall the following definition of test ideals from the litera-
ture.

Definition 2.2 ([HT04, Lemma 2.1], [Sch11c, Proof of 3.18]). If X is a normal
F -finite scheme, Δ ≥ 0 is a Q-divisor on X, a is an ideal sheaf and t ≥ 0 is a real
number, then for any sufficiently large effective Weil divisor C, we define the sheaf

τ (X,Δ, at) :=
∑
e≥0

∑
φ∈C e

Δ

φ
(
F e
∗
(
a
�t(pe−1)� · OX(−C)

))

where C e
Δ = HomOX

(
F e
∗OX

(
�(pe − 1)Δ�

)
,OX

)
.

Remark 2.3. The choice of C is philosophically the same as the choice of a test
element usually included in the (local) literature mentioned above. Note that for
any affine chart U = SpecR ⊆ X, if c ∈ R is an appropriate test element and C
is a Weil divisor on X such that OX(−C)

∣∣
U

⊆ c · OU , then one can always find

another test element d ∈ R with d ·OU ⊆ OX(−C)
∣∣
U
. It follows that our definition

of the test ideal is indeed independent of the choice of C.

Lemma 2.4. Notation as above. Then for any e0 ≥ 0, we have

τ (X,Δ, at) =
∑
e≥e0

∑
φ∈C e

Δ

φ
(
F e
∗
(
a
�t(pe−1)� · OX(−C)

))
.

Proof. The inclusion “⊇” is clear. For “⊆”, choose C1 a sufficiently large Cartier
divisor such that OX(−C1) is contained in the right-hand side, and put C ′ =
C + pe0−1C1. Then we see that∑
e≥0

∑
φ∈C e

Δ

φ
(
F e
∗
(
a�t(p

e−1)� · OX(−C ′)
))

⊆
∑
e≥e0

∑
φ∈C e

Δ

φ
(
F e
∗
(
a�t(p

e−1)� · OX(−C)
))

since we can split up the sum on the left-hand side as
∑e0−1

e=0 ( · · · ) +
∑

e≥e0
( · · · ).

But the left-hand side is just τ (X,Δ, at), hence the lemma is proved. �

If C is in fact Cartier, an easy direct computation yields∑
φ∈C e

Δ

φ
(
F e
∗
(
a
�t(pe−1)� · OX(−C)

))

= Image
[(
F e
∗ a

�t(pe−1)�) · HomOX

(
F e
∗OX

(
�(pe − 1)Δ�+ C

)
,OX

) eval@1−−−−→ OX

]
,

hence

τ (X,Δ, at)

=
∑

e≥e0
Image

[(
F e
∗ a

�t(pe−1)�)·HomOX

(
F e
∗OX

(
�(pe−1)Δ�+C

)
,OX

) eval@1−−−−→ OX

]

=
∑

e≥e0
Image

[
F e
∗

(
a�t(p

e−1)� ·OX

(
(1− pe)KX − �(pe−1)Δ� − C

)) tr−−−→ OX

]

=
∑

e≥e0
Image

[
F e
∗

(
a
�t(pe−1)� ·OX

(
�(1− pe)(KX +Δ)�−C

)) tr−−−→ OX

]
.

However, for our purposes this definition of the test ideal is not quite optimal.
Fortunately, this is easy after adjusting C.
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Lemma 2.5. With notation as above, assume that C is Cartier. Then for any
e0 ≥ 0 we have

τ (X,Δ, at) =
∑
e≥e0

Image
[
F e
∗

(
a
�tpe� · OX

(
�(1− pe)(KX +Δ)� − C

)) tr−−−→ OX

]
.

Proof. Without loss of generality, and in view of Remark 2.3, we may assume that
X = SpecR is affine and that OX(−C) = c · OX for some c ∈ R. Choose b ∈ a�t�

non-zero, so that ba�t(p
e−1)� ⊆ a�t�a�t(p

e−1)� ⊆ a�tp
e�. Replacing C = div(c) by

div(bc) we obtain our desired formula. �
2.3. Multiplier ideals. In this section we work over a field of characteristic zero.
The theory of non-Q-Gorenstein multiplier ideals was developed by [DH09]. The
starting point is a notion of pullback for Weil divisors.

