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DIVISION RINGS WITH RANKS

NADJA HEMPEL AND DANIEL PALACÍN

(Communicated by Ken Ono)

Abstract. Any superrosy division ring is shown to be centrally finite. Fur-
thermore, division rings satisfying a generalized chain condition on definable
subgroups are studied. In particular, a division ring of burden n has dimension
at most n over its center, and any definable group of definable automorphisms
of a field of burden n has size at most n. Additionally, an alternative proof that
division rings interpretable in o-minimal structures are algebraically closed,
real closed or the quaternions over a real closed field is given.

1. Introduction

An important aspect in model theory is to analyze algebraic properties of math-
ematical objects, such as groups and rings, which satisfy certain combinatorial
behavior on their definable sets. Some of these combinatorial patterns (e.g. ω-
stability, stability, simplicity) yield the existence of suitable chain conditions among
definable groups as well as well-behaved rank functions among definable sets. These
are important tools to study algebraic properties of groups and rings.

A milestone in classifying fields from a model-theoretic point of view is a re-
sult of Macintyre [15] which states that any infinite ω-stable field is algebraically
closed. This was generalized to the superstable context by Cherlin and Shelah [3]
and therefore, by previous work of Cherlin [2], in fact any infinite superstable di-
vision ring is an algebraically closed field. Moreover, Pillay, Scanlon and Wagner
[22] showed that a wider class of division rings, namely the supersimple ones, are
commutative and have indeed trivial Brauer group. In all these cases the existence
of a suitable ordinal-valued rank function plays an essential role. A more general
context in which a similar rank function is present is the class of superrosy division
rings which includes, besides all before mentioned fields, division rings interpretable
in o-minimal structures. In the definable context, such division rings were first an-
alyzed by Otero, Peterzil and Pillay [19] and later by Peterzil and Steinhorn [20].
They were characterized to be either algebraically closed fields, real closed fields or
the quaternions over a real closed field. In particular, there exist non-commutative
superrosy division rings.

The first part of this paper is dedicated to the study of superrosy division rings
using the aforementioned rank function from a purely axiomatic point of view.
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We show that any infinite superrosy division ring is centrally finite (Theorem 2.9).
This gives a uniform treatment to all previously mentioned cases.

One consequence of the presence of a well-behaved rank function is the non-
existence of an infinite descending chain of definable subgroups, each having infinite
index in its predecessor. Weakenings of such a forbidden pattern appear naturally
in wider model theoretic classes, such as simple or NTP2 theories. In these frame-
works, a more general notion of rank, namely weight in simple theories and burden
in NTP2 theories, can be defined. Our aim is to analyze division rings in these
contexts. For instance, using machinery from simplicity theory and classical re-
sults on division rings such as the Cartan-Brauer-Hua Theorem, we show that a
division ring with a simple theory of weight one must be commutative (Corollary
3.5). Furthermore, we study division rings of finite burden, using only a generalized
chain condition on definable subgroups. These include division rings interpretable
in o-minimal structures and in simple structures of finite rank (e.g. any pseudofi-
nite field or more generally any perfect PAC field with small Galois group). Other
examples, which are neither o-minimal nor simple, are pseudo real closed fields with
small Galois group [17]. Moreover, a recent result of Chernikov and Simon [5] gives
rise to numerous examples: any ultra-product of the p-adics, R((t)), C((t)), R((tQ))
and F ((tQ)) where F is any perfect PAC field with small Galois group, among oth-
ers. Indeed, all these examples have burden 1. We show that any division ring
of burden n has dimension at most n over its center, and in particular a division
ring of burden 1 is commutative. Moreover, we prove that a field of burden n and
characteristic zero has at most nmany definable automorphisms (Proposition 4.10).

The last section includes a remark on division rings interpretable in o-minimal
structures. We apply the above results to show that any such division ring is either
an algebraically closed field, a real closed field or the quaternions over a real closed
field (Theorem 5.1). This gives an alternative approach to the aforementioned result
of Peterzil and Steinhorn.

2. Ranks à la Lascar

In this section we aim to study superrosy division rings. For an exposition on
superrosy groups and fields, we refer the interested reader to [6].

As being centrally finite and superrosy are both properties of the theory of a
division ring, we may work (if necessary) in a saturated elementary extension. In
fact, all results presented here extend to arbitrary ℵ0-saturated division rings carry-
ing an ordinal-valued rank function among definable factors (in the pure language
of rings), i.e.

rk : {Definable factors} → Ord,

which satisfies the following properties:

(1) A definable factor has rank zero if and only if it is finite.
(2) The rank is preserved under definable bijections.
(3) The Lascar inequalities: For a definable subgroup H of a definable group

G we have that

rk(H) + rk(G/H) ≤ rk(G) ≤ rk(H)⊕ rk(G/H),

where the function ⊕ is the smallest symmetric strictly increasing function f among
pairs of ordinals such that f(α, β + 1) = f(α, β) + 1. More precisely, every ordinal
α can be written in the Cantor normal form as a finite sum ωα1 ·n1+ . . .+ωαk ·nk



DIVISION RINGS WITH RANKS 805

for ordinals α1 > . . . > αk and natural numbers n1, . . . , nk. If additionally β =
ωα1 ·m1+. . .+ωαk ·mk, then α⊕β is defined to be ωα1 ·(n1+m1)+. . .+ωαk ·(nk+mk).

