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ON THE STRONG LEFSCHETZ PROBLEM

FOR UNIFORM POWERS OF GENERAL LINEAR FORMS

IN k[x, y, z]

JUAN C. MIGLIORE AND ROSA MARÍA MIRÓ-ROIG

(Communicated by Irena Peeva)

Abstract. Schenck and Seceleanu proved that if R = k[x, y, z], where k is an
infinite field and I is an ideal generated by any collection of powers of linear
forms, then multiplication by a general linear form L induces a homomorphism
of maximal rank from any component of R/I to the next. That is, R/I has
the weak Lefschetz property. Considering the more general strong Lefschetz
problem of when ×Lj has maximal rank for j ≥ 2, we give the first systematic
study of this problem. We assume that the linear forms are general and that
the powers are all the same, i.e. that I is generated by uniform powers of
general linear forms. We prove that for any number of such generators, ×L2

always has maximal rank. We then specialize to almost complete intersections,
i.e. to four generators, and we show that for j = 3, 4, 5 the behavior depends
on the uniform exponent and on j in a way that we make precise. In particular,

there is always at most one degree where ×Lj fails maximal rank. Finally, we
note that experimentally all higher powers of L fail maximal rank in at least
two degrees.

1. Introduction

Ideals of powers of linear forms have been studied rather extensively. We can
point, for example, to [5], [9], [11], [12], [18] and [21]. We take the latter as our
launching point, and we consider only ideals in R = k[x, y, z], where k is an infinite
field.

If R/I is a standard graded artinian algebra and L is a general linear form, we
recall that R/I is said to have the weak Lefschetz property (WLP) if the multipli-
cation ×L : [R/I]δ−1 → [R/I]δ has maximal rank for all δ. The strong Lefschetz
property (SLP) says that for all j ≥ 1 the multiplication by Lj has maximal rank
in all degrees. We will call the strong Lefschetz problem the analysis of which j and
δ provide the homomorphism ×Lj : [R/I]δ−j → [R/I]δ having maximal rank.

We consider ideals of the form I = (La1
1 , . . . , Lar

r ) in R = k[x, y, z], where k is
an infinite field. A theorem of Stanley [22] and Watanabe [23] shows that when
r = 3, R/I has the SLP, so maximal rank always holds. Thus the problem is only
of interest for r ≥ 4.

The main theorem of [21] asserts that if I is any ideal of the stated form, then
R/I has the WLP (see also [18] for a different proof). This leads naturally to
the issue of what happens for higher powers of a general linear form. For ×L2 it
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was shown in [18] that for r = 4, if the linear forms are chosen generally, then
×L2 : [R/I]j → [R/I]j+2 has maximal rank for all j. On the other hand, it was
shown in [5] and [9] that if the linear forms are not required to be general, then
×L2 does not necessarily have maximal rank, and indeed the issue of maximal rank
is a quite subtle one depending on the geometry of the set of points dual to the
linear forms. Thus we focus on general linear forms.

So what, exactly, should we expect for ×Lj for L a general linear form and
j ≥ 2? In this paper we want to begin the study of the multiplication by higher
powers, Lj , of the general linear form by assuming that the exponents of the linear
forms generating our ideal are all the same, i.e. that we have uniform powers. Our
first main result, Theorem 4.4, is that for arbitrary r, ×L2 : [R/I]δ−2 → [R/I]δ has
maximal rank for all δ. We conjecture that in fact the result also holds for mixed
powers.

For j ≥ 3 we already get interesting behavior for r = 4 by assuming that the
ideal is an almost complete intersection of uniform powers of general linear forms:
I = (Lk

1 , . . . , L
k
4). We want to see if ×Lj always has maximal rank, and if not, to

see how often we can expect this phenomenon to occur. We find that it is rarely
the case that ×Lj has maximal rank in all degrees, in fact, but it occasionally does.
In this paper we classify those values of j and k for which it does have maximal
rank in all degrees and those values of j and k for which it fails maximal rank in
only one degree.

More precisely, in Theorem 5.1, Theorem 5.2 and Theorem 5.3 we show that ×L3

and ×L4 sometimes have maximal rank in all degrees, depending on the congruence
class of k modulo 3, and that ×L5 never has maximal rank in all degrees. However,
we also show that for j = 3, 4, 5, whenever this multiplication fails maximal rank,
it does so only in one spot. We note in Remark 5.5 that for higher powers of L, the
multiplication fails maximal rank in more than one spot. These results show more
clearly that Anick’s theorem does not extend from general forms to powers of general
linear forms, although this was already known. (Indeed, if I = (x3, y3, z3, L3

1) ⊂ R,
where L1 is a general linear form, then for a general linear form L, ×L3 fails to
have maximal rank (see Proposition 6.1), while Anick’s result shows that if instead
we take general forms of degree 3, then maximal rank does hold.)

There are many reasons why ideals generated by powers of linear forms (often
assumed to be general) and the Lefschetz properties for such ideals are of interest.
The Lefschetz problem in general is ubiquitous in Commutative Algebra and Alge-
braic Geometry; it ties in with vector bundle problems, fat point schemes, graph
theory, monomial ideals, Gorenstein algebras, etc. Ideals generated by powers of
(general) linear forms and the problem of studying their Lefschetz properties are a
natural extension of the monomial complete intersections considered in the Stanley-
Watanabe theorem already mentioned. They also are related to Terao’s conjecture
([9], [5]). They are an essential component of the well-known Waring problem. Fi-
nally, as suggested by the remarks in the previous paragraph, they are connected
to the famous Fröberg conjecture – Anick’s theorem proves that conjecture for the
polynomial ring in three variables (see [18] for a discussion of the connection). In
this paper we give the first careful analysis of the multiplication by powers of a gen-
eral linear form for the quotient of an ideal generated by powers of general linear
forms.
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2. Preliminaries

Throughout this paper we consider the homogeneous polynomial ring R =
k[x, y, z], where k is a field of characteristic zero. In this section we recall the
main tools that we will use in the rest of the paper.

