Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Division rings with ranks


Authors: Nadja Hempel and Daniel Palacín
Journal: Proc. Amer. Math. Soc. 146 (2018), 803-817
MSC (2010): Primary 03C45, 03C60, 12E15
DOI: https://doi.org/10.1090/proc/13752
Published electronically: September 7, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Any superrosy division ring is shown to be centrally finite. Furthermore, division rings satisfying a generalized chain condition on definable subgroups are studied. In particular, a division ring of burden $ n$ has dimension at most $ n$ over its center, and any definable group of definable automorphisms of a field of burden $ n$ has size at most $ n$. Additionally, an alternative proof that division rings interpretable in o-minimal structures are algebraically closed, real closed or the quaternions over a real closed field is given.


References [Enhancements On Off] (What's this?)

  • [1] George M. Bergman and Hendrik W. Lenstra Jr., Subgroups close to normal subgroups, J. Algebra 127 (1989), no. 1, 80-97. MR 1029404, https://doi.org/10.1016/0021-8693(89)90275-5
  • [2] Gregory Cherlin, Superstable division rings, Logic Colloquium '77 (Proc. Conf., Wrocław, 1977) Stud. Logic Foundations Math., vol. 96, North-Holland, Amsterdam-New York, 1978, pp. 99-111. MR 519805
  • [3] G. Cherlin and S. Shelah, Superstable fields and groups, Ann. Math. Logic 18 (1980), no. 3, 227-270. MR 585519, https://doi.org/10.1016/0003-4843(80)90006-6
  • [4] Artem Chernikov, Itay Kaplan, and Pierre Simon, Groups and fields with $ {\rm NTP}_2$, Proc. Amer. Math. Soc. 143 (2015), no. 1, 395-406. MR 3272764, https://doi.org/10.1090/S0002-9939-2014-12229-5
  • [5] A. Chernikov and P. Simon,
    Henselian valued fields and inp-minimality, preprint arXiv:1601.07313 (2016)
  • [6] Clifton Ealy, Krzysztof Krupiński, and Anand Pillay, Superrosy dependent groups having finitely satisfiable generics, Ann. Pure Appl. Logic 151 (2008), no. 1, 1-21. MR 2381504, https://doi.org/10.1016/j.apal.2007.09.004
  • [7] Pantelis E. Eleftheriou, Ya'acov Peterzil, and Janak Ramakrishnan, Interpretable groups are definable, J. Math. Log. 14 (2014), no. 1, 1450002, 47. MR 3225588, https://doi.org/10.1142/S0219061314500020
  • [8] Nadja Hempel, On $ n$-dependent groups and fields, MLQ Math. Log. Q. 62 (2016), no. 3, 215-224. MR 3509704, https://doi.org/10.1002/malq.201400080
  • [9] I. N. Herstein, Noncommutative rings, The Carus Mathematical Monographs, No. 15, Published by The Mathematical Association of America; distributed by John Wiley & Sons, Inc., New York, 1968. MR 0227205
  • [10] Ehud Hrushovski, On superstable fields with automorphisms, The model theory of groups (Notre Dame, IN, 1985-1987) Notre Dame Math. Lectures, vol. 11, Univ. Notre Dame Press, Notre Dame, IN, 1989, pp. 186-191. MR 985346
  • [11] Itay Kaplan, Thomas Scanlon, and Frank O. Wagner, Artin-Schreier extensions in NIP and simple fields, Israel J. Math. 185 (2011), 141-153. MR 2837131, https://doi.org/10.1007/s11856-011-0104-7
  • [12] Krzysztof Krupiński, Fields interpretable in superrosy groups with NIP (the non-solvable case), J. Symbolic Logic 75 (2010), no. 1, 372-386. MR 2605900, https://doi.org/10.2178/jsl/1264433927
  • [13] Krzysztof Krupiński and Anand Pillay, On stable fields and weight, J. Inst. Math. Jussieu 10 (2011), no. 2, 349-358. MR 2787692, https://doi.org/10.1017/S1474748010000228
  • [14] T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 1991. MR 1125071
  • [15] Angus Macintyre, On $ \omega_{1}$-categorical theories of fields, Fund. Math. 71 (1971), no. 1, 1-25. (errata insert). MR 0290954
  • [16] Cédric Milliet, Stable division rings, J. Symbolic Logic 76 (2011), no. 1, 348-352. MR 2791352, https://doi.org/10.2178/jsl/1294171004
  • [17] Samaria Montenegro, Pseudo real closed fields, pseudo $ p$-adically closed fields and $ {\rm NTP}_2$, Ann. Pure Appl. Logic 168 (2017), no. 1, 191-232. MR 3564381, https://doi.org/10.1016/j.apal.2016.09.004
  • [18] Alf Onshuus, Properties and consequences of thorn-independence, J. Symbolic Logic 71 (2006), no. 1, 1-21. MR 2210053, https://doi.org/10.2178/jsl/1140641160
  • [19] Margarita Otero, Ya'acov Peterzil, and Anand Pillay, On groups and rings definable in o-minimal expansions of real closed fields, Bull. London Math. Soc. 28 (1996), no. 1, 7-14. MR 1356820, https://doi.org/10.1112/blms/28.1.7
  • [20] Ya'acov Peterzil and Charles Steinhorn, Definable compactness and definable subgroups of o-minimal groups, J. London Math. Soc. (2) 59 (1999), no. 3, 769-786. MR 1709079, https://doi.org/10.1112/S0024610799007528
  • [21] Anand Pillay, On groups and fields definable in $ o$-minimal structures, J. Pure Appl. Algebra 53 (1988), no. 3, 239-255. MR 961362, https://doi.org/10.1016/0022-4049(88)90125-9
  • [22] A. Pillay, T. Scanlon, and F. O. Wagner, Supersimple fields and division rings, Math. Res. Lett. 5 (1998), no. 4, 473-483. MR 1653312, https://doi.org/10.4310/MRL.1998.v5.n4.a5
  • [23] G. Schlichting, Operationen mit periodischen Stabilisatoren, Arch. Math. (Basel) 34 (1980), no. 2, 97-99 (German). MR 583752, https://doi.org/10.1007/BF01224936
  • [24] Frank O. Wagner, Simple theories, Mathematics and its Applications, vol. 503, Kluwer Academic Publishers, Dordrecht, 2000. MR 1747713

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 03C45, 03C60, 12E15

Retrieve articles in all journals with MSC (2010): 03C45, 03C60, 12E15


Additional Information

Nadja Hempel
Affiliation: Institut Camille Jordan, Université Lyon 1, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
Address at time of publication: Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095-1555
Email: nadja@math.ucla.edu

Daniel Palacín
Affiliation: Mathematisches Institut, Universitat Münster, Einsteinstrasse 62, 48149 Münster, Germany
Address at time of publication: Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Givat Ram 9190401, Jerusalem, Israel
Email: daniel.palacin@mail.huji.ac.il

DOI: https://doi.org/10.1090/proc/13752
Received by editor(s): June 15, 2016
Received by editor(s) in revised form: February 24, 2017, and March 29, 2017
Published electronically: September 7, 2017
Additional Notes: The first author was supported by the project ValCoMo (ANR-13-BS01-0006)
The second author was supported by the projects SFB 878 and MTM2014-59178-P
Communicated by: Ken Ono
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society