Observe that in superrosy division rings, the thorn U-rank satisfies the above
properties; see [6, 18].

The existence of such a rank yields some immediate consequences on definable
groups of a superrosy division ring, which we state below.

Remark 2.1. Let G and H be two definable groups and let f : H → G be a definable
group morphism. Then

rk(Kerf) + rk(Imf) ≤ rk(H) ≤ rk(Kerf)⊕ rk(Imf).

Thus, if f is injective, then H and G have the same rank if and only if Imf has
finite index in G. In particular, if H is a subgroup of G, then H and G have the
same rank if and only if H has finite index in G.

Remark 2.2. As there is no infinite strictly descending chain of ordinals, any infinite
descending chain of definable groups, each of them having infinite index in its
predecessor, stabilizes after finitely many steps. In addition, as in a division ring
the centralizer of any set is a subdivision ring, any descending chain of centralizers
of finite (even definable) sets stabilizes after finitely many steps. In fact, notice
that an easy compactness argument yields the existence of a natural number n
such that the centralizer of any set equals the centralizers of a subset of size n.
In particular, they are definable. Therefore, since in any group G for any sets X
and Y we have that CG(X) � CG(Y ) if and only if CG(CG(X)) � CG(CG(Y )), we
obtain the chain condition on centralizers, i.e. all (ascending or descending) chains
of centralizers of arbitrary subsets are finite.

Definition 2.3. Let X be a definable set of rank ωα · n+ β with β < ωα and n a
positive natural number. A definable subset Y of X is wide in X if it has rank at
least ωα · n and negligible with respect to X if its rank is strictly smaller than ωα.
If there is no confusion we simply say that Y is wide or respectively negligible.

Lemma 2.4. Any superrosy division ring has finite dimension (as a vector space)
over any definable non-negligible subdivision ring.

Proof. Let D be a superrosy division ring of rank ωα · n + β with β < ωα and
n a positive natural number. Suppose, towards a contradiction, that there is a
definable subdivision ring D0 of rank greater than or equal to ωα such that D has
infinite dimension over D0. Thus for 1 = λ0, λ1, . . . , λn linearly independent over
D0 we obtain

rk(D) ≥ rk
(⊕

i≤n

D0λi

)
≥ rk(D0λn) + rk

(⊕
i≤n

D0λi

/
D0λn

)

≥ ωα + rk
(⊕

i<n

D0λi

)
≥ · · · ≥ ωα · (n+ 1)

> rk(D),

which yields a contradiction. �
Recall that two groupsH andN are said to be commensurable if their intersection

H∩N has finite index in each of them. For the following lemma we use Schlichting’s
Theorem [23], generalized by Bergmann and Lenstra [1] to obtain an invariant
subgroup, up to commensurability. See also [24, Theorem 4.2.4].
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Fact 2.5 (Schlichting’s Theorem). Let F be a family of uniformly commensurable
subgroups of a group G, i.e. there is a natural number k such that for any H
and H∗ in F the index [H : H ∩ H∗] is at most k. Then there is a subgroup N
commensurable with any H in F, which is invariant under any automorphism of G
stabilizing F setwise.

Lemma 2.6. Any wide definable additive subgroup of a superrosy division ring has
finite index.

Proof. LetD be a superrosy division ring, which we may assume to be ℵ0-saturated,
of rank ωα · n+ β with β < ωα and n a positive natural number. Suppose towards
a contradiction that there is a definable additive subgroup A of D of infinite index
and of rank greater than or equal to ωα · n. Consider the family of D×-translates
of A. As there is no infinite descending chain of definable subgroups, each of them
having infinite index in its predecessor, there is a finite intersection H of D×-
translates of A such that for any λ in D× the index [H : H ∩ λH] is finite. As
left translation is an automorphism, any two translates of H are commensurable
and hence, a compactness argument yields that the family {λH : λ ∈ D×} is
uniformly commensurable. Thus, by Schlichting’s Theorem, we can find a D×-
invariant additive subgroup I, i.e. an ideal of D, which is commensurable with H.
As H has infinite index in D, the ideal I has to be trivial and hence H is finite.
Now, as there is no infinite decreasing sequence of ordinal numbers above ωα · n,
there exists a finite intersection N of D×-translates of A such that rk(N) ≥ ωα · n
and for any λ in D× either N and λN are commensurable or rk(N ∩ λN) < ωα ·n.
As H is finite, there is some λ in D× such that N and λN are not commensurable
and hence rk(N ∩ λN) < ωα · n. Together with the following inequality:

ωα · n ≤ rk(N) ≤ rk(N ∩ λN)⊕ rk(N/N ∩ λN),

we get that rk(N/N ∩ λN) ≥ ωα. Hence,

rk(N + λN) ≥ rk(λN) + rk(N + λN/λN)

= rk(N) + rk(N/N ∩ λN)

≥ ωα · n+ ωα

> rk(D),

which yields a contradiction and finishes the proof. �

Corollary 2.7. Let D be a superrosy division ring. If a definable group morphism
from D+ or D× to D+ has a negligible kernel, its image has finite index in D+.