For any artinian ideal I ⊂ R and a general linear form L ∈ R, the exact sequence

· · · → [R/I]m−j
×Lj

−→ [R/I]m → [R/(I, Lj)]m → 0

gives, in particular, that the multiplication by Lj will fail to have maximal rank
exactly when

(2.1) dimk[R/(I, Lj)]m �= max{dimk[R/I]m − dimk[R/I]m−j , 0};
in that case, we will say that R/I fails maximal rank in degree m.

We will deeply need the following result of Emsalem and Iarrobino, which gives
a duality between powers of linear forms and ideals of fat points in P

n−1. We only
quote Theorem I in [11] in the form that we need.

Theorem 2.1 ([11]). Let 〈La1
1 , . . . , Lan

n 〉 ⊂ R be an ideal generated by powers of n
general linear forms. Let ℘1, . . . , ℘n be the ideals of n general points in P

2. (Each
point is actually obtained explicitly from the corresponding linear form by duality.)
Choose positive integers a1, . . . , an. Then for any integer j ≥ max{ai},

dimk [R/〈La1
1 , . . . , Lan

n 〉]j = dimk

[
℘j−a1+1
1 ∩ · · · ∩ ℘j−an+1

n

]
j
.

From now on, we will denote by

L2(j; b1, b2, . . . , bn)

the linear system [℘b1
1 ∩ · · · ∩ ℘bn

n ]j ⊂ [R]j . Note that we view it as a vector space,
not a projective space, when we compute dimensions. If necessary, in order to
simplify notation, we use superscripts to indicate repeated entries. For example,
L2(j; 5

2, 23) = L2(j; 5, 5, 2, 2, 2).
We will always use the convention that a binomial coefficient

(
a
r

)
is zero if a < r.

Notice that for every linear system L2(j; ba1, . . . , bn), one has

dimk L2(j; b1, . . . , bn) ≥ max

{
0,

(
j + 2

2

)
−

n∑
i=1

(
bi + 1

2

)}
,

where the right-hand side is called the expected dimension of the linear system. If
the inequality is strict, then the linear system L2(j; b1, . . . , bn) is called special. It
is a difficult problem to classify the special linear systems.

Using Cremona transformations, one can relate two different linear systems (see
[20], [15], or [10], Theorem 3), which we state only in the form we will need even
though the cited results are more general.

Lemma 2.2. Let n > 2 and let j, b1, . . . , bn be non-negative integers, with b1 ≥
· · · ≥ bn. Set m = j − (b1 + b2 + b3). If bi +m ≥ 0 for all i = 1, 2, 3, then

dimk L2(j; b1, . . . , bn) = dimk L2(j +m; b1 +m, b2 +m, b3 +m, b4, . . . , bn).

The analogous linear systems have also been studied for points in P
r. Following

[8], the linear system Lr(j; b1, . . . , bn) is said to be in standard form if

(r − 1)j ≥ b1 + · · ·+ br+1 and b1 ≥ · · · ≥ bn ≥ 0.



510 JUAN C. MIGLIORE AND ROSA MARÍA MIRÓ-ROIG

In particular, for r = 2, the authors of [8] show that every linear system in standard
form is non-special. (This is no longer true if r ≥ 3. For example, L3(6; 3

9) is in
standard form and special.)

Remark 2.3. Bézout’s theorem also provides a useful simplification. Again, we only
state the result we need in this paper. Assume the points P1, . . . , Pn are general.
If 2j < b1 + · · ·+ b5, then

dimL2(j; b1, . . . , bn) = dimL2(j − 2; b1 − 1, . . . , b5 − 1, b6, . . . , bn).

If j < b1 + b2, then

dimL2(j; b1, . . . , bn) = dimL2(j − 1; b1 − 1, b2 − 1, b3, . . . , bn).

Lemma 2.4. Let P1, . . . , P4 be general points in P
2 with homogeneous ideals

℘1, . . . , ℘4 respectively, and let X = {P1, . . . , P4}. Let m ≥ 1 be an integer. Then
ImX is a saturated ideal, and the minimal free resolution of ImX has the form

0 → R(−2m− 2)m → R(−2m)m+1 → ImX → 0.

In particular, ImX = ℘m
1 ∩ · · · ∩ ℘m

4 = I
(m)
X .

Proof. This is well known, since X is the reduced complete intersection of two
conics. See for instance [14], Theorem 2.8, or [6], Corollary 2.10. �

3. Preparation

From now on we will consider quotients of the form R/I, where R = k[x, y, z], I =
(Lk

1 , . . . , L
k
r ) and L1, . . . , Lr are general linear forms. Specifically, we are interested

in whether

×Lj : [R/I]δ−j → [R/I]δ

has maximal rank for all δ, for j = 2, 3, 4 and 5, where L is a general linear form.
We first observe that the case k = 2 is trivial. Indeed:

• When r ≤ 2 the ideal is saturated; hence the map is always an injection.
• When r = 3 it is a complete intersection with h-vector (1, 3, 3, 1). Theorem
2.3 of [13] then gives that ×L always has maximal rank. From this it follows
that ×L2 is injective when δ = 2 and surjective when δ = 3. Since L is
general, the map ×L3 is an isomorphism from degree 0 to degree 3.

• When r = 4, 5, 6, the h-vector is (respectively) (1, 3, 2), (1, 3, 1) and (1, 3),
and all the maximal rank properties follow from the case r = 3 and the fact
that L is general.

• When r > 6 the new generators are not minimal.

