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ON THE CLASSIFICATION OF PROLONGATIONS

UP TO ENGEL HOMOTOPY
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(Communicated by Ken Bromberg)

Abstract. In (Casals, Pérez, del Pino, and Presas, preprint) it was shown
that Engel structures satisfy an existence h–principle, and the question of
whether a full h–principle holds was left open. In this note we address the
classification problem, up to Engel deformation, of Cartan and Lorentz pro-
longations. We show that it reduces to their formal data as soon as the turning
number is large enough.

Somewhat separately, we study the homotopy type of the space of Cartan
prolongations, describing completely its connected components in the over-
twisted case.

1. Introduction. What can you find in this paper?

A 2–plane field in a 4–manifold is called an Engel structure if it is everywhere
maximally non–integrable. These structures conform to the one exceptional family
in Cartan’s list of topologically stable distributions: unlike the other structures
in the list – line fields, contact structures, and even-contact structures – Engel
structures are a phenomenon particular to a single dimension, dimension 4. For
a long time, except for a few constructions arising from contact and Lorentzian
geometry, not much was known about their existence and classification.

An Engel structure induces in its ambient manifold a complete flag satisfying
some compatibility conditions; this we call a formal Engel structure. Under ori-
entability assumptions, this yields a parallelization. A first breakthrough came
with Vogel’s thesis [Vo], in which he was able to show that any parallelizable man-
ifold admits an Engel structure. Then, in [CPPP] it was shown that the natural
inclusion Engel → FEngel of the space of Engel structures into the space of for-
mal Engel structures is a surjection in homotopy groups. Whether an h–principle
relative to the parameter holds remains an open question.

This note aims to provide some insight into the classification problem by par-
ticularising to the case of Cartan and Lorentz prolongations : the classical exam-
ples of Engel structures arising on S

1–bundles as projectivisations of contact and
Lorentzian manifolds, respectively.
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In section 3 we describe the homotopy type of the space of Cartan prolongations
Cartan. Denote by Cartan(ξ) the prolongations lifting the contact structure ξ;
denote by Cartan([ξ]) those prolongations lifting contact structures isotopic to ξ.
We are able to compute the homotopy groups of Cartan([ξ]); this is particularly
simple when ξ is overtwisted (see Theorem 1). Klukas and Sahamie have already
described the connected components of Cartan(ξ) in [KS].

Having understood homotopies through Cartan prolongations, which is a more
restrictive case of independent interest, in section 4 we turn to homotopies through
Engel structures. Prolongations have a well defined invariant called the turning
number. Theorem 3 shows that, as soon as the turning number is large enough, the
classification question reduces to the classification as formal Engel structures. The
main ingredient is the work of Little [Li] and Saldanha [Sal].

2. Preliminaries

Henceforth all manifolds and distributions considered will be smooth. Unless
explicitly stated otherwise, manifolds will be closed. To simplify the discussion,
both manifolds and distributions will be orientable and often oriented. Our ar-
guments would carry through taking suitable double or quadruple covers in the
non–orientable case. The spaces of maps considered are endowed with the C∞–
topology.

Given two distributions η and ν over the manifold M , we write

[η, ν] =
⋃

p∈M

{[u, v]p ∈ TpM | u ∈ Γ(η), v ∈ Γ(ν)} ⊂ TM

for their Lie bracket, which is not necessarily a distribution. Note that η ⊂ [η, η].

2.1. Definitions.

Definition 1. Let N be a 3–dimensional manifold. A 2–dimensional distribution
ξ ⊂ TN is said to be a contact structure if it is everywhere non–integrable. That
is, [ξ, ξ] = TN .

Definition 2. Let M be a 4–dimensional manifold. A 3–dimensional distribution
E ⊂ TM is said to be an even–contact structure if it is everywhere non–integrable,
i.e. if [E , E ] = TM .

Definition 3. Let M be a 4–dimensional manifold. A 2–dimensional distribution
D ⊂ TM is said to be an Engel structure if it is everywhere maximally non–
integrable, i.e. if E = [D,D] is an even–contact structure.

Before we discuss what the state of the art is regarding Engel structures, let us
recall some standard results:

Proposition 1. Let M be a 4–dimensional manifold. Let E ⊂ TM be an even–
contact structure.

• There is a uniquely defined line field W ⊂ E given by the equation [W , E ] ⊂
E . W is called the kernel of the even contact structure.

• Given some Engel structure D ⊂ TM satisfying E = [D,D], it holds that
W ⊂ D.
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• Let N ⊂ M be a (possibly open) 3–dimensional submanifold of M that is
transverse to W. Then, ξ = TN ∩E is a contact structure in N . Addition-
ally, given D as above, X = TN ∩ D ⊂ ξ is a distinguished legendrian line
field.

• There is a canonical isomorphism given by the Lie bracket:

(1) det(E/W) = TM/E .
Additionally, given D as above, there is a second isomorphism:

(2) det(D) = E/D.

Equation (1) shows that orientability of TM is equivalent to orientability of
W . If E arises from some Engel structure D, E is canonically oriented by equation
(2). Hence, choosing orientations for D and M yields a parallelisation of M up to
homotopy. We are interested precisely in this case.

2.2. Formal Engel structures. Proposition 1 motivates the following definition:

Definition 4. Let M be a 4–manifold. A complete flag W ⊂ D ⊂ E ⊂ TM
endowed with bundle isomorphisms as in equations (1) and (2) is said to be a
formal Engel structure.