Proof. As the kernel is negligible, by Remark 2.1 the image is wide and thus the
previous lemma yields the statement. �

Before stating and proving the main result of this section, we show the following
lemma which holds under the mere assumption that D× satisfies a weak chain
condition on centralizers.

Lemma 2.8. Let D be a non-commutative division ring without an infinite as-
cending chain of centralizers of an element, and suppose that for any non-central
element a in D the center Z(D) is contained in aD − a. Then, for any natural
number m, any element of Z(D) has an mth root in D.
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Proof. By Kaplansky’s Theorem [14, Theorem 15.15], we can find an element a in
D for which none of its powers belong to Z(D). Moreover, after replacing a by one
of its powers, we may assume that CD(a) = CD(an) for any natural number n.

Now, let m be a natural number and let c be a central element. As am is non-
central, by assumption there is some x in D such that (am)x − am = c. Observe
that a and ax commute since

CD(ax) = CD(a)x = CD(am)x = CD((am)x) = CD(am) = CD(a)

and so

(axa−1)m − ca−m = ((am)x − c)a−m = 1.

Furthermore, as ca−m is also non-central, one can find an element y in D with
(ca−m)y − ca−m = 1. Thus, similarly as above we get that CD(ay) = CD(a) and
so a, ax and ay commute. Finally, since the mth power (axa−1)m equals (ca−m)y,
we obtain that c equals (axa−1ay)m and so it has an mth root. �

Theorem 2.9. A division ring with a superrosy theory has finite dimension over
its center.

Proof. Suppose, towards a contradiction, that there is a superrosy division ring
which has infinite dimension over its center and let D be such a division ring of
minimal rank. As D is clearly infinite its rank must be non-zero.

The proof consists of a series of steps.

Step 1. Any proper centralizer has finite dimension over its center:

Since any proper centralizer is a subdivision ring and thus as an additive group has
infinite index in D, by Lascar inequalities its rank is strictly smaller than the rank
of D. Hence, we conclude by the choice of D.

Step 2. D has infinite dimension over any proper centralizer. In particular, the
centralizer of a non-central element is negligible:

Otherwise, it has finite dimension over some subfield by Step 1 and thus it would
be finite dimensional over its center by [14, Theorem 15.8]. The second part is an
immediate consequence by Lemma 2.4.

Now, for an arbitrary element a, let δa : D → D be defined as δa(u) = au− ua.
To ease notation, we also write [a, u] for au− ua.

Step 3. For a non-central element a, the map δa is a surjective derivation whose
kernel is the centralizer of a:

Easy computations yield that it is a derivation and that its kernel is CD(a). As the
CD(a) is negligible by Step 2, the image of δa has finite index in D by Corollary
2.7. Moreover, since Im δa is a vector space over CD(a), which is an infinite division
ring by [14, Theorem 13.10], it is indeed equal to D.

Step 4. The characteristic is zero:

Suppose that D has characteristic p > 0. By Kaplansky’s Theorem [14, Theorem
15.15], we can find an element a in D for which none of its powers belong to Z(D).
Up to replacing it by one of its powers, we may assume by the chain condition on
centralizers that for any natural number n we have that CD(a) is equal to CD(an).
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By Step 3, we can find an element x such that δa(x) = ax − xa = −1. Thus, for

any i ≥ 1 conjugation by ai yields xai

a− xai−1

a = 1. Hence

(ax)a
p − ax = xap−1

a− ax =

p−1∑
i=1

(
xai

a− xai−1

a
)
− (ax− xa) = (p− 1) + 1 = 0.

Whence ap commutes with ax and so with x. Therefore x belongs to CD(ap) which
equals to CD(a), yielding a contradiction.

Step 5. Any non-central element is transcendental over Z(D):

Given a non-central element a, by Step 3 we can find a non-central element u such
that δa(u) = −1, i.e. [a, u] = −1. Additionally, as the characteristic is zero and
the map δu is a derivation whose kernel clearly contains the center, the element a
must be transcendental over the center since δu(a) = −δa(u) = 1.