Thus from now on we assume k ≥ 3. In section 4 we work with arbitrary r,
but in section 5 we restrict to r = 4. In this section we give technical preparatory
results that will be central to our proofs in section 5. Thus from now on in this
section we assume r = 4 (and we return to arbitrary r in section 4). However, the
general approach used in section 4 will also be reflected in our preparation in this
section.

We first compute the socle degree (i.e. the last non-zero component) of R/I.
Since L1, L2, L3 are general, without loss of generality we can assume that L1 =
x, L2 = y, L3 = z. Then by a well-known result of Stanley [22] and Watanabe [23],
×Lk

4 has maximal rank in all degrees. The socle degree of R/I is the last degree
where ×Lk

4 is not surjective. Since R/(Lk
1 , L

k
2 , L

k
3) has socle degree 3k − 3, one
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checks that the socle degree of R/I is 2k − 2. (This also follows from [16], Lemma
2.5.)

More precisely, we make the following Hilbert function calculation, also using
the fact that the Hilbert function of R/(xk, yk, zk) is symmetric and that of R/I
ends in degree 2k − 2.

degree 0 1 2 . . . k − 2 k − 1 k k + 1 . . .

R/(xk, yk, zk) 1 3 6 . . .
(k
2

) (k+1
2

) (k+2
2

)
− 3

(k+3
2

)
− 9 . . .

R/I 1 3 6 . . .
(k
2

) (k+1
2

) (k+2
2

)
− 4

(k+3
2

)
− 12 . . .

2k − 4 2k − 3 2k − 2(k+3
2

)
− 9

(k+2
2

)
− 3

(k+1
2

)

5k − 9 3k − 3 k

In [17, Proposition 2.1] it was observed that for any standard graded algebra R/I,
if ×L : [R/I]δ−1 → [R/I]δ is surjective, then so is ×L : [R/I]δ+i → [R/I]δ+i+1 for
all i ≥ 0. The same clearly holds for ×Lj (after adjusting the indices). Furthermore,
if R/I is level and ×L : [R/I]δ−1 → [R/I]δ is injective, then so is ×L : [R/I]δ−i →
[R/I]δ−i+1 for all i ≥ 2. In our present situation, we conjecture that R/I is always
level:

Conjecture 3.1. If R = k[x, y, z] and I = (Lk
1 , . . . , L

k
4) with L1, . . . , L4 general,

then R/I is level with Cohen-Macaulay type k.

However, since we are interested in multiplication by higher powers of L, it turns
out that we do not need R/I to be level, as we now show.

Lemma 3.2. Let M be a graded module generated in the first m degrees, say
b, b + 1, . . . , b +m − 1, for some m ≥ 1. Let L be a general linear form. If j ≥ m
and ×Lj : [M ]b → [M ]b+j is surjective, then ×Lj : [M ]b+i → [M ]b+i+j is also
surjective, for all i ≥ 0.

Proof. The module M/(LjM) is generated in degree ≤ b + m − 1 and is zero in
degree b+ j ≥ b+m, hence is zero thereafter. �

Lemma 3.3. Let I = (Lk
1 , . . . , L

k
4), where L1, . . . , L4 are general linear forms.

Then the socle of R/I occurs in degree 2k − 2 and possibly in degree 2k − 3.

Proof. Since the socle degree of R/I is 2k−2, we just have to show that R/I has no
socle in degree ≤ 2k − 4. The ideal (Lk

1 , L
k
2 , L

k
3) is a complete intersection, linking

the almost complete intersection I to a Gorenstein ideal J . Using the formula
for the Hilbert function of artinian algebras under liaison (see [7]) and the above
Hilbert function calculation, we see that R/J has socle degree (3k−3)−k = 2k−3
and Hilbert function(

1, 3, 6, . . . ,

(
k − 2

2

)
,

(
k − 1

2

)
,

(
k

2

)
,

(
k

2

)
,

(
k − 1

2

)
,

(
k − 2

2

)
, . . . , 6, 3, 1

)
.

Let us consider the minimal free resolutions. That of I has the form

0 →

R(−2k − 1)k

⊕
R(−2k)a

⊕
F

→ G → R(−k)4 → I → 0
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where
a ≥ 0;

F =
⊕

k+2≤i≤2k−1

R(−i)•,

G =
⊕

k+1≤i≤2k

R(−i)•

(we do not care what the exponents of the components of F are because we will
show F = 0, nor do we care what the exponents of the components of G are).

Linking I by the complete intersection, the standard mapping cone construction
(splitting three copies of R(−k)) gives a free resolution for J :

0 → R(−2k) → G∨(−3k) →

R(1− k)k

⊕
R(−k)a

⊕
F∨(−3k)

→ J → 0

where

G∨(−3k) = R(1− 2k)• ⊕R(2− 2k)• ⊕ · · · ⊕R(−k)•

and

F∨(−3k) = R(2− 2k)• ⊕ · · · ⊕R(−k − 1)•.

Now, any summand of G∨(−3k) of the form R(−i) for i ≥ k + 2 must correspond,
by the duality of the resolution, to a minimal generator of degree 2k − i ≤ k − 2,
which is forbidden by the Hilbert function. But any minimal generator of J must
be represented in this way, so J only has generators of degrees k − 1 and k, and
F = 0 as desired. But returning to the minimal free resolution of I, this means
that the socle of R/I is as claimed. �

The following consequence allows us to confirm the maximal rank property for
×Lj by checking only two degrees (which sometimes coincide).

Corollary 3.4. Let I = (Lk
1 , . . . , L

k
4) as above. Let j ≥ 2. Let

a := max{δ | hR/I(δ − j) ≤ hR/I(δ)},
b := min{δ | hR/I(δ − j) ≥ hR/I(δ)}.

If ×Lj : [R/I]a−j → [R/I]a is injective and ×Lj : [R/I]b−j → [R/I]b is surjective,
then ×Lj has maximal rank in all degrees.

