ON A SPECIAL CASE OF WATKINS' CONJECTURE

MATIJA KAZALICKI AND DANIEL KOHEN
(Communicated by Kathrin Bringmann)

Abstract

Watkins' conjecture asserts that for a rational elliptic curve E the degree of the modular parametrization is divisible by 2^{r}, where r is the rank of E. In this paper, we prove that if the modular degree is odd, then E has rank zero. Moreover, we prove that the conjecture holds for all rank two rational elliptic curves of prime conductor and positive discriminant.

1. Introduction

Given a rational elliptic curve E of conductor N, by the modularity theorem, there exists a morphism of a minimal degree

$$
\phi: X_{0}(N) \rightarrow E,
$$

that is defined over \mathbb{Q}, where $X_{0}(N)$ is the classical modular curve. Its degree, denoted by m_{E}, is called the modular degree. While analyzing experimental data, Watkins conjectured that for an elliptic curve of rank r, m_{E} is divisible by 2^{r} [9. Conjecture 4.1]. In particular, if the modular degree is odd, the rank should be zero; the proof of this assertion is the main result of this work.

The study of elliptic curves with odd modular degree was first developed in [1] by Calegari and Emerton, where they showed that a rational elliptic curve with odd modular degree has to satisfy a series of very restrictive hypotheses. For a detailed list of conditions see [1, Theorem 1.1]. Later, building on this work, Yazdani [8] studied abelian varieties having odd modular degree. As a by-product of his work, he proves that if a rational elliptic curve has odd modular degree, then it has rank zero, except perhaps if it has prime conductor and even analytic rank (see [8, Theorem 3.8] for a more general statement). The main result of this paper is the following theorem:

Theorem 1.1. If E / \mathbb{Q} is an elliptic curve of odd modular degree, then E has rank zero.

By the aforementioned results it is enough to restrict ourselves to the case where E has prime conductor p and even analytic rank. Moreover, it is clear that we can assume that the curve E is the strong Weil curve, that is, the kernel of the map $J_{0}(p) \rightarrow E$ is connected $\left(J_{0}(p)\right.$ is the Jacobian of $\left.X_{0}(p)\right)$.

The elliptic curve E gives rise to a normalized newform $f_{E} \in S_{2}\left(\Gamma_{0}(p)\right)$ by the modularity theorem. The main idea of the article is to associate to f_{E} (or E) an

[^0]element v_{E} of the Picard group \mathcal{X} of a certain curve X (which is a disjoint union of curves of genus zero) as in 3. More precisely, \mathcal{X} can be described as the free \mathbb{Z}-module of divisors supported on the isomorphism classes of supersingular elliptic curves over $\overline{\mathbb{F}_{p}}$, denoted by $e_{1}, e_{2}, \ldots, e_{n}$, where $n-1$ is the genus of $X_{0}(p)$. They are in bijection with the isomorphism classes of supersingular elliptic curves $E_{i} / \overline{\mathbb{F}_{p}}$. The action of Hecke correspondences on X induces an action on \mathcal{X}. There is a correspondence between modular forms of level p and weight 2 and elements of $\mathcal{X} \otimes \mathbb{C}$ that preserves the action of the Hecke operators ([3, Proposition 5.6]). Let $v_{E}=\sum v_{E}\left(e_{i}\right) e_{i} \in \mathcal{X}$ be an eigenvector for all Hecke operators t_{m} corresponding to f_{E}, i.e. $t_{m} v_{E}=a(m) v_{E}$, where $f_{E}(\tau)=\sum_{m=1}^{\infty} a(m) q^{m}$. We normalize v_{E} (up to sign) such that the greatest common divisor of all its entries is 1 . We define a \mathbb{Z}-bilinear pairing
$$
\langle-,-\rangle: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{Z}
$$
by requiring $\left\langle e_{i}, e_{j}\right\rangle=w_{i} \delta_{i, j}$ for all $i, j \in\{1, \ldots, n\}$, where $w_{i}=\frac{1}{2} \# \operatorname{Aut}\left(E_{i}\right)$.
We have the following key result of Mestre that relates the norm of v_{E} to the modular degree m_{E}.

