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PICK AND PEAK INTERPOLATION

ALEXANDER J. IZZO

(Communicated by Stephan Ramon Garcia)

Abstract. We show how Pick interpolation and interpolation on peak in-
terpolation sets can be combined in an abstract uniform algebra setting. In
particular, as a special case, the Rudin-Carleson theorem can be combined
with the classical Pick interpolation theorem on the disc.

1. Introduction

The classical Pick interpolation problem is this: given an n-tuple (z1, . . . , zn) of
distinct points in the open unit disc D, for which n-tuples (w1, . . . , wn) of complex
numbers does there exist a bounded holomorphic function f on D with supremum
norm ‖f‖ ≤ 1 such that

(∗) f(zj) = wj , 1 ≤ j ≤ n?

The answer is given by Pick’s theorem [6], which says that the desired function f
exists if and only if the matrix(

1− wjwk

1− zjzk

)
j,k=1,...,n

is positive semi-definite. The proof of Pick’s theorem can be found in many places,
for instance [5]. When the Pick interpolation problem has a solution, the solution
can, in fact, be taken to be a finite Blaschke product. Thus there is no change in
Pick’s problem if in the statement of the problem we require the function to be in
the disc algebra A(D). (The disc algebra is the algebra of all continuous complex-
valued functions on the closed disc D that are holomorphic on D.) However, it then
becomes natural to consider a slightly more general situation in which some of the
points z1, . . . , zn are allowed to lie on the boundary of D. Actually we will consider
something even more general; we will ask for interpolation at a finite number of
points in the open disc together with interpolation on a peak interpolaton set on the
boundary. However, to have a tractable problem, a slight reformulation is needed.
We will replace the condition that ‖f‖ ≤ 1 by the requirement that for every ε > 0
there is a solution f to the interpolation problem with ‖f‖ ≤ 1 + ε. Note that
this reformulation does not change the classical Pick problem; if for every ε > 0
there is a bounded holomophic function f with ‖f‖ ≤ 1 + ε satisfying (∗), then a
normal families argument shows that there is a bounded holomorphic function f
with ‖f‖ ≤ 1 satisfying (∗).
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Generalization of Pick’s problem to an abstract uniform algebra context has been
extensively studied by Brian Cole, Keith Lewis, and John Wermer [2, 3, 8], and in
that context they make use of the reformulation involving 1 + ε just mentioned. It
arises naturally from considering a quotient norm. Let A be a uniform algebra on
a compact space X, that is, an algebra of complex-valued continuous functions on
X that contains the constant functions, separates the points of X, and is uniformly
closed in the algebra C(X) of all complex-valued continuous functions on X. Fix
n points z1, . . . , zn in X. Define

I = {f ∈ A : f(zj) = 0, 1 ≤ j ≤ n}.

Then I is a closed ideal in A. The quotient algebra A/I of A by the ideal I consists
of all cosets [f ] relative to I where f ∈ A. The norm of [f ] in A/I is given by

‖[f ]‖ = inf{‖g‖ : g ∈ [f ]}.

Let w1, . . . , wn be fixed complex numbers, and let f be a function in A such that
f(zj) = wj , 1 ≤ j ≤ n. Then the condition that ‖[f ]‖ ≤ 1 is exactly the condition
that for every ε > 0 there is a function fε ∈ A such that fε(zj) = wj , 1 ≤ j ≤ n,
with ‖fε‖ ≤ 1 + ε.

The proof of our theorem that Pick interpolation can be combined with interpo-
lation on a peak interpolation set is no more difficult in an abstract uniform algebra
context. We will state and prove the theorem in that context and then show how
it specializes to the disc algebra.

2. Pick and peak interpolation

Given a uniform algebra A on a compact space X and a subset E of X, a function
g in A is said to peak on E if g = 1 on E and |g| < 1 on X \ E. The subset E
of X is said to be a peak interpolation set for A if for every nonzero function f in
C(E) there is a function F in A such that F |E = f and |F (x)| < ‖f‖ for every x
in X \ E. Our main theorem is as follows.

Theorem 2.1. Suppose A is a uniform algebra on a compact space X. Fix a peak
interpolation set E for A and points α1, . . . , αn in X \ E. Also fix a continuous
complex-valued function f on E with ‖f‖ ≤ 1 and complex numbers w1, . . . , wn.
If for each ε > 0 there exists a function F in A with ‖F‖ ≤ 1 + ε such that
F (αj) = wj , 1 ≤ j ≤ n, then the function F can be chosen so that in addition
F |E = f .

Specializing to the disc algebra gives the following result that combines Pick
interpolation with the Rudin-Carleson theorem [1, 7] (or see [4, Theorem II.12.6]).
The proof is an immediate application of the above theorem and the theorems of
Pick and of Rudin and Carleson.

Theorem 2.2. Let E be a closed subset of ∂D of 1-dimensional Lebesgue mea-
sure zero, let f be a continuous complex-valued function on E with ‖f‖ ≤ 1,
let (z1, . . . , zn) be an n-tuple of distinct points in the open unit disc D, and let
(w1, . . . , wn) be an n-tuple of complex numbers. Then for every ε > 0 there
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is a function F in the disc algebra with ‖F‖ ≤ 1 + ε such that F |E = f and
F (zj) = wj , 1 ≤ j ≤ n, if and only if the matrix(

1− wjwk

1− zjzk

)
j,k=1,...,n

is positive semi-definite.