Definition 2.6 ([DH09, Def. 2.6]). Let f : Y −→ X be a proper birational morphism
between normal varieties, and let D be an integral Weil divisor on X. Then the
natural pullback f �D of D along f is defined by

OY (−f �D) =
(
OX(−D) · OY

)∗∗
,

where we consider OX(−D) ⊂ KX as a fractional ideal sheaf on X.

We will consider triples (X,Δ, at) consisting of a normal variety X, an effective
Q-divisor Δ ≥ 0, a non-zero coherent ideal sheaf a ⊂ OX and a real number t ≥ 0.
In the case Δ = 0, the following definition was made in [DH09, Definition 4.8].

Definition 2.7 ([CEMS14, Def. 2.19]). Let (X,Δ, at) be a triple, and let m ∈ N

be a positive integer such that mΔ is integral. Let f : Y −→ X be a log resolution
of the pair

(
X,OX(−m(KX +Δ)) + a

)
in the sense of [DH09, Definition 4.1]. Let

Z be the Cartier divisor on Y such that a · OY = OY (−Z). Then we define

Jm(X,Δ, at) := f∗OY

(⌈
KY − 1

mf �
(
m(KX +Δ)

)
− tZ

⌉)
.

One shows that this is a coherent ideal sheaf on X, independent of the choice
of the resolution f . Furthermore, Jm(X,Δ, at) ⊂ Jkm(X,Δ, at) for any integer
k > 0. Thus by the Noetherian property of X, the following definition makes sense.

Definition 2.8. The multiplier ideal J (X,Δ, at) of a triple as above is defined to
be the unique maximal element of the family{

Jm(X,Δ, at) | m ≥ 1 and mΔ is integral
}
,

i.e. it is equal to Jm(X,Δ, at) for m sufficiently divisible.

We will need the following notion of compatible boundaries, which is a straight-
forward generalization of the Δ = 0 case in [DH09, Definition 5.1].

Definition 2.9. Let (X,Δ, at) be a triple, and fix an integer m ≥ 2 such that mΔ
is integral. Given a log resolution f : Y −→ X of

(
X,OX(−m(KX + Δ)) + a

)
, a

Q-Weil divisor Δ′ on X is called m-compatible for (X,Δ, at) with respect to f if
the following hold:

(i) KX +Δ+Δ′ is Q-Cartier,

(ii) mΔ′ is integral and �Δ′� = 0,

(iii) no component of Δ′ is contained in supp(Δ) ∪ supp(OX/a),



478 P. GRAF AND K. SCHWEDE

(iv) f is a log resolution of
(
(X,Δ+Δ′),OX(−m(KX +Δ)) + a

)
,

(v) KY + f−1
∗ Δ′ − f∗(KX +Δ+Δ′) = KY − 1

mf �
(
m(KX +Δ)

)
.

Proposition 2.10. Let (X,Δ, at) be a triple, and fix an integer m ≥ 2 such that
mΔ is integral and J (X,Δ, at) = Jm(X,Δ, at). Then for any m-compatible bound-
ary Δ′ we have

J (X,Δ, at) = J
(
(X,Δ+Δ′); at

)
,

where the right-hand side is a multiplier ideal in the usual Q-Gorenstein sense
[Laz04b, Definition 9.3.60].

Proof. The proof is analogous to [DH09, Proposition 5.2], and thus it is omitted. �

The existence of compatible boundaries is ensured by the following theorem;
cf. [DH09, Theorem 5.4] and [Gra16, Theorem 4.4]. The Weil index of a triple
(X,Δ, at) is defined to be the smallest positive integer m0 such that m0(KX +Δ)
is integral.

Theorem 2.11. Let (X,Δ, at) be a triple of Weil index m0, and let k ≥ 2 be an
integer. Choose an effective Weil divisor D on X such that m0(KX + Δ) − D is
Cartier, and let L ∈ PicX be a line bundle such that L (−kD) := L ⊗OX(−kD)
is globally generated. Pick a finite-dimensional subspace V ⊂ H0

(
X,L (−kD)

)
that

generates L (−kD), and let M be the divisor of a general element of V . Then

Δ′ :=
1

km0
M

is a (km0)-compatible boundary for (X,Δ, at).