Proof. The fact that ×Lj is surjective in all degrees ≥ b was noted above and is
standard. We have to show the analogous result for injectivity of ×Lj for all degrees
≤ a.

Consider the canonical module, M , of R/I. Since R/I is artinian, M is isomor-
phic to a shift of the k-dual of R/I. The injectivity of ×Lj : [R/I]a → [R/I]a+j is
equivalent to the surjectivity of the dual homomorphism on M , say from [M ]a′ to
[M ]a′+j . By abuse of notation we continue to write this as ×Lj .

By Lemma 3.3, M is generated in the first two degrees, at most. If a′ is not the
initial degree of M , let N be the truncation of M in degree a′, i.e. N =

⊕
i≥a′ [M ]i.

N is generated in the first degree, unless N = M , in which case it may be generated
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in the first two degrees. Either way, Lemma 3.2 gives that ×Lj is surjective in all
degrees ≥ a′. Then by duality, ×Lj is injective in all degrees ≤ a. �

Remark 3.5. Of course it is important to determine the values of a and b in order
to be able to apply Corollary 3.4. Our method will be to take advantage of the
fact that four general points in P

2 are a complete intersection and use Lemma
2.4. We note here that we will implicitly use the fact that the Hilbert function is
unimodal (a fact that is true not just for four powers of linear forms but in fact for
any ideal generated by powers of linear forms in k[x, y, z]), which is an immediate
consequence of the fact that the algebra has the weak Lefschetz property [21], so
the unimodality follows from [13], Remark 3.3.

The following is central to determining the values of a and b in Corollary 3.4.
For any δ we have the exact sequence

(3.1) [R/(Lk
1 , . . . , L

k
4)]δ−j

×Lj

−→ [R/(Lk
1 , . . . , L

k
4)]δ → [R/(Lk

1 , . . . , L
k
4 , L

j)]δ → 0.

Let ℘i be the point dual to Li and let ℘1 ∩ · · · ∩ ℘4 = IX . We will define the
following functions of δ, j and k:

C1 = dim[R/(Lk
1 , . . . , L

k
4)]δ−j and C2 = dim[R/(Lk

1 , . . . , L
k
4)]δ.

We would like to apply Theorem 2.1. It is certainly no loss of generality to assume
that δ ≥ k since in smaller degrees R/I coincides with the polynomial ring, where
maximal rank holds. Thus we have

C2 = dim[R/(Lk
1 , . . . , L

k
4)]δ = dim[℘δ−k+1

1 ∩ · · · ∩ ℘δ−k+1
4 ]δ = dim[Iδ−k+1

X ]δ.

We also have

C1= dim[R/(Lk
1 , . . . , L

k
4)]δ−j

=

⎧⎨
⎩

dim[R]δ−j , if δ ≤ j + k − 1;

dim[℘δ−j−k+1
1 ∩ · · · ∩ ℘δ−j−k+1

4 ]δ−j = [Iδ−j−k+1
X ]δ−j , if δ ≥ j + k − 1.

Since the Hilbert function of R/I is unimodal (Remark 3.5), we simply need to
set C1 − C2 equal to zero and find the nearest integer values for δ, as we make
precise now. We make use of Lemma 2.4.

Case 1. First we assume that δ ≥ j + k − 1. Notice that we adopt the convention
that I0X = R. We have the resolutions

0 → R(−2δ+2j+2k−4)δ−j−k+1 → R(−2δ+2j+2k−2)δ−j−k+2 → Iδ−j−k+1
X → 0

and

0 → R(−2δ + 2k − 4)δ−k+1 → R(−2δ + 2k − 2)δ−k+2 → Iδ−k+1
X → 0.

Using this, we have

C1 − C2 = (δ − j − k + 2)

(
−δ + j + 2k

2

)
− (δ − j − k + 1)

(
−δ + j + 2k − 2

2

)

−(δ − k + 2)

(
−δ + 2k

2

)
+ (δ − k + 1)

(
−δ + 2k − 2

2

)
,
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from which an elementary but tedious calculation gives

(3.2) C1 − C2 = 3jδ − 4kj − 3

(
j − 1

2

)
+ 3.

In particular, we have the following values:

(3.3)

j C1 − C2

2 6δ − 8k + 3
3 9δ − 12k
4 12δ − 16k − 6
5 15δ − 20k − 15

Remark 3.6. Notice that when δ ≥ j + k − 1 we have

a = max{δ ∈ Z | C1 − C2 ≤ 0},
b = min{δ ∈ Z | C1 − C2 ≥ 0}.

More precisely, using (3.2), an easy calculation gives that for δ ≥ j + k − 1 we get:

• If j is odd, then

a =

⎧⎪⎨
⎪⎩

4k0 +
j−1
2 − 1, if k = 3k0;

4k0 +
j−1
2 , if k = 3k0 + 1;

4k0 +
j−1
2 + 1, if k = 3k0 + 2.

b =

⎧⎪⎨
⎪⎩

4k0 +
j−1
2 − 1, if k = 3k0;

4k0 +
j−1
2 + 1, if k = 3k0 + 1;

4k0 +
j−1
2 + 2, if k = 3k0 + 2.

• If j is even, then

a =

⎧⎪⎨
⎪⎩

4k0 +
j
2 − 2, if k = 3k0;

4k0 +
j
2 − 1, if k = 3k0 + 1;

4k0 +
j
2 + 1, if k = 3k0 + 2.

b =

⎧⎪⎨
⎪⎩

4k0 +
j
2 − 1, if k = 3k0;

4k0 +
j
2 , if k = 3k0 + 1;

4k0 +
j
2 + 2, if k = 3k0 + 2.

