Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Discreteness of $ F$-jumping numbers at isolated non- $ \mathbb{Q}$-Gorenstein points


Authors: Patrick Graf and Karl Schwede
Journal: Proc. Amer. Math. Soc. 146 (2018), 473-487
MSC (2010): Primary 13A35, 14F18
DOI: https://doi.org/10.1090/proc/13739
Published electronically: September 6, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the $ F$-jumping numbers of a pair $ (X, \mathfrak{a})$ in positive characteristic have no limit points whenever the symbolic Rees algebra of $ -K_X$ is finitely generated outside an isolated collection of points. We also give a characteristic zero version of this result, as well as a generalization of the Hartshorne-Speiser-Lyubeznik-Gabber stabilization theorem describing the non-$ F$-pure locus of a variety.


References [Enhancements On Off] (What's this?)

  • [BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405-468. MR 2601039, https://doi.org/10.1090/S0894-0347-09-00649-3
  • [Bli09] Manuel Blickle, Test ideals via algebras of $ p^{-e}$-linear maps, J. Algebraic Geom. 22 (2013), no. 1, 49-83. MR 2993047, https://doi.org/10.1090/S1056-3911-2012-00576-1
  • [BB11] Manuel Blickle and Gebhard Böckle, Cartier modules: finiteness results, J. Reine Angew. Math. 661 (2011), 85-123. MR 2863904, https://doi.org/10.1515/CRELLE.2011.087
  • [BMS08] Manuel Blickle, Mircea Mustaţa, and Karen E. Smith, Discreteness and rationality of $ F$-thresholds, Michigan Math. J. 57 (2008), 43-61. Special volume in honor of Melvin Hochster. MR 2492440, https://doi.org/10.1307/mmj/1220879396
  • [BMS09] Manuel Blickle, Mircea Mustaţă, and Karen E. Smith, $ F$-thresholds of hypersurfaces, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6549-6565. MR 2538604, https://doi.org/10.1090/S0002-9947-09-04719-9
  • [BSTZ10] Manuel Blickle, Karl Schwede, Shunsuke Takagi, and Wenliang Zhang, Discreteness and rationality of $ F$-jumping numbers on singular varieties, Math. Ann. 347 (2010), no. 4, 917-949. MR 2658149, https://doi.org/10.1007/s00208-009-0461-2
  • [BdFFU15] S. Boucksom, T. de Fernex, C. Favre, and S. Urbinati, Valuation spaces and multiplier ideals on singular varieties, Recent advances in algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 417, Cambridge Univ. Press, Cambridge, 2015, pp. 29-51. MR 3380442
  • [CEMS14] A. Chiecchio, F. Enescu, L. E. Miller, and K. Schwede, Test ideals in rings with finitely generated anti-canonical algebras, ArXiv e-prints (2014).
  • [DH09] Tommaso de Fernex and Christopher D. Hacon, Singularities on normal varieties, Compos. Math. 145 (2009), no. 2, 393-414. MR 2501423, https://doi.org/10.1112/S0010437X09003996
  • [ELSV04] Lawrence Ein, Robert Lazarsfeld, Karen E. Smith, and Dror Varolin, Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), no. 3, 469-506. MR 2068967, https://doi.org/10.1215/S0012-7094-04-12333-4
  • [Fuj83] Takao Fujita, Vanishing theorems for semipositive line bundles, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 519-528. MR 726440, https://doi.org/10.1007/BFb0099977
  • [Gab04] Ofer Gabber, Notes on some $ t$-structures, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin, 2004, pp. 711-734. MR 2099084
  • [GHNV90] S. Goto, M. Herrmann, K. Nishida, and O. Villamayor, On the structure of Noetherian symbolic Rees algebras, Manuscripta Math. 67 (1990), no. 2, 197-225. MR 1042238, https://doi.org/10.1007/BF02568430
  • [Gra16] Patrick Graf, The jumping coefficients of non- $ \mathbb{Q}$-Gorenstein multiplier ideals, J. Algebra 450 (2016), 323-348. MR 3449696, https://doi.org/10.1016/j.jalgebra.2015.11.024
  • [Har06] Nobuo Hara, F-pure thresholds and F-jumping exponents in dimension two, Math. Res. Lett. 13 (2006), no. 5-6, 747-760. With an appendix by Paul Monsky. MR 2280772, https://doi.org/10.4310/MRL.2006.v13.n5.a6
  • [HT04] Nobuo Hara and Shunsuke Takagi, On a generalization of test ideals, Nagoya Math. J. 175 (2004), 59-74. MR 2085311
  • [Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [HS77] Robin Hartshorne and Robert Speiser, Local cohomological dimension in characteristic $ p$, Ann. of Math. (2) 105 (1977), no. 1, 45-79. MR 0441962, https://doi.org/10.2307/1971025