The following was the main result in [CPPP]:

Proposition 2. Let M be a smooth 4–manifold. The inclusion

i : Engel(M) → FEngel(M)

of the space of Engel structures into the space of formal Engel structures is surjective
in all homotopy groups.

The proposition completely solves the existence problem for Engel structures.
This note intends to shed some light on their classification.

2.3. Curves in the 2–sphere and the Engel local model. Consider a (possibly
open) 3–manifold N . We focus our attention now on Engel structures on the
product manifold N × [0, 1] with coordinates (p, t). We are interested in those 2–
distributions D of the form 〈∂t〉 ⊕ X, with X a vector field tangent to the slices
N × {t}. We write X ′ = [∂t, X] and X ′′ = [∂,X ′].

Given some point p ∈ N , one can use the flow of ∂t to define a trivialisation that
identifies S(T(p,t)N × {t}) with S

2 in a t–independent fashion. Along each curve
{p} × [0, 1], the vector fields X,X ′, X ′′ can be regarded as curves Xp, X

′
p, X

′′
p :

[0, 1] → S
2. Given a curve in S

2, we say that one of its points is an inflection point
if the normal curvature of the curve is vanishing at the point. If the curvature is
everywhere positive, the curve is said to be convex ; if it is everywhere negative, it
is said to be concave.

Proposition 3 ([CPPP]). The 2–distribution D = 〈∂t〉 ⊕ X in N × [0, 1] is not
integrable at a point (p, t) if and only if Xp is immersed at time t.

Additionally, D is Engel at (p, t) if and only if at least one of the following two
conditions holds:

(1) the curve Xp has no inflection point at time t,
(2) 〈Xq(t), X

′
q(t)〉 = [D,D]∩ T (N × {t}) is a contact structure in Op(p)× {t}.
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The first condition does not depend on the framing chosen for TN , since convex-
ity is preserved by transformations in PGL(2). We will normally choose framings
that make the second condition easy to check.

Remark 1. We can also understand formal Engel structures in this setting. Indeed,
suppose we have a oriented flag W ⊂ D ⊂ E with W = 〈∂t〉 in D

3 × [0, 1]. Then, it
can be regarded as a D

3–family of formal immersions of [0, 1] into S
2. Proposition

3 shows that they are immersions if and only if E = [D,D]. If they are additionally
convex or concave, the plane field D is Engel.

2.4. Prolongations. The canonical examples of Engel structures can be under-
stood within the framework of Proposition 3:

Example 1. Let (N, ξ) be a contact 3–manifold. The total space of the S1–bundle
π : S(ξ) → N carries an Engel structure given by the universal family construction,
called the (oriented) Cartan prolongation. Recall that points in S(ξ) are pairs
(p, L) with p ∈ N and L an oriented line in ξp. The Engel structure is simply
D(p,L) = d(p,L)π

−1(L).

In particular, given a disc D
3 ⊂ N , one can select a framing {Y, Z} for ξ. Then,

in D
3 × S

1, with coordinates (p, L = [cos(t)Y + sin(t)Z]), t ∈ [0, 2π), the definition
above yields the following structure:

D(p,L) = 〈∂t, cos(t)Y + sin(t)Z〉,
which satisfies the second condition from Proposition 3. Note that W = 〈∂t〉.

Example 2. Let (N, g) be a Lorentzian manifold of signature (2, 1). We denote
by C ⊂ TN the subset given at each point p ∈ N by the light–like cone Cp. To
C one can associate the S

1–bundle π : S(C) → N given by quotienting using the
(R \ {0})–action of rescaling. It can be endowed with a canonical Engel structure
D(p, L) = d(p,L)π

−1(L), where L is a line in Cp. D is called the Lorentz prolongation.

Find a disc D
3 ⊂ N and choose an orthonormal framing {V, Y, Z} with Y and

Z space–like and V time–like. Then, the construction we just described can be
written as

D(p,L) = 〈∂t, V + cos(t)Y + sin(t)Z〉, t ∈ [0, 2π).

It satisfies the first condition from Proposition 3. Unlike the previous example, W
is always transverse to 〈∂t〉.

Up to homotopy, there is a well defined plane associated to each Lorentzian met-
ric: any plane that is space–like for the metric. We will be interested in considering
Lorentzian metrics whose planes are in the same homotopy class as some given
contact structure.

3. The space of Cartan prolongations

For the rest of the article fix a closed, orientable 3–manifold N . Denote by C-Strs
the space of oriented contact structures on it. It naturally decomposes into several
components C-Strs(c) corresponding to contact structures having a particular Euler
class c ∈ H2(N,Z). We can further denote C-Strs(ξ) for the connected component
containing the contact structure ξ ∈ C-Strs.

Each oriented S
1–bundle over N is given by its Euler class c; denote its total

space by N(c). Suggestively, denote Cartan(c) for the space of all oriented Engel
structures on N(c) having the fibre direction as their kernel. Write π : N(c) → N
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for the projection. Any Engel structure D ∈ Cartan(c) defines a contact structure
ξ = dπ(E) on N , since W = ker(dπ). Orient the line field W using the orientation
of the fibre. Then, ξ inherits an orientation from E/W . Hence, there is a projection

Cartan(c) → C-Strs .

It is immediate that the Euler class of ξ must be of the form kc, with k > 0. This
integer is called the turning number and is computed as follows. Take any S

1–fibre
of N(c). Find some S

1–invariant, positively oriented framing of E/W . Compute
the degree of D/W with respect to this framing. The resulting number k does not
depend on the choices involved and is necessarily positive.