Case 2. Now we assume that k ≤ δ ≤ j + k − 2. Then

C1 − C2 =

(
δ − j + 2

2

)
− (δ − k + 2)

(
−δ + 2k

2

)
+ (δ − k + 1)

(
−δ + 2k − 2

2

)

=

(
δ − j + 2

2

)
−
(
−δ + 2k

2

)
+ (2δ − 4k + 3)(δ − k + 1).

Remark 3.7. In proving our main results in the next section, an important issue
is that we have two formulas for the value of C1 − C2, depending on the relation
between δ, j and k. The value of C2 is not at issue, but the value of C1 is. We
would like to use our formulas from Remark 3.6 to make our calculations in the
proofs given in the next section. However, we sometimes need to use values of δ as
low as a− 1, and we need to understand which values of δ, j and k force us to use
Case 2 above instead of Case 1.
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4. Multiplication by L2

For ideals generated by powers of linear forms in k[x, y, z], the following two
results are known.

Theorem 4.1 ([21], Main Theorem). An artinian quotient of k[x, y, z] by powers
of (arbitrary) linear forms has WLP.

In the following sections we will see that multiplication by Lj for j ≥ 3 does
not necessarily have maximal rank, even when I is an almost complete intersection.
This leaves the issue of maximal rank for ×L2. In [9] and [5] it is shown that
there exist ideals generated by powers of linear forms for which ×L2 does not have
maximal rank in all degrees, so the remaining question is what happens for powers
of general linear forms. When I is an almost complete intersection we have the
following result:

Theorem 4.2 ([18], Proposition 4.7). Let L1, . . . , L4, L be five general linear forms
of R = k[x, y, z]. Let I be the ideal (La1

1 , . . . , La4
4 ). Let A = R/I. Then, for each

integer j, the multiplication map ×L2 : [A]j−2 → [A]j has maximal rank.

Improving on this result, our next goal will be to prove that if I is generated by
any number, r, of uniform powers of general linear forms, then R/I has the property
that ×L2 has maximal rank in all degrees. Since the case r ≤ 4 is already known,
we will assume that r ≥ 5. Recall that any ideal generated by uniform powers of
general linear forms has WLP. In particular, its Hilbert function is unimodal, and
we will now determine its peak(s).

Lemma 4.3. Let L1, . . . , Lr ∈ k[x, y, z] be r ≥ 5 general linear forms. Let I be the
ideal (Lk

1 , . . . , L
k
r ). Write k = (r− 1)k0 + e with 0 ≤ e ≤ r− 2. The following hold:

(i) If 2 ≤ k ≤ r − 2, then R/I has exactly one peak at k − 1.
(ii) If k0 ≥ 1 and 1 ≤ e ≤ r − 2, then R/I has exactly one peak at rk0 + e− 1.
(iii) If k0 ≥ 1 and e = 0, then R/I has exactly two peaks at rk0− 2 and rk0− 1.

Proof. (i) For 2 ≤ k ≤ r − 2, we have

dim[R/I]k−2 = dimRk−2 =

(
k

2

)
,

dim[R/I]k−1 = dimRk−1 =

(
k + 1

2

)
and

dim[R/I]k =

(
k + 2

2

)
− r.

Hence, R/I has a peak at k − 1.
(ii) Let us first assume that k0 ≥ 2. We say Ai = dim[R/I]rk0+e−1+i with

i = −1, 0, 1. We have to prove that A0 − Ai > 0 for i = −1, 1. Let us compute Ai

for i = −1, 0, 1. Since k0 ≥ 2 we can apply Theorem 2.1 and get

Ai = dim[R/I]rk0+e−1+i = dimk L2(rk0 + e− 1 + i; (k0 + i)r)

=

(
rk0 + e+ 1 + i

2

)
− r

(
k0 + i+ 1

2

)
where the last equality follows from the fact that the linear system

L2(rk0 + e− 1 + i; k0 + ir)
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is in standard form and, hence, it is non-special. Now, we easily check that A0 −
A−1 = e > 0 and A0−A1 = r−1−e > 0. Therefore, R/I has a peak at rk0+e−1.

For k0 = 1 we have

dim[R/I]k−1 = dimRk−1 =

(
k + 1

2

)
,

dim[R/I]k =

(
k + 2

2

)
− r and

dim[R/I]k+1 = dimL2(k + 1; 2r) =

(
k + 3

2

)
− 3r.

Since dim[R/I]k − dim[R/I]k−1 = k + 1 − r > 0 and dim[R/I]k − dim[R/I]k+1 =
2r − (k + 2) > 0, R/I has a peak at k.

(iii) First we assume that k0 ≥ 2. Denote Bi = dim[R/I]rk0−2+i with i =
−1, 0, 1, 2. We have

Bi = dim[R/I]rk0−2+i = dimk L2(rk0−2+i; (k0−1+i)r) =

(
rk0 + i

2

)
−r

(
k0 + i

2

)
.

Notice that if k0 = 2, we have B−1 =
(
2r−1

2

)
. In all cases, we get B0 = B1,

B0 −B2 = r − 1 and B0 −B−1 = r − 1 and we conclude that R/I has exactly two
peaks, at rk0 − 2 and rk0 − 1.

Finally for k0 = 1, we have B−1 = dim[R]r−3 =
(
r−1
2

)
, B0 = dim[R]r−2 =

(
r
2

)
and

Bi = dim[R/I]r−2+i = dimk L2(r − 2 + i; ir) =

(
r + i

2

)
− r

(
i+ 1

2

)

for i = 1, 2. (This follows either from the fact that it is in standard form or
from the Alexander-Hirschowitz theorem [1].) Again B0 = B1, B0 − B2 = r − 1,
B0 −B−1 = r − 1 and R/I has exactly two peaks, at r − 2 and r − 1. �

Theorem 4.4. Let L1, . . . , Lr, L ∈ k[x, y, z] be r+1 general linear forms. Let I be
the ideal (Lk

1 , . . . , L
k
r ). Then, for each integer j, the multiplication map

×L2 : [R/I]j−2 −→ [R/I]j

has maximal rank.