Proposition 1.2 ([6, Theorem 3]).

$$
\left\langle v_{E}, v_{E}\right\rangle=m_{E} t
$$

where t is the size of $E(\mathbb{Q})_{\text {tors }}$.
The final ingredient we need is the Gross-Waldspurger formula on special values of L-series [3]. An alternative approach is to use the Gross-Kudla formula for the special values of triple products of L-functions (4).

In [5], while studying supersingular zeros of divisor polynomials of elliptic curves, the authors posed the following conjecture.

Conjecture 1.3. If E is an elliptic curve of prime conductor p, root number 1, and $\operatorname{rank}(E)>0$, then $v_{E}\left(e_{i}\right)$ is an even number for all e_{i} with $j\left(E_{i}\right) \in \mathbb{F}_{p}$.

The conclusion of the conjecture holds for any elliptic curve E / \mathbb{Q} of prime conductor and root number -1 , as well as for any curve of prime conductor that has positive discriminant and no rational points of order 2 (see [5, Thrms. 1.1, 1.2, 1.4]).

In the last paragraph of this paper, we will show the connection between this conjecture and Watkins' conjecture:

Theorem 1.4. Let E / \mathbb{Q} be an elliptic curve of prime conductor such that $\operatorname{rank}(E)$ >0. If $v_{E}\left(e_{i}\right)$ is even number for all e_{i} with $j\left(E_{i}\right) \in \mathbb{F}_{p}$, then $4 \mid m_{E}$.

In particular, as remarked before, this verifies Watkins' conjecture if E has prime conductor, $\operatorname{disc}(E)>0$, and $\operatorname{rank}(E)=2$.

2. Proof of the main theorem

We will give a series of propositions that will allow us to prove Theorem 1.1.
Proposition 2.1. If E / \mathbb{Q} has non-zero rank, then $L(E, 1)=0$.
Proof. This is a classical application of the Gross-Zagier and Kolyvagin theorems. For a reference see [2, Theorem 3.22].

Proposition 2.2. If E / \mathbb{Q} has prime conductor and non-zero rank, then $E(\mathbb{Q})_{\text {tors }}$ is trivial.

Proof. This is a well-known result; for example in [6] it is shown that the isogeny classes of rational elliptic curves with conductor p and non-trivial rational torsion subgroup are either 11.a, 17.a, 19.a and $37 . b$, or the so-called Neumann-Setzer curves that have a 2 -rational point. All these curves have rank zero [7].

Proposition 2.3. Let $v_{E}=\sum_{i=1}^{n} v_{E}\left(e_{i}\right) e_{i} \in \mathcal{X}$ be the vector corresponding to f_{E}. We have that $\sum_{i=1}^{n} v_{E}\left(e_{i}\right)=0$.

Proof. The vector $e_{0}=\sum_{i=1}^{n} \frac{e_{i}}{w_{i}}$ corresponds to the Eisenstein series ([3, Formula 4.9]). Moreover, the pairing $\langle-,-\rangle: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{Z}$ is compatible with the Hecke operators. Since the space of cuspforms is orthogonal to the Eisenstein series, we obtain

$$
\left\langle v_{E}, e_{0}\right\rangle=\sum_{i=1}^{n} v_{E}\left(e_{i}\right)=0
$$

Proposition 2.4. The numbers w_{k} are all equal to 1 unless $j\left(E_{k}\right)=0$ (in which case $w_{k}=3$) or $j\left(E_{k}\right)=1728$ (in which case $w_{k}=2$). The value $j=0$ is a supersingular j-invariant precisely for $p \equiv 2(\bmod 3)$ and $j=1728$ is a supersingular j-invariant for $p \equiv 3(\bmod 4)$.

Proof. See [3, Table 1.3 p. 117].
Given $-D$ a fundamental negative discriminant, Gross defines

$$
b_{D}=\sum_{i=1}^{n} \frac{h_{i}(-D)}{u(-D)} e_{i}
$$

where $h_{i}(-D)$ is the number of optimal embeddings of the order of discriminant $-D$ into $\operatorname{End}\left(E_{i}\right)$ modulo conjugation by $\operatorname{End}\left(E_{i}\right)^{\times}$and $u(-D)$ is the number of units of the order. We are in position to state (a special case of) the Gross-Waldspurger formula [3, Proposition 13.5].