Proof. Let f : Y −→ X be a log resolution of
(
(X,Δ),OX(−km0(KX + Δ)) +

OX(−kD) + a
)
, and set E := f �(kD). Then

f �
(
km0(KX+Δ)

)
= f �

(
km0(KX+Δ)−kD+kD

)
= km0 ·f∗(KX+Δ− 1

m0
D
)
+E

and so we have

KY − 1
km0

f �
(
km0(KX +Δ)

)
= KY − f∗(KX +Δ− 1

m0
D
)
− 1

km0
E.

LetM be the divisor of a general element of V . Then since L (−kD) is generated by
V , we see thatM is reduced with no component contained in supp(Δ)∪supp(OX/a).
Put G = M + kD, a Cartier divisor. Since also f∗L ⊗ OY (−E) is generated by
the (pullbacks of the) sections in V , we have that f∗G = f−1

∗ M + E.
Now set Δ′ = 1

km0
M . Then by the above, conditions (ii)–(iv) of Definition 2.9

are satisfied. Also it is clear that

KX +Δ+Δ′ = KX +Δ− 1
m0

D + 1
km0

G

is Q-Cartier, so (i) is fulfilled. To check (v), note that

KY + f−1
∗ Δ′ − f∗(KX +Δ+Δ′)

= KY + f−1
∗ Δ′ − f∗(KX +Δ+Δ′ − 1

km0
G
)
− 1

km0
f∗G

= KY − f∗(KX +Δ− 1
m0

D
)
− 1

km0
E

= KY − 1
km0

f �
(
km0(KX +Δ)

)
.

This proves the theorem. �
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3. Global generation at isolated non-finitely generated points

The following theorem is a positive characteristic version of [Gra16, Theorem 7.1].
But even in characteristic zero (cf. Remark 3.2), the present result is stronger than
that theorem. Most notably, we remove the divisibility condition in [Gra16, Theo-
rem 7.1] and replace the “KX +Δ is Q-Cartier” condition with the weaker require-
ment that R

(
X,−(KX +Δ)

)
be finitely generated.

Theorem 3.1. Let X be a normal projective d-dimensional variety over an F -
finite field k of characteristic p > 0. Further let D be a Weil Q-divisor and C a
Cartier divisor on X. Suppose that W ⊆ X is a closed set such that R(X,D) :=⊕

m≥0 OX(�mD�) is finitely generated on X \W , let W0 be the set of isolated points
of W and put

U = (X \W ) ∪W0.

Then there exists an ample Cartier divisor H on X such that for all e ≥ 0, m ≥ 0,
� ≥ max{m, pe} and any nef Cartier divisor N , the sheaf

F e
∗OX

(
�mD + �H� − C +N

)
is globally generated on U (as an OX-module). Furthermore, for any ample Cartier
divisor H ′ on X fixed in advance, H can be taken to be a sufficiently high multiple
of H ′.

Remark 3.2. Theorem 3.1 continues to hold over an arbitrary field k of character-
istic zero if one interprets F = idX and pe = 1. The proof does not require any
changes.

Proof of Theorem 3.1. The strategy is similar to [Gra16, Theorem 7.1]. We will
find a globally generated sheaf F e

∗Fm,� ↪−→ F e
∗OX

(
�mD + �H� − C + N

)
so that

the cokernel is supported on W . The proof is divided into three steps.

Step 1: Blowing up. Let N0 be a positive integer such that N0D is an integral
Weil divisor. It follows that the Veronese subring R(X \ W,N0D) is also Noe-
therian and R(X \ W,D) is a finite R(X \ W,N0D)-module [GHNV90, Lemma
2.4]. By [GHNV90, Theorem 3.2(3)], making N0 more divisible if necessary we
may assume that R(X \W,N0D) is generated in degree 1 as a graded ring.