Step 6. For any non-central element a and any x such that δa(x) = 1, the intersec-
tion Z(CD(x)) ∩ CD(a) is equal to Z(D):

Let y be an element of Z(CD(x)) ∩ CD(a). Thus Z(CD(y)) is contained in CD(a)
and thus in the kernel of δa. As additionally δa(x) = 1, the element x must be
transcendental over Z(CD(y)). However, the choice of y yields that x ∈ CD(y) and
so CD(y) has infinite dimension over its center. Therefore, we obtain that y belongs
to Z(D) by Step 1.

Step 7. For any non-central element a and any x such that δa(x) = 1, the map
δa restricted to Z(CD(x)) is a surjective derivation onto Z(CD(x)) whose kernel is
Z(D):

Note first that the kernel is precisely CD(a)∩Z(CD(x)) which is equal to the center
by Step 6. To prove that δa restricted to Z(CD(x)) induces a map to Z(CD(x)),
we first see that the image of CD(x) via δa is contained in CD(x). To do so, let u
be an element of CD(x). By the Jacobi identity, we have

[
a, [u, x]

]
+
[
u, [x, a]

]
+
[
x, [a, u]

]
= 0.

As u commutes with x, the first summand is equal to 0 and since [x, a] = −1,
we obtain that [u, [x, a]] is 0 as well. Therefore [x, [a, u]] must be 0 and hence
δa(u) = [a, u] belongs to CD(x). Second, let v be an arbitrary element of Z(CD(x)).
Note first that δa(v) belongs to CD(x). Furthermore, for u again in CD(x), the
identity [

u, [a, v]
]
+
[
a, [v, u]

]
+
[
v, [u, a]

]
= 0

yields, similarly as above, that δa(v) = [a, v] commutes with u and thus, as u was
taken to be arbitrary in CD(x), we obtain that δa(v) belongs to CD(CD(x)) and
thus to Z(CD(x)).

To see that the derivation δa is surjective, notice first that Z(CD(x)) is infinite
dimensional over Z(D) by Step 5 and hence, the center is negligible in Z(CD(x))
by Lemma 2.4. In particular, the kernel of the derivation δa is negligible. Thus,
the image of δa has finite index in Z(CD(x))+ by Corollary 2.7. Since Z(CD(x))+

has characteristic zero by Step 4, it is divisible and hence the image of δa and
Z(CD(x))+ must coincide.
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Step 8. For any non-central element a and any x such that δa(x) = 1, we obtain
Z(CD(x)) = aZ(CD(x)) − a :

Let σa : Z(CD(x))× → D be the function that maps an element y to ay − a.
We need to show that σa is a surjective group morphism from Z(CD(x))× onto
Z(CD(x))+. To show that the image of σa is contained in Z(CD(x))+, note that
for any y in Z(CD(x))× we have that

σa(y) = ay − a = y−1(ay − ya) = y−1δa(y)

which belongs to Z(CD(x)) by Step 7. Moreover, as σa(1) = 0 and for any u and
v in Z(CD(x))

σa(uv) = auv − a

= auv − av + av − a

= (au − a)v + (av − a)

= (au − a) + (av − a)

= σa(u) + σa(v),

the map σa is a group morphism. To conclude this step, it remains to show that σa

is surjective. For this, note first that the kernel of σa is clearly Z(CD(x))×∩CD(a)×

which is equal to Z(D)× by Step 6. As x is transcendental over Z(D) by Step 5,
we get that Z(CD(x)) is infinite dimensional over Z(D) and thus the kernel of σa

is negligible with respect to Z(CD(x)) by Lemma 2.4. Thus, by Corollary 2.7, the
image of σa has finite index in Z(CD(x))+. Since Z(CD(x))+ is divisible as the
characteristic is zero by Step 4, both are indeed equal.

Step 9. The multiplicative group Z(D)× is divisible:

By Step 8, we deduce that for any non-central element a in D, the center Z(D)
is contained in aD − a and hence, by Lemma 2.8, any central element has an mth
root in D for any natural number m. Therefore, as any non-central element is
transcendental over Z(D) by Step 5, any root of a central element must belong to
the center.

Step 10. There exists a non-central element b such that for any non-central element
y in Z(CD(b)) we have that Z(CD(b)) = Z(CD(y)):

Otherwise we can find an infinite descending chain of fields

Z(CD(a0)) � Z(CD(a1)) � . . . � Z(CD(ai)) � . . .

with ai+1 being a non-central element belonging to Z(CD(ai)), which yields a con-
tradiction with Remark 2.2.

Step 11. Final contradiction:

For this final step, let b be an element given by Step 10. By Step 3 the derivation
δb on D is surjective and so we can find an element y such that δb(y) = −1. In
particular δy(b) = −δb(y) = 1. Hence, by Step 7 the restriction of δy to Z(CD(b))
is surjective onto Z(CD(b)). As −b−1 belongs trivially to Z(CD(b)), there is some
c in Z(CD(b)) such that δy(c) = −b−1, i.e. δc(y) = b−1. Hence, since c commutes
with b we obtain that

1 = cyb− ycb = c(yb)− (yb)c = δc(yb).