Proof. We write k = (r− 1)k0 + e with 0 ≤ e ≤ r− 2 and we distinguish two cases.

Case 1. k0 ≥ 1. We distinguish 3 subcases:

1.1. Assume e = 0. In this case the result follows from Lemma 4.3 and the
fact that, for any integer j, the multiplication map ×L : [R/I]j−1 −→ [R/J ]j has
maximal rank.



ON THE STRONG LEFSCHETZ PROBLEM 517

1.2. Assume 1 ≤ e ≤ r−1
2 . By Lemma 4.3, R/I has exactly one peak, at

rk0+ e− 1, and, moreover, A−1 = dim[R/I]rk0+e−2 ≥ A1 = dim[R/I]rk0+e. So, we
only need to check that [R/(I, L2)]rk0+e = 0 since this will imply the surjectivity
of ×L2 : [R/I]rk0+e−2 −→ [R/I]rk0+e. We have

dim coker(×L2)rk0+e

= dim[R/(L
(r−1)k0+e
1 , . . . , L

(r−1)k0+e
r , L2)]rk0+e (by (3.1))

= dim[℘k0+1
1 ∩ · · · ∩ ℘k0+1

r ∩ ℘rk0+e−1]rk0+e (by Thm 2.1)
= dimL2(rk0 + e; (k0 + 1)r, rk0 + e− 1)
= dimL2(rk0 + e− r; kr0 , rk0 + e− 1− r) (by Remark 2.3)
= · · · (by Remark 2.3)
= dimL2(e; 1r, e− 1) (by Remark 2.3)
= 0 (since 2e+1≤r).

1.3. Assume r−1
2 < e ≤ r − 2. By Lemma 4.3, R/I has exactly one peak

at rk0 + e − 1 and, moreover, dim[R/I]rk0+e − dim[R/I]rk0+e−2 = A1 − A−1 =
(A1 − A0) − (A−1 − A0) = 2e − r + 1 > 0. Hence we have to show that ×L2 is
injective, with cokernel of dimension 2e−r+1. Let us compute dim[R/(I, L2)]rk0+e.
As above we have

dim coker(×L2)rk0+e = dim[R/(L
(r−1)k0+e
1 , . . . , L

(r−1)k0+e
r , L2)]rk0+e (by (3.1))

= dim[℘k0+1
1 ∩ · · · ∩ ℘k0+1

r ∩ ℘rk0+e−1]rk0+e (by Thm 2.1)
= dimL2(rk0 + e; (k0 + 1)r, rk0 + e− 1)
= dimL2(rk0 + e− r; kr0 , rk0 + e− 1− r) (by Remark 2.3)
= · · · (by Remark 2.3)
= dimL2(e; 1r, e− 1) (by Remark 2.3)

=
(e+2

2

)
−

(e
2

)
− r

= 2e− r + 1

as expected.

Case 2 (k0 = 0). In this case we have k = e. It immediately follows from the
equalities

dim[R/(I, L2)]k = dimL2(k; 1
r, k − 1) = max

{
0,

(
k + 2

2

)
−

(
k

2

)
− r

}

and

dim[R/I]k − dim[R/I]k−2 =

(
k + 2

2

)
− r −

(
k

2

)
.

�

Experimentally it seems that an even more general result is true, namely, to
remove the assumption of uniform powers, but we have not been able to prove it
apart from the case of almost complete intersections mentioned earlier:

Conjecture 4.5. For any artinian quotient of k[x, y, z] generated by powers of
general linear forms and for a general linear form L, multiplication by L2 has
maximal rank in all degrees.1

1This conjecture was recently proven simultaneously by C. Almeida and A. Andrade [2], and
by J. Migliore and U. Nagel [19].
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5. Multiplication by Lj
for 3 ≤ j ≤ 5

Let L ∈ k[x, y, z] be a general linear form. As noted in the introduction, the
main result of [21] shows that for any ideal generated by powers of linear forms,
×L has maximal rank in all degrees. As we look to multiplication by successively
larger powers of L, we will see that the maximal rank property in all degrees quickly
erodes away. For uniform powers it is already known that if the linear forms are
not general, then ×L2 does not necessarily always have maximal rank ([9], [5]). On
the other hand, for ideals generated by arbitrary powers of four general linear forms
([18]) and for ideals generated by uniform powers of any number of general linear
forms (Theorem 4.4), ×L2 does have maximal rank.

In this section we study what happens for ideals of uniform powers of four general
linear forms under multiplication by L3, L4 and L5. The problem is trivial for k ≤ 2,
so we assume k ≥ 3. In Theorem 5.3 we assume k ≥ 4 because the socle degree is
too small when k = 3; maximal rank holds trivially in all degrees in this case.

In this section we prove our main results, which we separate into the following
theorems. A good part of the proofs will be merged using the setup from section 3.

Theorem 5.1 (Multiplication by L3). Let I = (Lk
1 , . . . , L

k
4), where L1, . . . , L4 are

general linear forms and k ≥ 3.

(i) If k ∼= 0 (mod 3), set k = 3k0. Then for δ = 4k0 we have dim[R/I]δ−3 =
dim[R/I]δ, and ×L3 fails by exactly one to be an isomorphism between these
components. In all other degrees, ×L3 has maximal rank.

(ii) If k �∼= 0 (mod 3), then ×L3 has maximal rank in all degrees.

Theorem 5.2 (Multiplication by L4). Let I = (Lk
1 , . . . , L

k
4), where L1, . . . , L4 are

general linear forms and k ≥ 3.