Let f : Y −→ X be the normalized blowup of the fractional ideal sheaf OX(N0D).
Then we have f−1(X \ W ) = ProjR(X \ W,N0D). In particular, f is a small
morphism over X \W by [KM98, Lemma 6.2]. Furthermore if we write

OY (B) = f∗(OX(N0D)
)/

torsion = OX(N0D) · OY ,

then B is Cartier and f -ample by [Gra16, Theorem 6.2]. Thus by [Har77, II,
Proposition 7.10] or [KM98, Prop. 1.45] there exists a very ample Cartier divisor A
on X so that B + f∗A is globally ample on Y .

Step 2: Vanishing. Now for any integer m ∈ N0, write uniquely

m = qmN0 + rm with 0 ≤ rm ≤ N0 − 1,

i.e. qm = �m/N0�. Fix a nef Cartier divisor N on X and form the sheaf

Gm := OY (qmB + f∗N)⊗
(
OX

(
�rmD − C�

)
· OY

)
︸ ︷︷ ︸

=:Hm

.
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Claim 3.3. There exists an m0 ≥ 1 such that for all � ≥ m ≥ m0, i ≥ 1, and any
nef Cartier divisor P on Y we have

(3.3.1) Hi
(
Y,Gm ⊗ OY (�f

∗A+ P )
)
= 0 and

(3.3.2) f∗Gm � R f∗Gm.

Proof of Claim 3.3. Let us make two easy observations: First, the sheaf Hm can
take on only finitely many values. Secondly, qm −→ ∞ as m −→ ∞. Hence (3.3.1)
follows from Fujita vanishing [Fuj83, Theorem 1] applied to the ample divisor B +
f∗A on Y upon writing

Hi
(
Y,Gm ⊗ OY (�f

∗A+ P )
)

= Hi
(
Y,Hm ⊗ OY (qmB + �f∗A+ f∗N + P )

)
= Hi

(
Y,Hm ⊗ OY

(
qm(B + f∗A) + (�− qm)︸ ︷︷ ︸

≥0

f∗A+ f∗N + P
))
.

Similarly, making m0 even larger if necessary, (3.3.2) follows from relative Serre
vanishing [Laz04a, Theorem 1.7.6] for the f -ample divisor B. �

Claim 3.4. Put H = b · A where b > d = dimX. Then for every e ≥ 0, m ≥ m0,
and � ≥ max{m, pe}, the sheaf F e

∗
(
f∗Gm⊗OX(�H)

)
is 0-regular with respect to A,

and hence globally generated as an OX -module. Furthermore its first cohomology
group vanishes, H1

(
X,F e

∗
(
f∗Gm ⊗ OX(�H)

))
= 0.

Proof of Claim 3.4. We need to show that for every 1 ≤ j ≤ d, we have

Hj
(
X,F e

∗
(
f∗Gm ⊗ OX(�H)

)
⊗ OX(−jA)

)
= 0.

The left-hand side is

= Hj
(
X,F e

∗
(
f∗Gm ⊗ OX

(
(�b− pej)A

)))
projection formula

= Hj
(
X, f∗Gm ⊗ OX

(
(�b− pej)A

))
F e is finite(a)

= Hj
(
X,R f∗Gm ⊗ OX

(
(�b− pej)A

))
(3.3.2)

= Hj
(
Y,Gm ⊗ OY

(
(�b− pej)f∗A

))
composition of derived functors

= 0 (3.3.1) and �b− pej ≥ m.

The assertion �b− pej ≥ m in the last line is justified since

�b ≥ �+ �d ≥ m+ ped ≥ m+ pej.

Any coherent sheaf 0-regular with respect toA is globally generated by Castelnuovo–
Mumford regularity [Laz04a, Theorem 1.8.5]. The desired vanishing

H1
(
X,F e

∗
(
f∗Gm ⊗ OX(�H)

))
= 0

follows by the same argument as above, leaving off the OX(−jA). �

(a)One may also argue by noting that F e
∗ ( · ) leaves the abelian sheaf structure, and hence sheaf

cohomology, unchanged.
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Step 3: Reflexification and global generation.

Claim 3.5. For any e,m, � ≥ 0, the reflexive hull of F e
∗
(
f∗Gm ⊗ OX(�H)

)
is equal

to

F e
∗OX

(
�mD + �H� − C +N

)
.