810 NADJA HEMPEL AND DANIEL PALACÍN

Thus, Step 8 yields:

Z(CD(yb)) = cZ(CD(yb)) − c

and in particular, for any z in Z(D) we can find an element t in Z(CD(yb)) such
that z = ct − c. Now, we define the map τ : Z(D)+ → D× as follows:

τ (z) = b−1bt, where t ∈ Z(CD(yb)) such that z = ct − c.

Next, we see that τ is a group isomorphism from Z(D)+ onto Z(D)×. First, we
check that it is well defined. To do so, let z be in Z(D) and consider t and s in
Z(CD(yb)) such that z = ct − c and z = cs − c. Thus t−1s commutes with c.
As c is non-central, the choice of b yields that Z(CD(c)) = Z(CD(b)) and so the
product t−1s is an element of CD(b). Therefore, the value of τ (z) does not depend
on the choice of t. Now, we show that Im τ is contained in Z(D)×. Hence, consider
an arbitrary element z of Z(D) and let t be in Z(CD(yb)) such that ct − c = z.
Thus t normalizes Z(CD(c)) and so Z(CD(b)). Therefore τ (z) = b−1bt belongs to
Z(CD(b)). Moreover, as t commutes with yb and so with by since yb − by = 1, we
have that

[yb, τ (z)] = ybt − b−1btyb

= b−1bybt − b−1btyb

= b−1(byb)t − b−1(byb)t

= 0.

Thus τ (z) commutes with yb and hence with y since τ (z) belongs to Z(CD(b)).
Therefore, we have shown that τ (z) is in Z(CD(b)) ∩ CD(y) and so it is central by
Step 6.

Now, to prove that τ is a group morphism, note first that τ (0) = 1. Moreover,
consider z and z′ in Z(D) and let t and s be the corresponding elements from
Z(CD(yb)) such that τ (z) = b−1bt and τ (z′) = b−1bs. The choice of t and s yields

cts − c = (ct − c)s + (cs − c) = z + z′.

Thus

τ (z + z′) = b−1(ts)−1bts

= (b−1s−1b)(b−1t−1bt)s

= (b−1t−1bt)(b−1s−1b)s

= τ (z)τ (z′).

Hence, it remains to show that τ is an isomorphism. To check that the kernel of τ
is trivial, consider an arbitrary element z of the kernel and let t be in Z(CD(yb))
such that z = ct − c. The choice of z yields that b−1bt = 1 and so t commutes
with b. As Z(CD(b)) = Z(CD(c)), we have that t commutes with c and thus z = 0.
Now, by Remark 2.1 the image of τ has finite index in Z(D)× and so it is equal to
Z(D)× since the latter is divisible by Step 9.

Therefore τ is an isomorphism between Z(D)+ and Z(D)× and consequently, we
can find a central element z such that τ (z) = −1. Hence, for some t in Z(CD(yb))
we have that bt = −b, whence

b2 = (−b)2 = (bt)2 = (b2)t
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and so t and b2 commute. On the other hand, the choice of b implies that Z(CD(b))
is equal to Z(CD(b2)) since b2 is non-central by Step 5, thus t commutes with b and
so

−1 = τ (z) = b−1bt = b−1b = 1,

a blatant contradiction since the characteristic of D is zero by Step 4. This final
contradiction finishes the proof. �

3. Chain conditions on uniformly definable subgroups

In this section we study rosy division rings. Its unique property which we use
throughout the section is the following chain condition, which is folklore:

Fact 3.1. Let F be a family of uniformly definable subgroups of a rosy group; then
there are natural numbers n and d such that any descending chain of intersections

F0 ≥ F0 ∩ F1 ≥ · · · ≥ F0 ∩ . . . ∩ Fi ≥ · · ·
with Fi in F for all i, each having index at least d in its predecessor, has length at
most n.

Proof. By replacing the stratified ranks in simple theories by the ones in rosy the-
ories [6, Definition 1.13], one obtains the statement following the proofs yielding
[24, Theorem 4.2.12]. To do so, observe that in a rosy theory two relatively de-
finable subgroups are commensurable if and only if they have the same stratified
ranks, and that having the same rank is a type-definable condition. This can be
directly seen from the definition of the rank. �
Remark 3.2. Similarly as in Remark 2.2, as the collection of centralizers of one
element is a family of uniformly definable additive subgroups and moreover division
rings, the above chain condition yields the chain condition on centralizers. Namely,
any chain of centralizers of arbitrary sets is finite.

The following result is an easy adaptation of [16, Theorem 3.5].

Proposition 3.3. A rosy division ring of positive characteristic has finite dimen-
sion over its center.

Proof. Let D be a rosy division ring of positive characteristic, say p. Assume, as
we may, that D is infinite and non-commutative. By the ordinary chain condition
on centralizers, we may inductively suppose that any centralizer of a non-central
element has finite dimension over its center.