Theorems 2.1 and 2.2 become false if one omits the ε and asks for ‖F‖ ≤ 1.
For instance, if (z1, z2) = (0, 1/2) = (w1, w2), then by the Schwarz lemma, to
solve the Pick interpolation problem, F must be given by F (z) = z, and hence the
conclusion of Theorem 2.2 is false unless f is also given by f(z) = z. More generally,
the solution to the Pick interpolation problem is unique if and only if the matrix in
Theorem 2.2 has determinant zero (and is positive semi-definite) [5, Corollary I.2.3].

Before proving Theorem 2.1, we establish a lemma.

Lemma 2.3. Given a uniform algebra A on a compact space X and a peak set E
for A, there is a sequence of functions (fm)∞m=1 in A with ‖fm‖ ≤ 1 for all m such
that fm = 0 on E for all m but fm → 1 pointwise on X \ E.

Proof. Let f be a function in A that peaks on E. Set g = (1 − f)/2. Then the
range of g lies in the closed disc Δ = {z : |z − 1

2 | ≤
1
2}. Note that on Δ there is a

well-defined continuous mth root function γ with γ(1) = 1. Since γ is holomorphic
on Int(Δ), there is a sequence of polynomials (pk)

∞
k=1 such that pk → γ uniformly

on Δ. Consequently, g has an mth root g1/m = γ ◦g in A. Note that g1/m = 0 on E
and ‖g1/m‖ ≤ 1 (since ‖g‖ ≤ 1). For x ∈ X \E, we have g(x) �= 0, so g1/m(x) → 1
as m → ∞. Thus setting fm = g1/m gives the lemma. �

Proof of Theorem 2.1.

Step 1. We show that for each ε > 0 there is a function G in A with ‖G‖ ≤ 1 + ε
such that G|E = f and |G(αj)− wj | < ε (j = 1, . . . , n).

By hypothesis there is a function l in A with ‖l‖ ≤ 1+(ε/2) and l(αj) = wj (j =
1, . . . , n). Let (fm) be a sequence as in the lemma above. Put

gm(z) = fm(z)l(z).

As m → ∞, note that gm → l pointwise on X \ E, so gm(αj) → wj for each j.
Choose m0 large enough that |gm0

(αj)−wj | < ε/2 for all j, and set g = gm0
. Since

each fm vanishes on E, so does g, so we can choose a neighborhood U of E on
which |g| < ε/2. Furthermore we can choose U so as to contain none of the αj .
Note that ‖g‖ ≤ ‖l‖ ≤ 1 + (ε/2).

Since E is a peak interpolation set, we can choose a function h in A with ‖h‖ ≤ 1
such that h|E = f and |h| < ε/2 on X \U . (To obtain such a function h, start with
a function in A satisfying the first two conditions and then multiply by a sufficiently
high power of a function that peaks on E to achieve the last condition.) Set

G = g + h.

Then G is in A. Applying the inequality |G(x)| ≤ |g(x)| + |h(x)| separately for x
in U and in X \U , we see that ‖G‖ ≤ 1+ ε. Since g = 0 on E, we have G = h = f
on E. Finally |G(αj)− wj | = |g(αj) + h(αj)− wj | ≤ |g(αj)− wj |+ |h(αj)| < ε.

Step 2. We complete the proof. Choose a function r in A that peaks on E, i.e.,
such that r = 1 on E and |r| < 1 on X \ E. Since the functions in A separate
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points, there is a function k1 in A that vanishes at α2, . . . , αn but is nonzero at α1.
Then the function (1 − r)k1 is zero on E and at α2, . . . , αn but is nonzero at α1.
By multiplying by a constant, we obtain a function ϕ1 in A that is 1 at α1 and zero
on E and at α2, . . . , αn. Similarly we obtain, for each j, a function ϕj in A that is
1 at αj and zero on E and at the other α’s. Let M = max

1≤j≤n
‖ϕj‖. Take G as in

Step 1 and set σj = G(αj)− wj . Finally set

F = G−
n∑

j=1

σjϕj .

Then F is in A,

‖F‖ ≤ ‖G‖+
n∑

j=1

|σj |‖ϕj‖

≤ ‖G‖+ εnM

≤ 1 + ε(1 + nM),

F |E = G|E = f , and F (αj) = G(αj)−σj = wj for each j. Since ε is arbitrary and
M is independent of ε, this proves the theorem. �
Remark 2.4. Theorem 2.1 remains valid with “peak interpolation set” replaced by
“generalized peak interpolation set” where by “generalized peak interpolation set”
we mean a set that is a generalized peak set (i.e., an intersection of peak sets) and
an interpolation set. The proof goes through almost unchanged. We choose a peak
set E′ containing E and avoiding all the αj ’s and apply the lemma to E′ to get a
sequence (fm). We obtain g from (fm) as before and take U to be a neighborhood
of E′ avoiding the αj ’s with |g| < ε/2 on U . We then obtain a function h in A with
‖h‖ ≤ 1 such that h|E = f and |h| < ε on X \U as before. The rest of Step 1 goes
through as before. Step 2 is unchanged except that we take r to peak on E′.
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