Furthermore the cotorsion of F e
∗
(
f∗Gm ⊗ OX(�H)

)
is supported on W , i.e. in the

natural short exact sequence

0 −→ F e
∗
(
f∗Gm ⊗ OX(�H)

)
−→ F e

∗OX

(
�mD + �H� − C +N

)
−→ Qe,m,� −→ 0

the support of Qe,m,� is contained in W .

Proof of Claim 3.5. Let V ⊂ X be the maximal open subset over which f is an
isomorphism. Note that codimX(X \ V ) ≥ 2. We see that

(f∗Gm)
∣∣
V
= OV (qmN0D +N)⊗ OV

(
�rmD − C�

)
= OV

(
�mD� − C +N

)
,

the first equality holding by definition and the second one because N0D is Cartier
on V . Pushing this forward by the inclusion V ↪−→ X, we get

(3.5.1) (f∗Gm)∗∗ = OX

(
�mD� − C +N

)
.

Observe that Frobenius pushforward commutes with taking the reflexive hull. Hence
twisting (3.5.1) by OX(�H) and applying F e

∗ ( · ) proves the first part of the claim.
For the second part, use the fact that f is small overX\W and that the pushforward
of a reflexive sheaf under a small birational map is again reflexive. �

Returning to the proof of Theorem 3.1, choose a point x ∈ U = (X \W ) ∪W0,
and assume first that m ≥ m0. We see that Q = Qe,m,� is globally generated at x
since either

◦ x ∈ W0 and then by Claim 3.5, x is an isolated point of suppQ or Q is even
zero at x, or

◦ x ∈ X \W and then Q definitely is zero at x.

Hence F e
∗OX

(
�mD + �H� − C + N

)
is globally generated at x by Claim 3.4 and

[Gra16, Lemma 7.3].
To finish the proof, we still need to take care of the sheaves

(3.5.2)
F e
∗OX

(
�mD + �H� − C +N

)
for e ≥ 0, 0 ≤ m < m0, and � ≥ max{m, pe}.

To this end, notice that arguing as in the proof of Claim 3.4, for 1 ≤ j ≤ d we have

Hj
(
X,F e

∗OX

(
�mD + �H� − C +N

)
⊗ OX(−jA)

)
= Hj

(
X,OX

(
�mD� − C

)
︸ ︷︷ ︸
finitely many values

⊗OX

(
(�b− pej)︸ ︷︷ ︸
≥pe(b−d)

A+N
))
.

Hence by Fujita vanishing, taking b sufficiently large in Claim 3.4, we may assume
that the sheaves (3.5.2) are 0-regular with respect to A. In particular they are
globally generated on U .

To justify the last claim of Theorem 3.1, simply note that for any ample Cartier
divisor H ′ on X given in advance, we may pick A to be a sufficiently high multiple
of H ′ and then also H will be a multiple of H ′. �
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4. Proof of the main results

In this section we prove the results announced in the introduction. But first
we state a weak result on global generation of test ideals. Compare with [Mus11,
Sch11a,Kee08].

Proposition 4.1. Suppose X is a normal projective variety over an F -finite field
k of characteristic p > 0, Δ ≥ 0 is a Q-divisor, a is a non-zero coherent ideal sheaf
and t0 > 0 is a real number. Suppose that R

(
X,−(KX +Δ)

)
is finitely generated

away from a closed set W ⊆ X and that W0 ⊆ W is the set of isolated points of
W . Set U = (X \W ) ∪W0. Then there exists an ample divisor H such that

τ (X,Δ, at)⊗ OX(H)

is globally generated on U for all t ∈ [0, t0].

Proof. Choose an effective Cartier divisor C ≥ 0 on X so that

OX(−C) ⊆ τ (X,Δ, at0) ⊆ τ (X,Δ, at).

By Lemma 2.5, for any t ∈ [0, t0] we have
(4.1.1)

τ (X,Δ, at) =
∑
e≥0

Image
[
F e
∗

(
a
�tpe�OX

(
�(1− pe)(KX +Δ)� − C

)) tr−−−→ OX

]
.

