Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Asymptotic order of the quantization errors for a class of self-affine measures


Author: Sanguo Zhu
Journal: Proc. Amer. Math. Soc. 146 (2018), 637-651
MSC (2010): Primary 28A80, 28A78; Secondary 94A15
DOI: https://doi.org/10.1090/proc/13756
Published electronically: September 7, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ be a Bedford-McMullen carpet determined by a set of affine mappings $ (f_{ij})_{(i,j)\in G}$ and $ \mu $ a self-affine measure on $ E$ associated with a probability vector $ (p_{ij})_{(i,j)\in G}$. We prove that, for every $ r\in (0,\infty )$, the upper and lower quantization coefficient are always positive and finite in its exact quantization dimension $ s_r$. As a consequence, the $ n$th quantization error for $ \mu $ of order $ r$ is of the same order as $ n^{-\frac {1}{s_r}}$. In sharp contrast to the Hausdorff measure for Bedford-McMullen carpets, our result is independent of the horizontal fibres of the carpets.


References [Enhancements On Off] (What's this?)

  • [1] T. Bedford, Crinkly curves, Markov partitions and box dimensions in self-similar sets, Ph.D. Thesis, University of Warwick, 1984.
  • [2] K. J. Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 2, 339-350. MR 923687, https://doi.org/10.1017/S0305004100064926
  • [3] K. J. Falconer, The dimension of self-affine fractals. II, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 1, 169-179. MR 1131488, https://doi.org/10.1017/S0305004100075253
  • [4] Kenneth J. Falconer, Generalized dimensions of measures on almost self-affine sets, Nonlinearity 23 (2010), no. 5, 1047-1069. MR 2630090, https://doi.org/10.1088/0951-7715/23/5/002
  • [5] Siegfried Graf and Harald Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Mathematics, vol. 1730, Springer-Verlag, Berlin, 2000. MR 1764176
  • [6] Siegfried Graf and Harald Luschgy, The quantization dimension of self-similar probabilities, Math. Nachr. 241 (2002), 103-109. MR 1912380, https://doi.org/10.1002/1522-2616(200207)241:1$ \langle$103::AID-MANA103$ \rangle$3.0.CO;2-J
  • [7] Siegfried Graf and Harald Luschgy, Quantization for probability measures with respect to the geometric mean error, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 3, 687-717. MR 2055056, https://doi.org/10.1017/S0305004103007229
  • [8] Siegfried Graf and Harald Luschgy, The point density measure in the quantization of self-similar probabilities, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 3, 513-531. MR 2138577, https://doi.org/10.1017/S030500410500842X
  • [9] Robert M. Gray and David L. Neuhoff, Quantization, IEEE Trans. Inform. Theory 44 (1998), no. 6, 2325-2383. Information theory: 1948-1998. MR 1658787, https://doi.org/10.1109/18.720541
  • [10] John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713-747. MR 625600, https://doi.org/10.1512/iumj.1981.30.30055
  • [11] Thomas Jordan and Michal Rams, Multifractal analysis for Bedford-McMullen carpets, Math. Proc. Cambridge Philos. Soc. 150 (2011), no. 1, 147-156. MR 2739077, https://doi.org/10.1017/S0305004110000472
  • [12] Marc Kesseböhmer and Sanguo Zhu, On the quantization for self-affine measures on Bedford-McMullen carpets, Math. Z. 283 (2016), no. 1-2, 39-58. MR 3489058, https://doi.org/10.1007/s00209-015-1588-3
  • [13] M. Kesseböhmer and S. Zhu, Some recent developments in the quantization for probability measures. Fractal Geometry and stochastics V, Chapter 7 (2015), 105-120. Springer international publishing Switzerland.
  • [14] James F. King, The singularity spectrum for general Sierpiński carpets, Adv. Math. 116 (1995), no. 1, 1-11. MR 1361476, https://doi.org/10.1006/aima.1995.1061
  • [15] Wolfgang Kreitmeier, Optimal quantization for dyadic homogeneous Cantor distributions, Math. Nachr. 281 (2008), no. 9, 1307-1327. MR 2442708, https://doi.org/10.1002/mana.200510680
  • [16] Steven P. Lalley and Dimitrios Gatzouras, Hausdorff and box dimensions of certain self-affine fractals, Indiana Univ. Math. J. 41 (1992), no. 2, 533-568. MR 1183358, https://doi.org/10.1512/iumj.1992.41.41031
  • [17] L. J. Lindsay and R. D. Mauldin, Quantization dimension for conformal iterated function systems, Nonlinearity 15 (2002), no. 1, 189-199. MR 1877974, https://doi.org/10.1088/0951-7715/15/1/309
  • [18] Curt McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J. 96 (1984), 1-9. MR 771063
  • [19] Eugen Mihailescu and Mariusz Urbański, Hausdorff dimension of the limit set of conformal iterated function systems with overlaps, Proc. Amer. Math. Soc. 139 (2011), no. 8, 2767-2775. MR 2801617, https://doi.org/10.1090/S0002-9939-2011-10704-4
  • [20] Eugen Mihailescu and Mrinal Kanti Roychowdhury, Quantization coefficients in infinite systems, Kyoto J. Math. 55 (2015), no. 4, 857-873. MR 3479313, https://doi.org/10.1215/21562261-3089118
  • [21] Yuval Peres, The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 3, 513-526. MR 1291757, https://doi.org/10.1017/S0305004100072789
  • [22] Klaus Pötzelberger, The quantization dimension of distributions, Math. Proc. Cambridge Philos. Soc. 131 (2001), no. 3, 507-519. MR 1866392
  • [23] Mrinal Kanti Roychowdhury, Quantization dimension for some Moran measures, Proc. Amer. Math. Soc. 138 (2010), no. 11, 4045-4057. MR 2679625, https://doi.org/10.1090/S0002-9939-2010-10406-9
  • [24] Paul Laszlo Zador, DEVELOPMENT AND EVALUATION OF PROCEDURES FOR QUANTIZING MULTIVARIATE DISTRIBUTIONS, ProQuest LLC, Ann Arbor, MI, 1964. Thesis (Ph.D.)-Stanford University. MR 2614227
  • [25] Sanguo Zhu, Asymptotic uniformity of the quantization error of self-similar measures, Math. Z. 267 (2011), no. 3-4, 915-929. MR 2776065, https://doi.org/10.1007/s00209-009-0653-1

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 28A80, 28A78, 94A15

Retrieve articles in all journals with MSC (2010): 28A80, 28A78, 94A15


Additional Information

Sanguo Zhu
Affiliation: School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, People’s Republic of China
Email: sgzhu@jsut.edu.cn

DOI: https://doi.org/10.1090/proc/13756
Keywords: Quantization error, convergence order, quantization coefficient, self-affine measures, Bedford-McMullen carpets.
Received by editor(s): December 21, 2016
Received by editor(s) in revised form: March 22, 2017
Published electronically: September 7, 2017
Additional Notes: The author was supported by NSFC 11571144
Communicated by: Jeremy Tyson
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society