By Kaplansky’s Theorem [14, Theorem 15.15], we can find a non-central element
a of D for which no power belongs to the center. Note that the centralizer of
a is infinite. Additionally, by Fact 3.1, after replacing a by one of its powers,
we may assume that CD(a) = CD(ap). Let δa be the derivation of D given by
δa(x) = ax− xa, which is clearly a definable CD(a)-linear morphism. Since D has
characteristic p one can easily see that

δapn (D) = δa ◦ · · · ◦ δa︸ ︷︷ ︸
pn

(D).

As any descending chain of uniformly definable additive subgroups stabilizes up to
finite index after finitely many steps, there exists a natural number n for which
the group δapn+1 (D) has finite index in δapn (D). Thus, they are equal as both are

vector spaces over the infinite division ring CD(a). Replacing a by ap
n

if necessary,
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we may assume that δa(D) and δap(D) coincide, and so do δa(D) and (δa ◦ δa)(D).
Thus, given an element x of D there is some y such that δa(x) = δa(δa(y)) and so
δa(y) − x belongs to CD(a). Hence D is the sum of the two CD(a)-vector spaces
δa(D) and CD(a). Whence, as CD(a) = CD(ap) and δap = δa ◦ p. . . ◦ δa, the latter
sum is a direct sum, i.e.

D = CD(a)⊕ δa(D).

Now, set H to be the CD(a)-vector space δa(D), and consider the family F of
D×-translates of H. As a finite intersection of D×-translates of H is also a vector
space over the infinite division ring CD(a), by Fact 3.1 applied to F, there is some
finite intersection I = λ1H ∩ . . . ∩ λnH such that I = I ∩ λH for any λ in D×.
Hence, we deduce that I is a (left) proper ideal and so it is trivial. Moreover, the
subvector spaces λiH have codimension one in D and thus D has finite dimension
over CD(a). As by assumption, the centralizer of a has finite dimension over its
center, we obtain that D has finite dimension over an infinite subfield and thus over
its own center by [14, Theorem 15.8]. �

Proposition 3.4. A rosy division ring which has only finitely many non-central
conjugacy classes is commutative.

Proof. Let D be a non-commutative rosy division ring, and suppose that D has
only finitely many conjugacy classes.

The first step is to show that Z(D) is contained in bD − b for any non-central
element b in D. To do so, set H to be Z(D) ∩ (bD − b) and observe that it is an
additive subgroup of Z(D). Now, following the lines of the proof of [24, Theorem
5.6.12] we show that H has only finitely many Z(D)-translates. For any z in Z(D)
we have that

zH = z[(bD)− b] ∩ Z(D) = [(zbD)− zb] ∩ Z(D).

Hence, if z and z′ are two elements in Z(D) such that z′b = (zb)d for some d in D,
we have that

zH = (zH)d = [(zb)Dd − (zb)d] ∩ Z(D) = [(z′b)D − (z′b)] ∩ Z(D) = z′H.

As Z(D)b intersects only finitely many conjugacy classes, the group H has finitely
many multiplicative Z(D)-translates.

Now, observe that for any two central elements z and z′, their difference z − z′

belongs to bD − b if and only if there is some element x from D× such that

b+ z = bx + z′ = (b+ z′)x.

As there are only finitely many conjugacy classes in the coset b+ Z(D), the index
of Z(D) ∩ (bD − b) in Z(D) has to be finite. Thus, the finite intersection of all its
Z(D)×-translates, which forms an ideal of Z(D), has finite index in Z(D) as well.
If Z(D) is finite, the characteristic of D is positive and thus by Proposition 3.3 and
Wedderburn’s little Theorem [14, Theorem 13.1] D must be commutative. So we
may assume that Z(D) is an infinite field and hence equal to Z(D)∩ (bD−b). Thus
Z(D) is contained in bD − b for any non-central element b of D.

Now, by Kaplansky’s Theorem [14, Theorem 15.15], we can find an element
a in D for which none of its powers belong to Z(D). Moreover, by the chain
condition on centralizers, after replacing a by one of its powers, we may assume
that CD(a) = CD(an) for any natural number n.
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Now, for any natural number m any element of the center has an mth root in
D by Lemma 2.8. In particular, there is an infinite sequence −1 = ξ0, ξ1, ξ2, . . .

of elements in D with ξ2
k

k = −1 for all k < ω. It is clear that all these roots
of unity have different conjugacy classes and hence all but finitely many must
belong to the center since there are only finitely many non-central conjugacy classes.
Furthermore, one can find two different natural numbers i and j such that ξi and
ξj belong to the center and ξia and ξja are conjugates. Thus, there is some x in
D \ CD(a) and some non-trivial ζ in the center with ζm = 1 for some m < ω such
that a = ζax. Hence am = (ζax)m = (am)x and so x belongs to the centralizer of
am which, by the choice of a, coincides with the centralizer of a. This yields the
final contradiction. �

The above result yields the following consequence for division rings definable in
a simple theory. Recall that in a group G definable in such a theory, an element
g of G is generic over A if for any h in G with g independent from h over A, the
product g · h is independent from h,A. These elements play an essential role in
the study of definable groups in this context. The next result focuses on division
rings with generic elements of weight one, i.e. given any two independent elements
b and c and any generic element a either a is independent from b or from c. A key
property, which is unknown for rosy division rings, is that an element is generic
for the multiplicative group if and only if it is generic for the additive group; see
the proof of [22, Proposition 3.1]. For a detailed exposition, we refer the reader to
[24, Chapter 4].