Now fix an ample Cartier divisor A on X so that

a
�t� ⊗ OX(A)

is globally generated for all t ∈ [0, t0]. We then observe that for all m > 0 and
t ∈ [0, t0],

(4.1.2) a�mt� ⊗ OX(mA)

is also globally generated. The reason is that since �mt� ≤ m�t�, the ideal a�mt�

can be written as the product of m ideals of the form a�s� for various values of
s ∈ [0, t0]. For ease of notation, write W t

m for the k-vector space of global sections
of the sheaf (4.1.2). It follows that for every m > 0, the map

W t
m ⊗k OX(−mA) −→ a

�mt�

is surjective. Combining with (4.1.1), we get that

τ (X,Δ, at)

=
∑
e≥0

Im
[
F e
∗

(
a
�tpe�OX

(
�(1− pe)(KX +Δ)� − C

))
−→ OX

]

=
∑
e≥0

Im
[
F e
∗

(
W t

pe ⊗k OX(−peA)⊗ OX

(
�(1− pe)(KX +Δ)� − C

))
−→ OX

]

=
∑
e≥0

Im
[
F e
∗

(
W t

pe ⊗k OX

(
�(pe − 1)(−KX −Δ−A)� − C −A

))
−→ OX

]
.

Now choose an ample divisor H that satisfies the conclusion of Theorem 3.1 relative
to the divisor D = −(KX + Δ + A), where C + A takes the role of C. Then for
m = pe − 1, � = pe and N = 0 we get that

(4.1.3) F e
∗

(
OX

(
�(pe − 1)(−KX −Δ−A)� − C −A

))
⊗ OX(H)
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is globally generated (as an OX -module) over U for all e ≥ 0. Hence also

τ (X,Δ, at)⊗ OX(H)

is globally generated over U , being a quotient of a direct sum of sheaves of the
form (4.1.3). This completes the proof. �

Theorem 4.2. Suppose that X is a normal variety over an F -finite field k of
positive characteristic and that Δ ≥ 0 is a Q-divisor such that R

(
X,−(KX +Δ)

)
is finitely generated except at an isolated collection of points. Suppose a ⊆ OX is
a non-zero coherent ideal sheaf. Then the F -jumping numbers of (X,Δ, a) have no
limit points.

Proof. By [BSTZ10, Proposition 3.28], we may assume that X is affine. Let X
denote the closure of X in some projective space. By normalizing, we may also
assume that X is normal. There exists a Q-divisor Δ ≥ 0 on X and a coherent
ideal sheaf a ⊂ OX which restrict to Δ and a, respectively.

Pick an arbitrary real number t0 > 0. By Proposition 4.1, we know that there
exists an ample Cartier divisor H on X such that

τ
(
X,Δ, at

)
⊗ OX(H) is globally generated on X ⊂ X for all t ∈ [0, t0].

Note that τ
(
X,Δ, at

)∣∣
X

= τ (X,Δ, at) since X ⊂ X is open. Now it follows

from [Gra16, Lemma 8.2] that for any strictly increasing sequence of numbers
0 ≤ s0 < s1 < · · · < t0, the corresponding sequence of test ideals

τ (X,Δ, as0) ⊃ τ (X,Δ, as1) ⊃ · · ·
stabilizes. Hence the set of F -jumping numbers of (X,Δ, a) does not have a limit
point in the interval [0, t0]. As t0 > 0 was chosen arbitrarily, this proves the
theorem. �

Theorem 4.3. Suppose that X is a normal variety over a field k of characteristic
zero and that Δ ≥ 0 is a Q-divisor such that R

(
X,−(KX+Δ)

)
is finitely generated

except at an isolated collection of points. Suppose a ⊆ OX is a non-zero coherent
ideal sheaf. Then the jumping numbers of (X,Δ, a) have no limit points.

Proof. The proof follows quite closely along the lines of [Gra16, Theorem 8.1]. For
the reader’s convenience, we give a sketch of the argument here.