Denote by Cartan(c, k) ⊂ Cartan(c) the space of Cartan prolongations having
turning number k. Write Cartan(c, k, ξ) ⊂ Cartan(c, k) for the subspace of those
that additionally project down to ξ ∈ C-Strs. Observe that a path of Cartan
prolongations projects down to a path of contact structures; write Cartan(c, k, [ξ])
for the subspace of those prolongations that lift contact structures homotopic to ξ.

Denote by Cover(c, k) the space of k–fold covers from N(c) to N(kc), i.e. posi-
tively oriented fibrewise submersions with k sheets lifting the identity on N . Once
we fix a bundle isomorphism between the sphere bundle of ξ and N(kc), we can
construct the following homeomorphism:

f : Cartan(c, k, ξ) → Cover(c, k)

f(D)(p, L) = (p, [dπp(D(p, L))]),

where [dπp(D(p, L))] denotes the oriented line in ξp determined by projecting down
D(p, L). Note that f(D) pulls back the canonical Cartan prolongation in N(kc) ∼=
S(ξ) to D.

All the contact structures in a neighbourhood of ξ can be identified with ξ itself
using a projection along a complementary line field. This implies that the corre-
sponding sphere bundles can consistently be identified with N(kc). This readily
implies that

Cartan(c, k) → C-Strs(kc) and Cartan(c, k, [ξ]) → C-Strs(ξ)

are locally trivial fibrations with fibre Cover(c, k).
Our aim in this section is to understand the homotopy type of the spaces

Cartan(c, k, [ξ]) using the fibration structure we have just presented. Before we
provide a precise statement, we need some additional setup.

3.1. Prolongations over a fixed contact structure. First we will describe the
homotopy groups of the space Cartan(c, k, ξ) ∼= Cover(c, k), the fibre. The π0 case
was already described in [KS].

Observe that, by fixing some element τ ∈ Cover(c, k), one readily obtains an
inclusion Cover(kc, 1) ⊂ Cover(c, k) by making τ act by pullback. Since Cover(kc, 1)
is a group that contains the gauge transformations G(kc) of N(kc) as an abelian
subgroup, we can regard G(kc) as a subspace of Cover(c, k) as well.

Lemma 1. For any τ ∈ Cover(c, k), the inclusions

G(kc) → Cover(kc, 1) → Cover(c, k)

are weak homotopy equivalences.
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Proof. Let φ : (Dj , ∂Dj , 1) → (Cover(c, k),G(kc), τ ) be a continuous function rep-
resenting an element in πj(Cover(c, k),G(kc), τ ). It is sufficient to show that it
retracts to G(kc).

Restricted to an i–simplex Δi of N , the bundles N(c) and N(kc) are trivial.
There, φ can be thought of as a (Δi×D

j)–family of positively oriented submersions
of S1 onto itself with k–sheets. The SO(2)–bundle structure on N(c) can be taken
to be the one induced from N(kc) by using τ , and hence τ can be assumed to be
the map zk on each fibre. The elements of G(kc) ⊂ Cover(c, k) are those of the form
φ ◦ zk with φ a (Δi × D

j)–family of rotations.
Assume that a suitable homotopy has already been found in the (i−1)th skeleton

of N . The (Δi×D
j)–family of submersions of S1 onto itself can be lifted to define a

family in Diff+(S1) such that its boundary lies in S
1, the rotations. Recalling that

S
1 → Diff+(S1) is a weak homotopy equivalence concludes the inductive step. �

Lemma 2. The homotopy groups of G(kc), and hence of Cover(c, k), are given by

π0 = H1(N,Z), π1 = Z, πj = 0, for j > 1.

Proof. Recall that S1 is the classifying space for the discrete group Z. Then

π0(G(N)) = π0(Maps(N, S1)) = H1(N,Z).

In general, it is a result of Thom [Th] that πj(Maps(N,K(G,n))) = Hn−j(N,G).
�

Remark 2. Lemma 2 can be proved using obstruction theory as in Lemma 1. This
is useful to provide a geometrical interpretation of the result. Let us outline the
argument, which is similar to the one presented in [KS]. We need to fix a basepoint
τ ∈ Cover(c, k).

An explicit identification between π0(Cover(c, k)) and H1(N,Z) can be given as
follows. Take an element ν ∈ Cover(c, k). Over each loop γ ⊂ N , the bundles N(c)
and N(kc) trivialise. Given any section s ∈ Γ(N(c)|γ), one can compute the degree
of ν(s) with respect to τ (s). This gives a homomorphism H1(N,Z) → Z and thus
an element in H1(N,Z). This element only depends on the connected component
of ν; we call it the horizontal distance between τ and ν.

Similarly, let νt ∈ Cover(c, k), t ∈ S
1, be a loop with ν1 = τ . Take a point

p ∈ N and lift it to a point P ∈ N(c). We say that the degree of t → νt(P ),
t ∈ S

1, as a loop in the fibre of N(kc) over p is the looping number. This identifies
π1(Cover(c, k)) with Z.

Let ξ be a contact structure with Euler class kc. Recall that our objective is
to understand the homotopy type of Cartan(c, k, [ξ]). From these lemmas and the
homotopy long exact sequence for the fibration, it easily follows that

πj(Cartan(c, k, [ξ])) = πj(C-Strs(ξ)), for j > 2.

However, the cases of π0, π1, and π2 are more subtle. The key is understanding the
connecting morphism

πj(C-Strs(ξ)) → πj−1(Cover(c, k)) j = 1, 2,

which is not zero in general.
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3.2. Formal Cartan prolongations. We will now introduce two spaces of geo-
metrical structures whose homotopy groups are easy to compute. We will be able
to regard Cartan(c, k, [ξ]) as a subspace within them. This will allow us to state
and prove our main theorem about the spaces Cartan(c, k, [ξ]).

