Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Congruence property in orbifold theory


Authors: Chongying Dong and Li Ren
Journal: Proc. Amer. Math. Soc. 146 (2018), 497-506
MSC (2010): Primary 17B69
DOI: https://doi.org/10.1090/proc/13748
Published electronically: August 31, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ V$ be a rational, selfdual, $ C_2$-cofinite vertex operator algebra of CFT type, and $ G$ a finite automorphism group of $ V.$ It is proved that the kernel of the representation of the modular group on twisted conformal blocks associated to $ V$ and $ G$ is a congruence subgroup. In particular, the $ q$-character of each irreducible twisted module is a modular function on the same congruence subgroup. In the case $ V$ is the Frenkel-Lepowsky-Meurman's moonshine vertex operator algebra and $ G$ is the monster simple group, the generalized McKay-Thompson series associated to any commuting pair in the monster group is a modular function.


References [Enhancements On Off] (What's this?)

  • [ABD] Toshiyuki Abe, Geoffrey Buhl, and Chongying Dong, Rationality, regularity, and $ C_2$-cofiniteness, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3391-3402. MR 2052955, https://doi.org/10.1090/S0002-9947-03-03413-5
  • [ADJR] C. Ai, C. Dong, X. Jiao and L. Ren, The irreducible modules and fusion rules for the parafermion vertex operator algebras, arXiv:1412.8154.
  • [B] Richard E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), no. 2, 405-444. MR 1172696, https://doi.org/10.1007/BF01232032
  • [C] John L. Cardy, Operator content of two-dimensional conformally invariant theories, Nuclear Phys. B 270 (1986), no. 2, 186-204. MR 845940, https://doi.org/10.1016/0550-3213(86)90552-3
  • [CM] S. Carnahan and M. Miyamoto, Regularity of fixed-point vertex operator subalgebras, arXiv:1603.05645.
  • [CN] J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), no. 3, 308-339. MR 554399, https://doi.org/10.1112/blms/11.3.308
  • [D] Chongying Dong, Representations of the moonshine module vertex operator algebra, Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992) Contemp. Math., vol. 175, Amer. Math. Soc., Providence, RI, 1994, pp. 27-36. MR 1302010, https://doi.org/10.1090/conm/175/01835
  • [DGH] Chongying Dong, Robert L. Griess Jr., and Gerald Höhn, Framed vertex operator algebras, codes and the Moonshine module, Comm. Math. Phys. 193 (1998), no. 2, 407-448. MR 1618135, https://doi.org/10.1007/s002200050335
  • [DLM1] Chongying Dong, Haisheng Li, and Geoffrey Mason, Compact automorphism groups of vertex operator algebras, Internat. Math. Res. Notices 18 (1996), 913-921. MR 1420556, https://doi.org/10.1155/S1073792896000566
  • [DLM2] Chongying Dong, Haisheng Li, and Geoffrey Mason, Regularity of rational vertex operator algebras, Adv. Math. 132 (1997), no. 1, 148-166. MR 1488241, https://doi.org/10.1006/aima.1997.1681
  • [DLM3] Chongying Dong, Haisheng Li, and Geoffrey Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), no. 3, 571-600. MR 1615132, https://doi.org/10.1007/s002080050161
  • [DLM4] Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1-56. MR 1794264, https://doi.org/10.1007/s002200000242
  • [DLN] Chongying Dong, Xingjun Lin, and Siu-Hung Ng, Congruence property in conformal field theory, Algebra Number Theory 9 (2015), no. 9, 2121-2166. MR 3435813, https://doi.org/10.2140/ant.2015.9.2121
  • [DM] Chongying Dong and Geoffrey Mason, On quantum Galois theory, Duke Math. J. 86 (1997), no. 2, 305-321. MR 1430435, https://doi.org/10.1215/S0012-7094-97-08609-9
  • [DRX] C. Dong, L. Ren, and F. Xu, On orbifold theory, arXiv:1507.03306.
  • [DY] Chongying Dong and Gaywalee Yamskulna, Vertex operator algebras, generalized doubles and dual pairs, Math. Z. 241 (2002), no. 2, 397-423. MR 1935493, https://doi.org/10.1007/s002090200421
  • [DYu] Chongying Dong and Nina Yu, $ \mathbb{Z}$-graded weak modules and regularity, Comm. Math. Phys. 316 (2012), no. 1, 269-277. MR 2989460, https://doi.org/10.1007/s00220-012-1543-7
  • [EMS] J. Ekeren, S. Möller, and N. Scheithauer, Construction and classification of holomorphic vertex operator algebras, arXiv:1507.08142
  • [FHL] Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494, https://doi.org/10.1090/memo/0494
  • [FLM] Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
  • [G] Robert L. Griess Jr., The friendly giant, Invent. Math. 69 (1982), no. 1, 1-102. MR 671653, https://doi.org/10.1007/BF01389186
  • [KP] Victor G. Kac and Dale H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), no. 2, 125-264. MR 750341, https://doi.org/10.1016/0001-8708(84)90032-X
  • [L] Haisheng Li, Some finiteness properties of regular vertex operator algebras, J. Algebra 212 (1999), no. 2, 495-514. MR 1676852, https://doi.org/10.1006/jabr.1998.7654
  • [M] Masahiko Miyamoto, $ C_2$-cofiniteness of cyclic-orbifold models, Comm. Math. Phys. 335 (2015), no. 3, 1279-1286. MR 3320313, https://doi.org/10.1007/s00220-014-2252-1
  • [MT] Masahiko Miyamoto and Kenichiro Tanabe, Uniform product of $ A_{g,n}(V)$ for an orbifold model $ V$ and $ G$-twisted Zhu algebra, J. Algebra 274 (2004), no. 1, 80-96. MR 2040864, https://doi.org/10.1016/j.jalgebra.2003.11.017
  • [N] S. Norton, Generalized moonshine, Proc. Symp. Pure. Math., American Math. Soc. 47 (1987), 208-209.
  • [R] S. Mandelstam, Introduction to string models and vertex operators, Vertex operators in mathematics and physics (Berkeley, Calif., 1983) Math. Sci. Res. Inst. Publ., vol. 3, Springer, New York, 1985, pp. 15-35. MR 781371, https://doi.org/10.1007/978-1-4613-9550-8_2
  • [X] Xiaoping Xu, Introduction to vertex operator superalgebras and their modules, Mathematics and its Applications, vol. 456, Kluwer Academic Publishers, Dordrecht, 1998. MR 1656671
  • [Z] Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237-302. MR 1317233, https://doi.org/10.1090/S0894-0347-96-00182-8

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B69

Retrieve articles in all journals with MSC (2010): 17B69


Additional Information

Chongying Dong
Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064

Li Ren
Affiliation: School of Mathematics, Sichuan University, Chengdu 610064, People’s Republic of China

DOI: https://doi.org/10.1090/proc/13748
Received by editor(s): October 17, 2016
Received by editor(s) in revised form: March 27, 2017
Published electronically: August 31, 2017
Additional Notes: The first author was supported by a NSF grant DMS-1404741 and China NSF grant 11371261
The second author was supported by China NSF grant 11301356
Communicated by: Kailash C. Misra
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society