Arguing by contradiction, assume that there is a strictly increasing and bounded
above sequence 0 ≤ s0 < s1 < · · · of jumping numbers of (X,Δ, a). As above,
we may assume that there is a triple (X,Δ, a) containing (X,Δ, a) as an open
subset and such that X is normal and projective. Let m0 be the Weil index of
(X,Δ, a). By Theorem 3.1 in combination with Remark 3.2, using Theorem 2.11
we can construct for each k ≥ 2 a Q-Weil divisor Δk onX such that Δk := Δk

∣∣
X
is a

(km0)-compatible boundary for (X,Δ, a) and furthermore the Q-linear equivalence
class of Δk does not depend on k. The last property is crucial, as it enables us to
find an ample Cartier divisor H on X such that

J (X,Δ+Δk, a
s�)⊗ OX(H) is globally generated for all k ≥ 2, � ≥ 0,

using [Gra16, Proposition 8.3]. Since Δk is (km0)-compatible, it follows that
J (X,Δ, as�) ⊗ OX(H) is globally generated on X for all � ≥ 0. By [Gra16,
Lemma 8.2], this implies that the sequence of ideals

J (X,Δ, as0) ⊃ J (X,Δ, as1) ⊃ · · ·
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stabilizes when restricted to X. Since J (X,Δ, as�)
∣∣
X

= J (X,Δ, as�), this contra-

dicts the assumption that each si is a jumping number of (X,Δ, a). �
Theorem 4.4. Suppose that X is a normal variety over an F -finite field k of
characteristic p > 0. Set

Je := JX
e := Image

(
F e
∗OX

(
(1−pe)KX

) ∼= HomOX
(F e

∗OX ,OX)
eval@1−−−−→ OX

)
⊂ OX .

If R(X,−KX) is finitely generated except at an isolated collection of points, then
Je = Je+1 for all e � 0.

Proof. First notice that Je ⊇ Je+1 since F e
∗OX ↪→ F e+1

∗ OX and HomOX
(−,OX) is

contravariant. As in the proof of Theorem 4.2, we may assume that X is an open
subset of some normal projective variety X. By Theorem 3.1, we know there exists
an ample divisor H on X such that

F e
∗OX

(
(1− pe)KX + peH

)
= F e

∗OX

(
(1− pe)KX

)
⊗ OX(H)

is globally generated on X, as an OX -module, for all e ≥ 0. Hence its image

JX
e ⊗ OX(H) is also globally generated on X. But JX

e

∣∣
X

= JX
e since X ⊂ X

is open. Hence we see that Je = Je+1 for e � 0 by [Gra16, Lemma 8.2]. This
completes the proof. �

Finally we prove the final statement from the introduction.

Proof of Proposition 1.2. For a, we need to prove that for every characteristic zero
klt pair (X,D) and for every Q-divisor B on X, the algebra R(X,B) is finitely
generated. This is well known to experts (see e.g. [Kol08, Theorem 92]), but for
completeness’ sake we provide a proof.

The question is local, so we may assume that B is effective and thatKX+D ∼Q 0.
Let π : Y −→ X be a small Q-factorial modification, which exists by [BCHM10,
Corollary 1.4.3]. For some rational 0 < ε � 1, the pair

(
Y, π−1

∗ (D + εB)
)
is klt.

The map π being small, we have

π∗
[
R
(
Y,KY + π−1

∗ (D + εB)
)]

= R(X,KX +D + εB).

By [BCHM10, Theorem 1.2(3)], the left-hand side is finitely generated. Hence so is
the right-hand side. Since KX+D ∼Q 0 and ε ∈ Q, we see that R(X,KX+D+εB)
and R(X,B) have isomorphic Veronese subalgebras. We conclude by [GHNV90,
Lemma 2.4 and Theorem 3.2].

Concerning b, after shrinking X we may assume that X = SpecR is affine and
has pseudorational singularities. If the singular locus of X is zero-dimensional,
we are clearly done. So let p ∈ SpecR be the generic point of a one-dimensional
component of Sing(X). Localizing at p, we obtain a two-dimensional pseudorational

germ U := SpecRp −→ X with closed point m := pRp. Let π : Ũ −→ U be a

desingularization of U , with exceptional divisor E ⊂ Ũ . The Grothendieck spectral
sequence associated to the composition of functors Γm ◦ π∗ = ΓE yields an exact
sequence

H1
E(Ũ ,O

˜U )︸ ︷︷ ︸
=0

−→ H0
m(U,R

1π∗O˜U )︸ ︷︷ ︸
=H1(˜U,O

˜U )