3.2.1. Prolongations of plane fields. Denote by Planes the space of oriented plane
fields in N . Write Planes(c) for those of Euler class c ∈ H2(N,Z) and Planes(ξ)
for the connected component containing the plane field ξ ∈ Planes. By fixing a
parallelisation of N , Planes can be readily identified with Maps(N, S2).

We write FCartan(c) for the space of oriented 2–distributions inN(c) that contain
the fibre direction, are everywhere non–integrable (but not necessarily maximally),
and whose induced 3–distribution obtained by Lie bracket is preserved by flows
along the fibre. The elements in FCartan(c) are called formal Cartan prolongations.

Let D ∈ FCartan(c). Then, by definition, ξ = dπ(E = [D,D]) is a plane field in
N , ξ being contact amounts to D being an element in Cartan(c). The orientation of
E/W orients ξ, just as in the case of Cartan prolongations. The turning number k
can also be defined: we write FCartan(c, k) ⊂ FCartan(c) for the subspace of those
formal Cartan prolongations with turning number k; they necessarily project down
to plane fields of Euler class kc. Similarly, write FCartan(c, k, [ξ]) for those lifting
plane fields homotopic to ξ.

There are locally trivial fibrations:

Cover(c, k) −→ FCartan(c, k) −→ Planes(kc),

Cover(c, k) −→ FCartan(c, k, [ξ]) −→ Planes(ξ),

where Cover(c, k) is defined as before.

3.2.2. Prolongations of rank 2 bundles. There is a natural inclusion of the space of
oriented plane fields into the space of oriented rank 2 bundles:

Maps(N, S2) ∼= Planes → Bundles ∼= Maps(N,Gr(2,∞)),

where Gr(2,∞) is the infinite Grassmanian of oriented 2–planes, which is the
Eilenberg–Maclane space K(2,Z). We write Bundles(c) for the subspace of bundles
having Euler class c ∈ H2(N,Z). Let V(2,∞) be the Stiefel manifold of ordered
pairs of orthonormal vectors in R

∞; recall that there is a tautological fibration

S
1 → V(2,∞) → Gr(2,∞).

We will now explain what a prolongation is in this setting. We define FCartan∞(c)
to be the space of maps of N(c) into V(2,∞) which are lifts of maps N → Gr(2,∞)
and are fibrewise submersions respecting the orientation. This space has several
components FCartan

∞(c, k) distinguished by the Euler class kc of the underlying
2–plane bundle, k > 0.
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Let ξ be an oriented plane field of Euler class kc. The following diagram com-
mutes:

Cover(c, k) Cartan(c, k, [ξ]) C-Strs(ξ)

Cover(c, k) FCartan(c, k, [ξ]) Planes(ξ)

Cover(c, k) FCartan
∞(c, k) Bundles(kc)

∼=

∼=

where each row is a fibration.

3.3. Statement of the theorem. Let ξ be a contact structure of Euler class kc.
According to the commutative diagram above, the connecting morphism

πj(C-Strs(ξ)) → πj−1(Cover(c, k))

factors through πj(Bundles(kc)). This motivates us to consider the subgroup

πtrivial
j (C-Strs(ξ)) = ker(πj(C-Strs(ξ)) → πj(Bundles(kc))).

We can now state the main result of the section.

Theorem 1. Let ξ be an overtwisted contact structure of Euler class kc. Then:

π0(Cartan(c, k, [ξ])) = π0(C-Strs(ξ))×H1(N,Z2),

π1(Cartan(c, k, [ξ])) = πtrivial
1 (C-Strs(ξ))× Z2,

π2(Cartan(c, k, [ξ])) = πtrivial
2 (C-Strs(ξ)),

πj(Cartan(c, k, [ξ])) = πj(C-Strs(ξ)) if j > 2.

The term H1(N,Z2) is the mod 2 reduction of the horizontal distance. Similarly,
the term Z2 is the parity of the looping number.

The proof relies on understanding the inclusion πj(C-Strs(ξ)) → πj(Bundles(kc)).
For an arbitrary contact structure ξ this is very difficult. However, if ξ is assumed
to be overtwisted the problem simplifies considerably. This flexibility is provided
by the well–known result of Eliashberg regarding the classification of overtwisted
contact structures:

Lemma 3 ([El]). Let ξ be an overtwisted contact structure. The inclusion

C-Strs(ξ) → Planes(ξ)

is surjective in all homotopy groups, where ξ is assumed to be the basepoint. Addi-
tionally, this map is a bijection at the level of connected components.

The inclusion is a weak homotopy equivalence if one additionally fixes the over-
twisted disc, but we will not need this fact.
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3.4. Proof of the theorem.

3.4.1. The connecting morphism for bundles. The next two lemmas show that the
connecting morphism is a bijection in the case of bundles.

Lemma 4. The connecting morphism πj(Bundles(kc)) → πj−1(Cover(c, k)) is in-
jective.

Proof. Equivalently, we will show that the morphism πj(FCartan
∞(c, k)) →

πj(Bundles(kc)) is zero. Take any element in πj(FCartan
∞(c, k)) and find a repre-

sentative K ⊂ FCartan
∞(c, k). The class [K] maps to [ξ], where ξ is the j–sphere of

2–plane bundles underlying K. From the definition of formal Cartan prolongation
(for bundles), we have that the circle bundle of ξ is k–covered by the trivial family
of circle bundles based on N(c). We deduce (for instance, using functoriality of the
Euler class) that ξ must be trivial as a family as well, so [ξ] = 0. �

Similarly:

Lemma 5. The connecting morphism πj(Bundles(kc)) → πj−1(Cover(c, k)) is sur-
jective.