Corollary 3.5. A division ring with a simple theory and a generic of weight one
is a field.

Proof. Let D be such a division ring and let g be any non-central element. We
denote by �gD� the canonical parameter of the conjugacy class of g in D. Now, let
X be the set of non-generic elements of D over �gD�. By [13, Remark 1.1], or more
precisely, its proof, the set of non-generic elements over any given small subset forms
a subdivision ring. As conjugation by an element of D× is an automorphism of D
which fixes �gD�, the subdivision ring X is invariant under conjugation and hence
it is contained in Z(D) by the Cartan-Brauer-Hua Theorem [14, Theorem 13.17].
In fact, the division ring of non-generics over �gD� and Z(D) coincide. So g itself is
a generic element of D independent from �gD�. Thus for any non-central element
g in D, we have that the canonical parameter �gD� is algebraic over the empty
set. Hence D has only finitely many non-central conjugacy classes and whence it is
commutative by Proposition 3.4. �

4. Division rings of finite burden

In this section we study division rings in which definable subgroups satisfy a
generalized chain condition. More precisely, given a division ring D and a natural
number n, we introduce the following property:

(†)n For any definable subgroups H0, . . . , Hn of D+, there exists some j ≤ n
such that

⋂
i≤n Hi has finite index in

⋂
i �=j Hi.

The motivation to analyze division rings fulfilling this property for some natural
number n originates in the study of division rings of finite burden, and it is as well
satisfied by any superrosy division rings of finite rank. In fact, all examples of fields
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mentioned in the introduction satisfy (†)1. Below we give the precise definition of
burden.

Definition 4.1. Let π(x̄) be a partial type. An inp-pattern of depth κ in π(x̄)
is a family of formulas {ψα(x̄; ȳα)}α<κ, an array of parameters (āα,j)α<κ,j<ω with
|āα,j | = |ȳα|, and a sequence of natural numbers (kα)α<κ such that:

• the set {ψα(x̄, āα,j)}j<ω is kα-inconsistent for every α < κ;
• the set π(x̄) ∪ {ψα(x̄, āα,f(α))}α<κ is consistent for every f : κ → ω.

We say that a theory has burden less than n for some natural number n, if there is
no inp-pattern of depth n in the partial type x = x. Moreover, a definable division
ring has burden n if the formula defining its domain has burden n. A division ring
of burden 1 is called inp-minimal.

The following result is an immediate consequence of the proof of [4, Proposition
4.5] in the definable context.

Fact 4.2. A definable division ring of burden n satisfies (†)n.

Lemma 4.3. A division ring satisfying (†)n has dimension at most n over any
infinite definable subfield.

Proof. Let D be a division ring satisfying (†)n with an infinite definable subfield
K, and assume that the dimension of D over K is at least n+1. Choose K-linearly
independent elements e0, . . . , en in D. For j ≤ n, consider the definable K-vector
spaces Vj =

⊕
i �=j Kei. Therefore, the condition (†)n yields the existence of some

k ≤ n such that the index⎡
⎣⋂
j �=k

Vj :
⋂
j

Vj

⎤
⎦ = [Kek : {0}]

is finite, a contradiction. �

Corollary 4.4. Any infinite division ring satisfying (†)n has dimension at most n
over its center.

Proof. Let D be a division ring satisfying (†)n. By Kaplansky’s Theorem [14,
Theorem 15.15], we may assume that D has an element d of infinite order. Hence
Z(C(d)) is an infinite definable subfield of D, so Lemma 4.3 implies that D has
finite dimension over Z(C(d)) and whence it has finite dimension over its center by
[14, Theorem 15.8]. Therefore Z(D) must be infinite. Now, we can apply Lemma
4.3 to the center of D and obtain the desired result. �

Immediately we obtain:

Corollary 4.5. A definable division ring of burden n has dimension at most n over
its center. In particular, an inp-minimal division ring is commutative.

Moreover, as the quaternions are a finite extension of the inp-minimal field R,
they have finite burden. As they are non-commutative, one cannot expect to im-
prove the above results to obtain commutativity.

Another consequence of these results is the descending chain condition among
definable subfields.
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Corollary 4.6. Let D be an infinite division ring satisfying (†)n. Then any de-
scending chain of definable infinite subfields has finite length. Therefore, if F is a
family of definable subfields of D, the intersection of all subfields in F is equal to a
finite subintersection, and so it is definable.