  • [KLZ09] Mordechai Katzman, Gennady Lyubeznik, and Wenliang Zhang, On the discreteness and rationality of $ F$-jumping coefficients, J. Algebra 322 (2009), no. 9, 3238-3247. MR 2567418, https://doi.org/10.1016/j.jalgebra.2008.11.032
  • [KSSZ14] Mordechai Katzman, Karl Schwede, Anurag K. Singh, and Wenliang Zhang, Rings of Frobenius operators, Math. Proc. Cambridge Philos. Soc. 157 (2014), no. 1, 151-167. MR 3211813, https://doi.org/10.1017/S0305004114000176
  • [KZ14] Mordechai Katzman and Wenliang Zhang, Castelnuovo-Mumford regularity and the discreteness of $ F$-jumping coefficients in graded rings, Trans. Amer. Math. Soc. 366 (2014), no. 7, 3519-3533. MR 3192605, https://doi.org/10.1090/S0002-9947-2014-05918-7
  • [Kee08] Dennis S. Keeler, Fujita's conjecture and Frobenius amplitude, Amer. J. Math. 130 (2008), no. 5, 1327-1336. MR 2450210, https://doi.org/10.1353/ajm.0.0015
  • [Kol08] János Kollár, Exercises in the birational geometry of algebraic varieties, Analytic and algebraic geometry, IAS/Park City Math. Ser., vol. 17, Amer. Math. Soc., Providence, RI, 2010, pp. 495-524. MR 2743822
  • [KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959
  • [Laz04a] Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471
  • [Laz04b] Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472
  • [Lip69] Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195-279. MR 0276239
  • [Lip78] Joseph Lipman, Desingularization of two-dimensional schemes, Ann. Math. (2) 107 (1978), no. 1, 151-207. MR 0491722
  • [LT81] Joseph Lipman and Bernard Teissier, Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28 (1981), no. 1, 97-116. MR 600418
  • [Lyu97] Gennady Lyubeznik, $ F$-modules: applications to local cohomology and $ D$-modules in characteristic $ p>0$, J. Reine Angew. Math. 491 (1997), 65-130. MR 1476089, https://doi.org/10.1515/crll.1997.491.65
  • [Mus11] Mircea Mustaţă, The non-nef locus in positive characteristic, A celebration of algebraic geometry, Clay Math. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 2013, pp. 535-551. MR 3114955
  • [Sch11a] Karl Schwede, A canonical linear system associated to adjoint divisors in characteristic $ p>0$, J. Reine Angew. Math. 696 (2014), 69-87. MR 3276163, https://doi.org/10.1515/crelle-2012-0087
  • [Sch11b] Karl Schwede, A note on discreteness of $ F$-jumping numbers, Proc. Amer. Math. Soc. 139 (2011), no. 11, 3895-3901. MR 2823035, https://doi.org/10.1090/S0002-9939-2011-10825-6
  • [Sch11c] Karl Schwede, Test ideals in non- $ \mathbb{Q}$-Gorenstein rings, Trans. Amer. Math. Soc. 363 (2011), no. 11, 5925-5941. MR 2817415, https://doi.org/10.1090/S0002-9947-2011-05297-9
  • [ST14] Karl Schwede and Kevin Tucker, Test ideals of non-principal ideals: computations, jumping numbers, alterations and division theorems, J. Math. Pures Appl. (9) 102 (2014), no. 5, 891-929. MR 3271293, https://doi.org/10.1016/j.matpur.2014.02.009
  • [Urb12] Stefano Urbinati, Discrepancies of non- $ \mathbb{Q}$-Gorenstein varieties, Michigan Math. J. 61 (2012), no. 2, 265-277. MR 2944480, https://doi.org/10.1307/mmj/1339011527

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13A35, 14F18

Retrieve articles in all journals with MSC (2010): 13A35, 14F18


Additional Information

Patrick Graf
Affiliation: Lehrstuhl für Mathematik I, Universität Bayreuth, 95440 Bayreuth, Germany
Email: patrick.graf@uni-bayreuth.de

Karl Schwede
Affiliation: Department of Mathematics, The University of Utah, 155 S 1400 E Room 233, Salt Lake City, Utah 84112
Email: schwede@math.utah.edu

DOI: https://doi.org/10.1090/proc/13739
Keywords: Test ideals, $F$-jumping numbers, $\mathbb{Q}$-Gorenstein, multiplier ideals
Received by editor(s): May 23, 2016
Received by editor(s) in revised form: March 10, 2017
Published electronically: September 6, 2017
Additional Notes: The first-named author was supported in part by the DFG grant “Zur Positivität in der komplexen Geometrie”
The second-named author was supported in part by the NSF grant DMS #1064485, NSF FRG Grant DMS #1501115, NSF CAREER Grant DMS #1501102
Communicated by: Irena Peeva
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society