Proof. Take ξ to be the basepoint in Bundles(kc) and fix a lift τ ∈ FCartan
∞(c, k).

Take a class G ∈ πj−1(Cover(c, k)), which we can think of as a homotopy class in
the gauge transformations of ξ, by Lemma 1.

Lemma 2 implies that G is given by a cohomology class g ∈ H2−j(N,Z). Simi-
larly, ξ is given, up to bundle isomorphism, by its Euler class e ∈ H2(N,Z). Recall
that the Künneth formula yields an isomorphism

H2−j(N,Z)⊕H2(N,Z)
(α,β)−→ H2(N × S

j ,Z).

Consider the unique, up to homotopy, j–sphere K of bundles based on ξ and having
α(g) + β(e) as its Euler class when regarded as a plane bundle over N × S

j . We
claim that the connecting morphism maps [K] to G.

Take j = 1. Write P : N × S
1 → N . Write Q : N × [0, 1] → N × S

1 for the
obvious quotient map. There is a unique, up to homotopy, isomorphism between
Q∗K and Q∗P ∗ξ extending the identification (Q∗K)|N×{0} = ξ. The identification
of (Q∗K)|N×{0} with (Q∗K)|N×{1} yields a gauge transformation φ of ξ.

We claim that φ is a representative of G. Recall that the Euler class of a 2–
plane bundle over the torus can be computed as follows: find a section over the
complement of the meridian γ and compare the degrees of the two resulting sections
over γ. Now let γ be some embedded loop in N , and let T be the corresponding
torus on N × S

1. By construction, K|T has Euler class α(g)|T , which implies that
φ|γ is described by g|γ . Since gauge transformations are characterised by their
action over loops, the claim follows.

The case j = 2 is similar. In that case, we have to study what happens over a
single point x ∈ N and the corresponding sphere {x} × S

2. �
3.4.2. Non–trivial families of plane fields. The following proposition shows that
there are many families of plane fields which are non–trivial as families of vector
bundles.

Proposition 4. Let dj = 2vj ∈ H2(N×S
j ,Z), j = 1, 2. Fix ξ ∈ Planes with Euler

class dj |N . Then, there is a sphere Kj in Planes based at ξ whose Euler class as a
2–plane bundle over N × S

j is dj.
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Proof. Assume j = 1. Take a CW–decomposition of N with only one top cell.
Take the CW–decomposition of S1 with a single 1–cell and x the unique 0–simplex.
Denote by T the product CW–decomposition in N × S

1. Write T ∗ ⊂ T for the
collection of cells not contained in N × {x}. Deform ξ to be constant (as a map
into the Grassmannian) over the 1–skeleton of N . We define (K1)|N×{x} = ξ and
we aim to extend it to T ∗.

Over the 1–cells, K1 can be defined to be constant, like ξ. Over a 2–cell Δ2, we
define it to be a map into S

2 of degree φ1(Δ2), where [φ1] = v1. This provides the
desired Euler class. Over the 3–skeleton of T ∗, the obstruction for extending is given
by dφ1 by construction, which evaluates zero over the cells of T ∗. This leaves the
single 4–cell Δ4 to fill. The obstruction is the degree of the map K1 : ∂Δ4 → S

2.
We can trace back our steps and modify K1 over some 3–cell to make sure this
degree is zero.

Assume j = 2. Then, the isomorphism

H2(S2,Z)⊕H2(N,Z)
(α,β)−→ H2(N × S

2,Z)

indicates that we can simply compute the Euler class of any plane bundle by eval-
uating separately on N × {x} or {p} × S

2. Take the manifold N × D
2: over it, we

have (the pullback of) the bundle TN which is trivisalised as the trivial R3–bundle;
as a 2–distribution inside, we define K2, which is D

2–invariant and equal to ξ on
every N × {x}. We aim to glue two copies of N × D

2 so that the glued copies of
K2 have the desired Euler class when restricted to each {p} × S

2.
Consider the loop S

1 → SO(2) realising the Euler class α−1(d2) ∈ H2(S2,Z)
through the clutching construction and denote by φ : S1 → SO(3) its inclusion into
SO(3). Observe that, since d2 = 2v2, φ is contractible in SO(3). We can define
then another map Φ : N × S

1 → SO(3) so that:

• Φ|{p}×S1 = φ, up to an SO(3)–transformation that only depends on p,
• Φ fixes (not pointwise) the plane ξ.

What we are essentially saying is that φ was a family of rotations of the XY –plane
that was lifted to R

3, and Φ is a p–dependent family of rotations that looks the
same but, instead, the plane that Φ|{p}×S1 rotates is ξp. Since φ was contractible, so

is Φ, so the resulting R
3–bundle is trivial. However, in each {p}×S

2 the restriction
of ξ has been twisted to have Euler class α−1(d2), proving the claim. �

3.4.3. The proof of the theorem. Let ξ be an overtwisted contact structure and fix
τ ∈ Cartan(c, k, ξ) a basepoint in the fibre over ξ. The existence of τ identifies the
connected components of Cartan(c, k, ξ) ∼= Cover(c, k) with H1(N,Z), as in Lemma
2.