Now, we aim to study definable groups of automorphisms of fields satisfying (†)n
for some n. In particular, this applies to fields of finite burden as well as superrosy
fields of finite rank. We obtain results of the same nature to the following one of
Hrushovski in the superstable case [10, Proposition 3]:

Fact 4.7. Any definable group of automorphisms acting definably on a definable
superstable field is trivial.

Proposition 4.8. If F is a field satisfying (†)n and the algebraic closure of the
prime field of F in F is infinite, then any definable group of automorphisms acting
definably on F has size at most n.

Proof. Assume, as we may, that our structure is sufficiently saturated. Let G be a
definable group of automorphisms of F acting definably, let k be the prime field of
F and let Gx denote the stabilizer of any element x ∈ kalg ∩ F in G. As k is fixed
by the action of every element in G and G/Gx is in bijection with the orbit of x,
the stabilizer Gx has finite index in G. Now, we work with the subgroup

H =
⋂

x∈kalg∩F

Gx

of G. Note that it is a type-definable subgroup of G of bounded index. We consider
the intersection Fix(H) =

⋂
σ∈H Fix(σ) of definable subfields of F . By Corollary

4.6 it is equal to a finite subintersection. Hence, as additionally Fix(H) contains the
infinite field kalg∩F , it is a definable infinite subfield of F . Thus, Lemma 4.3 yields
that F has at most dimension n over Fix(H), so H is finite. Hence the group G is
a bounded definable group and whence finite by compactness. Now, consider the
definable field Fix(G). By Galois theory we know that F is a finite field extension
of Fix(G) of degree |G|, and so Fix(G) is an infinite definable subfield of F . Hence
F has dimension at most n over Fix(G) by Lemma 4.3 and whence G has size at
most n. �

Corollary 4.9. If F is a field satisfying (†)1 and the algebraic closure of the prime
field of F in F is infinite, then any definable group acting definably on F as auto-
morphisms is trivial.

Observe that if F is Artin-Schreier closed, then the algebraic closure of the
prime field of F is infinite in F . Thus, the above result holds for any infinite field
of positive characteristic with finite burden and which in addition is NIP [11] or
merely n-dependent [8].

We conclude the section with the following result in characteristic zero.

Proposition 4.10. There are at most n many definable automorphisms of a de-
finable field of characteristic zero satisfying (†)n.

Proof. Let K be a field satisfying (†)n and let H be the family of all definable
automorphisms. For σ in H, let Fσ denote the fixed field of σ, which is definable.
By Corollary 4.6, the intersection F of all these fixed fields is again definable. Thus,
it is infinite since the characteristic is zero, and hence K has dimension at most n
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over F by Lemma 4.3. Therefore Aut(K/F ) has size at most n and so does H since
any of its automorphisms fixes F . �

5. Interpretable division rings in o-minimal structures

As pointed out in the introduction, Peterzil and Steinhorn [20, Theorem 4.1]
showed that an infinite definable ring without zero divisors in an o-minimal struc-
ture is an algebraically closed field, a real closed field or the division ring of the
quaternions over a definable real closed field. Next, we generalize the above result to
interpretable division rings in o-minimal structures. Different from the proof of Pe-
terzil and Steinhorn, which has a topological flavor, our approach uses the previous
sections together with more recent results on groups in o-minimal structures.

Theorem 5.1. An infinite interpretable division ring in an o-minimal structure is
an algebraically closed field, a real closed field or the division ring of the quaternions
over a definable real closed field.

Proof. Let D be a division ring interpretable in an o-minimal structure and let K
be its center, which is an interpretable field. As an o-minimal structure has burden
1, the structure (D,+,×) has finite burden and so D is finite dimensional over K
by Corollary 4.5. Consequently, the field K is infinite and interpretable in an o-
minimal structure. Alternatively, any o-minimal structure is superrosy [18, Section
5.2], a class of structures which is preserved under interpretation [12, Remark 1.3],
and thus we obtain the same conclusion by Theorem 2.9.

By Frobenius’ Theorem [14, Theorem 13.12] it suffices to show that K is either
algebraically closed or real closed. To do so, we show that K is isomorphic to
some definable field in an o-minimal structure. Indeed, by a result of Pillay [21],
namely that any infinite definable field in an o-minimal structure is real closed or
algebraically closed, the former is enough to conclude.

Now, consider the semidirect product K+ �K×. As this group is clearly inter-
pretable in the given o-minimal structure, it is definably isomorphic to a definable
group G by [7, Theorem 8.23]. This isomorphism yields the existence of a definable
normal subgroup N of G isomorphic to K+ and a subgroup H of G isomorphic
to K× such that G is the (inner) semidirect product of N and H where H acts
definably on N by conjugation. In particular, the definable isomorphism induces a
definable field structure on N isomorphic to K. This finishes the proof. �
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