(i) If k ∼= 0 (mod 3), then ×L4 has maximal rank in all degrees.
(ii) If k ∼= 1 (mod 3), set k = 3k0 + 1. Then ×L4 fails surjectivity by 1 from

degree 4k0−2 to degree 4k0+2. In all other degrees ×L4 has maximal rank.
(iii) If k ∼= 2 (mod 3), set k = 3k0 + 2. Then ×L4 fails injectivity by 1 from

degree 4k0 − 1 to degree 4k0 + 3. In all other degrees, ×L4 has maximal
rank.

Theorem 5.3 (Multiplication by L5). Let I = (Lk
1 , . . . , L

k
4), where L1, . . . , L4 are

general linear forms and k ≥ 4.

(i) If k ∼= 0 (mod 3), set k = 3k0. Then dim[R/I]4k0−4 = dim[R/I]4k0+1 and
×L5 fails by 3 to be an isomorphism. In all other degrees, ×L5 has maximal
rank.

(ii) If k ∼= 1 (mod 3), set k = 3k0 + 1. Then ×L5 fails injectivity by 1 from
degree 4k0 − 3 to degree 4k0 + 2. In all other degrees, ×L5 has maximal
rank.

(iii) If k ∼= 2 (mod 3), set k = 3k0 + 2. Then ×L5 fails surjectivity by 1 from
degree 4k0 − 1 to degree 4k0 + 4. In all other degrees, ×L5 has maximal
rank.

The arguments for all of the cases of Theorems 5.1, 5.2 and 5.3 are more or less
the same, using Theorem 2.1, Lemma 2.2, Remark 2.3 and Lemma 2.4. We will
carefully explain one case and leave the rest to the reader.

Remark 5.4. The multiplication by Lj is reflected in the exact sequence (3.1). We
have four scenarios.
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• To prove that ×Lj : [R/I]δ−j → [R/I]δ is surjective, we have to prove that
dim[R/(I, Lj)]δ = 0.

• To prove that ×Lj : [R/I]δ−j → [R/I]δ fails surjectivity by ε, we have to
prove that we expect surjectivity (i.e. that C1 − C2 ≥ 0 in Remark 3.5)
and that dim[R/(I, Lj)]δ = ε.

• To prove that ×Lj : [R/I]δ−j → [R/I]δ is injective, we have to prove that
dim[R/(I, Lj)]δ = −(C1 − C2).

• To prove that ×Lj : [R/I]δ−j → [R/I]δ fails injectivity by ε, we have to
prove that we expect injectivity (i.e. that C1 −C2 ≤ 0 in Remark 3.5) and
that dim[R/(I, Lj)]δ = −(C1 − C2) + ε.

The issue of the value of C1 − C2 was discussed at the end of section 3. The mere
fact that dim[R/(I, Lj)]δ > 0 does not tell us which case we are in.

With minor differences, the proofs of all parts of these theorems follow the same
lines. We will prove Theorem 5.1(i) and Theorem 5.3(i) here. “Low” values of k
have to be dealt with separately, in keeping with Remark 3.7.

Assume that k = 3k0 and that j is odd. Then by inspection for k = 3, 6, 9 and
by Remark 3.6 for k ≥ 12, we have

a = b = 4k0 +
j − 1

2
− 1 = 4k0 +

j − 3

2
,

and when δ = a we get

C1 − C2 = 0

for both j = 3 and j = 5. This proves the equality of the dimensions, asserted in
Theorem 5.1(i) and Theorem 5.3(i). We compute

dim coker(×Lj)
4k0+

j−3
2

= dim[R/(L
3k0
1 , . . . , L

3k0
4 , Lj)]

4k0+
j−3
2

= dim[℘
k0+

j−1
2

1 ∩ · · · ∩ ℘
k0+

j−1
2

4 ∩ ℘4k0− j+1
2 ]

4k0+
j−3
2

= dim[℘
k0+

j−1
2

−1

1 ∩ · · · ∩ ℘
k0+

j−1
2

−1

4 ∩ ℘4k0− j+3
2 ]

4k0+
j−7
2

Note that the first equality follows from (3.1), the second from Theorem 2.1 and
the third from Remark 2.3. If j = 3, this is

dim[℘k0
1 ∩ · · · ∩ ℘k0

4 ∩ ℘4k0−3]4k0−2 = dim[℘k0−1
1 ∩ · · · ∩ ℘k0−1

4 ∩ ℘4k0−4]4k0−4

(by Remark 2.3). If we denote by �i the equation of the line joining the point
corresponding to ℘i to the point corresponding to ℘, then (�1�2�3�4)

k0−1 defines
the unique non-zero element (up to scalar multiplication) in this vector space, so this
dimension is 1 as claimed, proving the failure of isomorphism claimed in Theorem
5.1(i).

Now assume j = 5. Since k ≥ 4 (else the socle degree is too small for ×L5 to be
non-trivial), we have k0 ≥ 2 and

dim[℘
k0+1
1 ∩ · · · ∩ ℘

k0+1
4 ∩ ℘4k0−4]4k0−1 = dim[℘

k0
1 ∩ · · · ∩ ℘

k0
4 ∩ ℘4k0−5]4k0−3

= dim[℘
k0−1
1 ∩ · · · ∩ ℘

k0−1
4 ∩ ℘4k0−6]4k0−5.

Note that the equalities follow from Remark 2.3. If k0 = 2 this is easily computed
to be 3, as claimed. If k0 ≥ 3, we use the other part of Remark 2.3 to obtain

dim[℘k0−2
1 ∩ · · · ∩ ℘k0−2

4 ∩ ℘4k0−10]4k0−9.

We can continue to apply this remark until we obtain

dim[℘1 ∩ · · · ∩ ℘4 ∩ ℘2]3 = 3
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as desired. This proves the failure of isomorphism claimed in Theorem 5.3(i).
To finish Theorem 5.1(i) and Theorem 5.3(i), we have to prove surjectivity when

δ ≥ b+ 1 and injectivity for δ ≤ a− 1. The proof of Corollary 3.4 shows that it is
enough to prove surjectivity for δ = b+ 1 and injectivity for δ = a− 1.