Let us study the connecting morphism

π1(C-Strs(ξ)) → π0(Cover(c, k)).
Using Lemma 4 we deduce that its kernel is the space πtrivial

1 (C-Strs(ξ)). Let
us compute its image. Let g ∈ Cover(c, k) and denote by ν the corresponding
prolongation in Cartan(c, k, ξ). By Lemma 5 there is a loop of vector bundles, all of
them of Euler class kc, producing the class of g through the connecting morphism
π1(Bundles(kc)) → π0(Cover(c, k)). By Proposition 4, this loop can be realised by a
loop of plane fields based on ξ if and only if [g] ∈ H1(N,Z) is even. Then, Lemma
3 allows us to turn this into a loop of contact structures ξt, t ∈ S

1, based on ξ1 = ξ.
The case π2(C-Strs(ξ)) → π1(Cover(c, k)) is analogous. �
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4. The classification up to Engel homotopy

The previous section dealt with Cartan prolongations. We will now allow homo-
topies through more general Engel structures (that are, however, still tangent to
the fibre direction, so they can be regarded as generalised prolongations).

4.1. A warm–up exercise. Let us start by working out a particular case that is
of interest and that follows easily using the language of section 3.

Theorem 2. Let K a topological space. Let φ0, φ1 : K → Cartan(c) be two contin-
uous maps and let φs : K → FCartan(c), s ∈ [0, 1], be a homotopy between them.
Then φs can be C∞–approximated, relative to its ends, by a homotopy with image
in Engel(N(c)).

Figure 1. Sξi, i = 0, 1, is the circle bundle of the contact structure
ξi. Using a transverse vector field νi, we push Sξi to the cone Fi of
a Lorentzian metric. F0 and F1 can be connected by a family Fs,
s ∈ [0, 1], of cones. This produces a homotopy of the corresponding
prolongations.

Proof. For a proof by picture, refer to Figure 1. Consider the maps φs. There is a
corresponding family K × [0, 1] of maps

fx,s : N(c) → STN

fx,s(p, L) = dp,Lπ([φs(x)])
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which are simply the tautological maps associated to each formal Cartan prolonga-
tion. Write ξx,s for the oriented contact plane associated to φs(x).

Write νx,s for a family of unit vectors in N such that νx,s is orthogonal to ξx,s
for each (x, s) ∈ K × [0, 1]. Define a function h : [0, 1] → R vanishing to all orders
on 0 and 1 and otherwise satisfying h(s) > 0, s ∈ (0, 1). Consider the following
deformation of f :

Fx,s =
fx,s + h(s)νx,s
|fx,s + h(s)νx,s|

.

The tautological distributions associated to Fx,s provide a family

ψs : K → Engel(N(c)), s ∈ [0, 1];

the Engel structures ψs are Lorentz prolongations if and only if s ∈ (0, 1). Making
h(s) approach zero, ψs becomes arbitrarily close to φs. �

In particular, the theorem indicates that Engel structures do not seem to recall
global contact topology information. This is consistent with the fact that there are
Engel cobordisms between contact structures homotopic only as plane fields (see
[CPPP]).

Remark 3. Theorem 2 shows that we can think of Lorentz prolongations as convex
push–offs of formal Cartan prolongations. In particular, each Lorentz prolongation
has a well defined turning number.

4.2. Statement of the main theorem. Our main result refers to both Cartan
and Lorentz prolongations. It reads:

Theorem 3. Let K be a CW–complex. Let φ0, φ1 : K → Engel(N(c)) be two
continuous maps with image either in the oriented Cartan prolongations or in the
Lorentz prolongations. Suppose that both of them have turning number greater than
or equal to 6. Then, they are Engel homotopic if and only if they are formally
homotopic.

If c = 0, the bound on the turning numbers can be improved and the proof is
actually simpler:

Proposition 5. Let K be a CW–complex. Let φ0, φ1 : K → Engel(N(0)) be two
continuous maps with image either in the oriented Cartan prolongations or in the
Lorentz prolongations. Suppose that both of them have turning number greater than
or equal to 2. Then, they are Engel homotopic if and only if they are formally
homotopic.

The main ingredient in the proof is the interplay between Engel structures and
families of curves in S

2, as discussed in subsection 2.3. We will introduce the
technical results we need first.

4.3. Curves in S
2. A curve γ : S1 → S

2 having no inflection points has an associ-
ated Frenet map Γγ : S1 → O(3) given at p by the matrix (γ(p),

.
γ(p)/| .γ(p)|, n(p)),

with n : S1 → S
2 satisfying 〈..γ(p), n(p)〉 > 0. We say that γ is convex if this ma-

trix lives in SO(3). We can still define the Frenet map of an immersed curve by
requiring n(p) to be the unique vector making it lie in SO(3). Let I be the space
of immersions of S1 into S

2. Its formal counterpart FI, the space of formal immer-
sions, can be identified with Maps(S1, SO(3)). Denote by L ⊂ I the subspace of
convex curves.
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4.3.1. A result of Little/Saldanha. Let L be some compact CW–complex, and let
n be a positive integer. Fix maps f : L → I, t : L → S

1. We construct a new
map f [t#n] : L → I using the following procedure: for each p ∈ L the curve f(p)
can be cut at the point f(p)(t(p)) and be modified by adding n small convex loops.
This can be done continuously on p. It can also be done over different points as
long as we have functions t0, . . . , tm : L → S

1 with disjoint image; we then write
f [t0#n0,...,tm#nm] for the resulting family. Note that this family is certainly not
unique; by taking the loops small, it can be assumed to be C0–close to f .