−→ H2
m(U,OU ) −→ H2

E(Ũ ,O
˜U )︸ ︷︷ ︸

injective by pseudorationality

,

where the first term is zero due to [Lip78, Theorem 2.4]. It follows thatH1(Ũ ,O
˜U ) =

0, so U has rational singularities in the sense of Lipman [Lip69, Definition 1.1].
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Now consider a Q-Weil divisor B on X. By [Lip69, Proposition 17.1], the re-
striction of B to U is Q-Cartier and then B itself is Q-Cartier in a neighborhood of
p ∈ X. Applying this argument to every one-dimensional component of Sing(X), we
see that except at an isolated collection of points, B is Q-Cartier and in particular
R(X,B) is finitely generated. �
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[Mus11] Mircea Mustaţă, The non-nef locus in positive characteristic, A celebration of alge-
braic geometry, Clay Math. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 2013,
pp. 535–551. MR3114955

[Sch11a] Karl Schwede, A canonical linear system associated to adjoint divisors in character-
istic p > 0, J. Reine Angew. Math. 696 (2014), 69–87, DOI 10.1515/crelle-2012-0087.
MR3276163

[Sch11b] Karl Schwede, A note on discreteness of F -jumping numbers, Proc. Amer. Math. Soc.
139 (2011), no. 11, 3895–3901, DOI 10.1090/S0002-9939-2011-10825-6. MR2823035

[Sch11c] Karl Schwede, Test ideals in non-Q-Gorenstein rings, Trans. Amer. Math. Soc. 363
(2011), no. 11, 5925–5941, DOI 10.1090/S0002-9947-2011-05297-9. MR2817415

[ST14] Karl Schwede and Kevin Tucker, Test ideals of non-principal ideals: computations,
jumping numbers, alterations and division theorems, J. Math. Pures Appl. (9) 102
(2014), no. 5, 891–929, DOI 10.1016/j.matpur.2014.02.009. MR3271293

[Urb12] Stefano Urbinati, Discrepancies of non-Q-Gorenstein varieties, Michigan Math. J. 61
(2012), no. 2, 265–277, DOI 10.1307/mmj/1339011527. MR2944480

http://www.ams.org/mathscinet-getitem?mr=0463157
http://www.ams.org/mathscinet-getitem?mr=0441962
http://www.ams.org/mathscinet-getitem?mr=2567418
http://www.ams.org/mathscinet-getitem?mr=3211813
http://www.ams.org/mathscinet-getitem?mr=3192605
http://www.ams.org/mathscinet-getitem?mr=2450210
http://www.ams.org/mathscinet-getitem?mr=2743822
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.ams.org/mathscinet-getitem?mr=2095471
http://www.ams.org/mathscinet-getitem?mr=2095472
http://www.ams.org/mathscinet-getitem?mr=0276239
http://www.ams.org/mathscinet-getitem?mr=0491722
http://www.ams.org/mathscinet-getitem?mr=600418
http://www.ams.org/mathscinet-getitem?mr=1476089
http://www.ams.org/mathscinet-getitem?mr=3114955
http://www.ams.org/mathscinet-getitem?mr=3276163
http://www.ams.org/mathscinet-getitem?mr=2823035
http://www.ams.org/mathscinet-getitem?mr=2817415
http://www.ams.org/mathscinet-getitem?mr=3271293
http://www.ams.org/mathscinet-getitem?mr=2944480


F -JUMPING NUMBERS AT ISOLATED NON-Q-GORENSTEIN POINTS 487

Lehrstuhl für Mathematik I, Universität Bayreuth, 95440 Bayreuth, Germany

E-mail address: patrick.graf@uni-bayreuth.de
URL: www.pgraf.uni-bayreuth.de/en/

Department of Mathematics, The University of Utah, 155 S 1400 E Room 233, Salt

Lake City, Utah 84112

E-mail address: schwede@math.utah.edu
URL: www.math.utah.edu/~schwede/


	1. Introduction
	2. Preliminaries
	2.1. Grothendieck duality
	2.2. Test ideals
	2.3. Multiplier ideals

	3. Global generation at isolated non-finitely generated points
	4. Proof of the main results
	Acknowledgments
	References