Note that if we replace b by b + 1 in the calculations above, then the same
argument will yield

dim[℘
k0+

j−1
2

1 ∩ · · · ∩ ℘
k0+

j−1
2

4 ∩ ℘4k0− j+3
2 +1]4k0+

j−7
2 +1,

which is {
dim[℘k0+1

1 ∩ · · · ∩ ℘k0+1
4 ∩ ℘4k0−2]4k0−1 if j = 3,

dim[℘k0+2
1 ∩ · · · ∩ ℘k0+2

4 ∩ ℘4k0−3]4k0
if j = 5,

which reduces to{
dim[℘k0

1 ∩ · · · ∩ ℘k0
4 ∩ ℘4k0−3]4k0−3 if j = 3,

dim[℘k0−1
1 ∩ · · · ∩ ℘k0−1

4 ∩ ℘4k0−6]4k0−6 if j = 5,

and these are both clearly 0, since for a curve of degree d to have a singularity of
degree d at a point p, it must be a union of lines through p (up to multiplicity), and
in both cases such a union of lines cannot account for the remaining singularities.
This gives our surjectivity.

Now let δ = a− 1. We want to show that

dim[R/I]a−1 − dim[R/I]a−1−j = dim[R/(I, Lj)]a−1.

For j = 3, we just have to show the result for k = 3 and k = 6 separately since we
can use Remark 3.6 (adjusted so that a − 1 ≥ j + k − 1) for larger k. For j = 5,
similarly we only have to show the cases k = 3, 6, 9 separately. These are tedious
but easy calculations using the above methods (or on a computer). So we can also
compute the case k0 = 3 when j = 3, and now assume k0 ≥ 4 for both values of j.

So instead assume that a− 1 = 4k0 +
j−1
2 − 2 and let C1 and C2 be the values

obtained from setting δ = a− 1. We get from (3.2) that

C1 − C2 = 3j

(
4k0 +

j − 1

2
− 2

)
− 4(3k0)j − 3

(
j − 1

2

)
+ 3 = −3j.

Now we compute

dim[R/(I, Lj)]a−1 = dim[℘a−k
1 ∩ · · · ∩ ℘a−k

4 ∩ ℘a−j ]a−1

= dim[℘
k0+

j−1
2 −1

1 ∩ · · · ∩ ℘
k0+

j−1
2 −1

4 ∩ ℘4k0− j+1
2 −1]4k0+

j−1
2 −2.

As long as k0 > j−1
2 + 1, which is true in our case, we can split off four lines.

First assume j = 3. We have

dim[℘k0
1 ∩ · · · ∩ ℘k0

4 ∩ ℘4k0−3]4k0−1.

We continue to split off four lines at a time, n times. We can do this as long as

(k0 − n) + (4k0 − 3− 4n) > 4k0 − 1− 4n;

i.e. we can do this k0 − 2 times. We reduce to

dim[℘2
1 ∩ · · · ∩ ℘2

4 ∩ ℘5]7.

Applying Lemma 2.2 twice, we see this is equal to 9 = 3j, as desired.
When j = 5, we have

dim[℘k0+1
1 ∩ · · · ∩ ℘k0+1

4 ∩ ℘4k0−4]4k0
.
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We can split off four lines at a time, arriving at

dim[℘4
1 ∩ · · · ∩ ℘4

4 ∩ ℘8]12.

Again applying Lemma 2.2 twice, we obtain 15 = 3j as desired.

Remark 5.5. For ×Lj with j ≥ 6, we have checked using [4] that failure of maximal
rank occurs in more than one degree for all sufficiently large values of k. Of course
this can be confirmed with our methods.

6. Final remarks

As a nice application of our approach to analyze whether ideals generated by
powers of linear forms have SLP we have the following result.

Proposition 6.1. Let L1, · · · , L5 ∈ R be general linear forms and k ≥ 3. Consider
the ideals I = (Lk

1 , · · · , Lk
4) and J = (Lk

1 , · · · , Lk
4 , L

k
5). Then, R/I and R/J have

the same socle degree, namely, 2k − 2.

Proof. As we pointed out at the beginning of section 3 the socle degree of R/I is
2k − 2. To prove that R/J has socle degree 2k − 2 it is enough to check that

×Lk
5 : [R/I]k−2 −→ [R/I]2k−2

is not surjective or, equivalently, that [R/J ]2k−2 �= 0. Arguing as in the previous
sections, we have

dim[R/J ]2k−2 = dim[℘k−1
1 ∩ · · · ∩ ℘k−1

5 ]2k−2 = 1,

which proves what we want. �

Remark 6.2. It is natural to ask what happens for ideals generated by uniform
powers of more than four general linear forms. Here is what happens for 6 general
linear forms, at least experimentally using [4]. Here, ×Lj fails to have maximal
rank in all degrees for the following values of k (taking 3 ≤ j ≤ 10, 3 ≤ k ≤ 30).

j k
3 5, 10, 15, 20, 25, 30
4 7, 8, 12, 13, 17, 18, 22, 23, 27, 28
5 9, 10, 11, 14, 15, 16, 19, 20, 21, 24, 25, 26, 29, 30
6 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29
7 11, . . . , 30
8 10, 13, . . . , 30
9 12, 13, 15, . . . , 30
10 14, . . . , 30

It would be very interesting to extend the approach of Theorem 4.4 to handle more
than four general linear forms and prove an asymptotic result following the patterns
visible here.

Remark 6.3. The reader will note that some care was taken in this paper to pre-
cisely identify various important degrees and to compute Hilbert functions in those
degrees in order to obtain our results. Very recently, the paper [19] appeared, in
which it was shown that often one can find shortcuts to simplify some of these
arguments.
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