The following lemma summarises the facts we need about this operation:

Lemma 6 (Little, Saldanha). Let L be a compact CW–complex. Let f : L → I. Let
t, t0, . . . , tm : L → S

1 be homotopic functions with disjoint image. Let n, n0, . . . , nm

be positive integers. The following statements hold:

(a) If f is convex, so is f [t0#n0,...,tm#nm].
(b) Sliding the cutting points provides a homotopy between f [t#n0+···+nm] and

f [t0#n0,...,tm#nm] through immersions. If f is convex, they are homotopic
as convex curves.

(c) There is a homotopy between f and f [t#2] as immersions. This homotopy
takes place in a small neighbourhood of the point t.

(d) Assume that f is convex. Then f [t#1] and f [t#3] are homotopic as convex
curves. This homotopy takes place in a small neighbourhood of the point t.

(e) The homotopies between f [t#1] and f [t#3] produced by statements (c) and
(d) are homotopic to one another through immersions, relative to the ends.

(f) If f is fixed and the collection {t0, . . . , tm} is sufficiently dense in S
1, the

curve f [t0#1,...,tm#1] can be chosen to be convex.

These statements can be found in [Sal, section 6], but the techniques involved
appeared already in [Li]. In Figure 2 an explicit homotopy between a convex curve
having winding 2 in an affine chart and another one having winding 4 is shown.
This homotopy can be adapted to prove Lemma 6.

4.4. Proof of the main theorem. The proof can be broken down into several
steps. We fix an orientation of N .

4.4.1. Step I. Passing to Lorentz prolongations. Let i be either 0 or 1. Assume
first that φi is a family of Cartan prolongations. Then, φi(x), x ∈ K, defines an
oriented contact plane ξx,i and a tautological map fx,i : N(c) → STN . We can take
νx,i to be the unique vector field such that (ξx,i, νx,i) is positively oriented. Then
(fx,i+ νx,i)/|fx,i+ νx,i| defines a family ψi of Lorentz prolongations. This family is
Engel homotopic to φi. Furthermore, the choice of νx,i (as opposed to its negative)
implies that when we follow the fibres of N(c) positively, the curves that describe
ψi(x) are convex (i.e. having positive curvature), as opposed to concave.

Assume otherwise that φi is a family of Lorentz prolongations. If the curves
describing it are convex, we are done. Otherwise, consider the tautological map
fx,i : N(c) → STN associated to φi. There are a plane field ξx,i and a vector field
νx,i transverse to it so that φi is precisely given by (fx,i + νx,i)/|fx,i + νx,i|. We
can then find homotopies ξx,i,s and νx,i,s, s ∈ [0, 1], so that:

• ξx,i,0 = ξx,i and νx,i,0 = νx,i,
• νx,i,s is transverse to ξx,i,s,
• ξx,i,1 is an overtwisted contact structure.
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Figure 2. The curves γi, i = 0, 1, 2, are maximal circles. The
curve α2 is convex and, in the frontal hemisphere, has winding
number 2. By pushing the upper strand down, it can be taken to
the second figure. It is comprised of three segments that are con-
vex pushoffs of the γi whose corners have been rounded to preserve
convexity. The third figure is obtained from the second by follow-
ing the γi for a longer time. Pushing everything to the opposite
hemisphere yields a curve α4 with winding 4.

Set φi,s to be the Lorentz prolongation obtained by pushing the formal Cartan
prolongation of ξx,i,s with νx,i,s. This provides a homotopy of φi through Lorentz
prolongations. Now, φi,1 is clearly Engel homotopic to the Cartan prolongation of
ξx,i,1, and we can apply the previous discussion. Effectively, we pass through Cartan
prolongations to go from concave curves to convex. Let us henceforth assume that
we are dealing with Lorentz prolongations ψi : K → Engel(N(c)), i ∈ {0, 1},
described by convex curves.

4.4.2. Step II. Obtaining a non–integrable homotopy. Fix a parallelisation ofN , and
lift it to a parallelisation of N(c). This provides an almost–quaternionic structure
in TN(c). Let ψs : K → FEngel(N(c)), s ∈ [0, 1], be the formal homotopy between
ψ0 and ψ1. We can use the almost–quaternionic structure to assume that each ψs

(as a plane field) contains the fibre direction. By possibly modifying ψs, the fibre
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direction can be taken to be transverse to the line field of the formal flag (this is
the case for ψ0 and ψ1).

Suppose c = 0. Reasoning as in subsection 2.3 shows that ψs can be regarded as
a map N ×K → FI. By applying the Hirsch–Smale theorem, relative to s = 0, 1,
we can assume that ψs maps into I. If c is not zero, we can still do this over any
3–ball in N . Since the Hirsch–Smale theorem is a full (in particular, relative in the
parameter) h–principle, we can apply it sequentially using a covering of N . Hence,
we can assume that the ψs are non–integrable, but not necessarily maximally.

4.4.3. Step III. The vanishing Euler class case. We will prove Proposition 5 first,
since the proof is simple but showcases how all the ingredients are used.

Consider the family ψs, s ∈ [0, 1]. The arguments above show that in the c = 0
case we can simply regard it as a family Ψ : K × N × [0, 1] → I. Using Lemma
6(f) we can find an even integer m and a collection of points t0, . . . , tm ∈ S

1 such
that the family Ψ[t0#1,...,tm#1] has image in L after a small homotopy. However,
the families Ψ[t0#1,...,tm#1]|K×N×{0,1} and Ψ|K×N×{0,1} do not agree.

If the turning number is at least two, the family Ψ|K×N×{0,1} is already of the

form Φ[t#1], where Φ : K×N×{0, 1} → L can be understood as a family of Lorentz
prolongations with turning number c − 1. An application of Lemma 6(b) and (d)
shows that Ψ[t0#1,...,tm#1]|K×N×{0,1} and Ψ|K×N×{0,1} are homotopic as families
of convex curves, proving the claim. �

The main point is that c = 0 allows us to assume that N(c) has a non–vanishing
section (whose role is played by the point t). In the general case we will have to
deal with this fact.

4.4.4. Step IV. Construction of a covering. Consider the families ψ0 and ψ1. By
assumption, they are comprised of Lorentz prolongations with turning numbers
k0, k1 ≥ 6. Regard N(c) as a principal S1–bundle. The contractibility of the pair
(Diff(S1), S1) implies that, after a homotopy, we can assume ψi to be invariant
under the action of Zki

(acting by rotations on the fibre); this follows as in Lemma
1. Let k = min(k0, k1) ≥ 6.

Given some section s : U → N(c) over an open set U ⊂ N , denote by Is
the submanifold of N(c) that, on each fibre, is given by moving from s to e2πi/ks
positively. We want to find a covering {Uj}j=0,...,J of N and sections sj : Uj → N(c)
such that the Isj are all disjoint.

Let γ be a knot in N representing the Poincaré dual of c 
= 0 ∈ H2(N,Z) and
let ν(γ) be a tubular neighbourhood. Let s1 be a section of N(c) over ν(γ). Let s0
be a (transverse to zero) section of the disc bundle associated to N(c) whose zeroes
are γ; regard it as a section of N(c) away from γ.

Let (α; r, θ) be the coordinates in the solid torus S1 × D
2; fix a diffeomorphism

ν(γ) ∼= S
1 ×D

2. The section s1 yields an identification of N(c)|ν(γ) with the trivial

principal S1–bundle over S1×D
2. It can be chosen so that s1 is the constant section

1 ∈ S
1, and s0(α; r, θ) = θ ∈ S

1 for r ∈ Op({1}).
Fix δ > 0 small. Let U0 be the union of the complement of ν(γ) and {r > 1−2δ}.

Let U1 be S
1 × D

2
1−3δ. Triangulate ∂D2

1−5δ/2 and use this to produce a covering

{Uj}j=2,...,J of Op({1 − 4δ < r < 1 − δ}) with no triple intersections. Set Uj =
S
1 × Uj . Since the regions Uj can be assumed to be arbitrarily thin, the section s0

is almost constant over each one of them. Due to our assumption on the turning
numbers, Is0 and Is1 together cover at most a third of any fiber. We deduce that for
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each Uj corresponding to a vertex, we can choose sj to be constant and satisfying
the claim. Having fixed those, each Uj corresponding to an edge intersects U0, U1,
and two of the vertex regions; we deduce that there is some constant sj such that
Isj avoids the corresponding Isj′ .

4.4.5. Step V. Concluding the proof. Assume that the family ψs is equal to ψ0 in
[0, 3ρ] and equal to ψ1 in [1− 3ρ, 1], for ρ > 0 small. We will modify ψs over each
Uj , inductively on j. The constructions that follow depend on a large integer C; it
will be fixed at the end of the proof to ensure that our claims hold.

Write ψ′
s for the family of structures obtained in the step j − 1. Over Op(Uj),

regard it as a family of curves Ψj : Op(Uj)×K× [0, 1] → I. Replace Ψj by Ψ
[sj#2C]
j

in Uj ×K× [0, 1] and use the region (Op(Uj)\Uj)×K× [0, 1] to interpolate back to
Ψj . We apply Lemma 6(d) in [0, ρ]∪ [1− ρ, 1], (c) in [2ρ, 3ρ]∪ [1− 3ρ, 1− 2ρ], and
(e) in [ρ, 2ρ]∪ [1− 2ρ, 1− ρ]. We do this for all j and we write ψ′

s for the resulting
family. Lemma 6(d) states that ψ′

i and ψi, i = 0, 1, are Engel homotopic. However,
ψ′
i has 2C loops added at the points sj over Uj . Note that the curves describing

ψ′
i have length bounded above independently of C, since the homotopies that add

loops in the interpolation region can be done sequentially.
We have to further modify ψ′

s, again inductively on j. Shrink slightly the Uj so
that they remain a covering and restrict Isj to Op(Uj). Write ψ′′

s for the family
of structures obtained in the step j − 1, and let Ψj : Op(Uj) × K × [0, 1] → I
be the corresponding family of curves over Op(Uj). Denote by I ′sj the subset of

N(c) obtained from Isj by enlarging it maximally (on each fibre) while keeping it
disjoint from Isj′ , j

′ > j, and from itself. Isj can be enlarged fibrewise, remaining

a submanifold, to cover arbitrarily much of I ′sj ; redefine it as such. Thanks to the

argument in the previous paragraph, Ψj is of the form F [sj#2C]. Use Lemma 6(b) to

replace Ψj by F [sj,1#1,...,sj,2C#1] in Uj , and interpolate back to Ψj in Op(Uj) \ Uj .
The sections sj,i are distributed in Isj so that they become dense as C goes to
infinity.

We write ψ′′
s for the resulting family after iterating over all the Uj . Now, since

the Uj cover N , each curve describing ψ′′
s is obtained from an immersed curve by

adding loops at a collection of points that becomes dense with C; further, the length
of this immersed curve is controlled. Lemma 6(f) then implies that, for C large,
the curves are convex and hence the homotopy is through Engel structures. This
concludes the proof. �
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