Proposition 2.5. If $-D$ is a fundamental negative discriminant with $\left(\frac{-D}{p}\right)=-1$, then

$$
L(E, 1) L\left(E \otimes \varepsilon_{D}, 1\right)=\frac{\left(f_{E}, f_{E}\right)}{\sqrt{D}} \frac{m_{D}^{2}}{\left\langle v_{E}, v_{E}\right\rangle},
$$

where ε_{D} is the quadratic character associated to $-D,\left(f_{E}, f_{E}\right)$ is the Petersson inner product on $\Gamma_{0}(p)$ and

$$
m_{D}=\left\langle v_{E}, b_{D}\right\rangle .
$$

We will use the formula in the case that $-D=-4($ and thus $p \equiv 3 \bmod 4)$. In this situation a rational elliptic curve of j-invariant equal to 1728 with complex multiplication by $\mathbb{Z}[i]$ reduces mod p to the supersingular elliptic curve E_{k} and this reduction induces two optimal embeddings of $\mathbb{Z}[i]$ into $\operatorname{End}\left(E_{k}\right)$. On the other hand, we know that $\sum_{i} h_{i}(-4)=2 h(-4)=2$, where $h(-4)$ is the class number of the quadratic imaginary field $\mathbb{Q}(\sqrt{-1})$ (3, Formula 1.12]); thus $h_{i}=0$ unless $i=k$ in which case $h_{k}(-4)=2$. Since $u(-4)=4$, we obtain that $b_{4}=\frac{1}{2} e_{k}$.

Now we have the necessary ingredients in order to prove Theorem 1.1.

Proof of Theorem 1.1. As remarked in the introduction, it is enough to prove the theorem when E has prime conductor p and it is the strong Weil curve. Suppose on the contrary that E has positive rank. In consequence, by Proposition 1.2 and Proposition 2.2 we know that $\left\langle v_{E}, v_{E}\right\rangle$ must be odd. Moreover,

$$
\left\langle v_{E}, v_{E}\right\rangle=\sum_{i=1}^{n} w_{i} v_{E}\left(e_{i}\right)^{2} \equiv \sum_{i=1}^{n} w_{i} v_{E}\left(e_{i}\right) \quad(\bmod 2) .
$$

Using Propositions 2.3 and 2.4 we obtain that if $p \equiv 1(\bmod 4)\left\langle v_{E}, v_{E}\right\rangle$ is even and if $p \equiv 3(\bmod 4)$, then $\left\langle v_{E}, v_{E}\right\rangle \equiv v_{E}\left(e_{k}\right)(\bmod 2)$, where k is the only index such that $w_{k}=2$. In that case, since $L(E, 1)=0$ (by Proposition [2.1), Proposition 2.5 implies that

$$
m_{4}=\left\langle v_{E}, b_{4}\right\rangle=0
$$

Since $b_{4}=\frac{1}{2} e_{k}$, we get that

$$
m_{4}=v_{E}\left(e_{k}\right)=0 .
$$

Therefore, $\left\langle v_{E}, v_{E}\right\rangle$ is even, leading to a contradiction.
Remark 2.6. Another proof along the same lines uses that if $L(E, 1)=0$, then

$$
\sum_{i} w_{i}^{2} v_{E}\left(e_{i}\right)^{3}=0
$$

This is proved in [4, Corollary 11.5], as a consequence of the Gross-Kudla formula of special values of triple product L-functions. The number $\sum_{i} w_{i}^{2} v_{E}\left(e_{i}\right)^{3}$ clearly has the same parity as $\left\langle v_{E}, v_{E}\right\rangle$, leading to the desired contradiction.

3. The proof of Theorem 1.4

Proof of Theorem 1.4. For a given e_{i}, denote by $\bar{i} \in\{1,2, \ldots, n\}$ the unique index such that $e_{\bar{i}}$ corresponds to the curve E_{i}^{p}. Then [3, Proposition 2.4] implies that $v\left(e_{i}\right)=v\left(e_{\bar{i}}\right)$. By Proposition 2.4 we have that $j\left(E_{k}\right) \in \mathbb{F}_{p}$ whenever $w_{k} \neq 1$, and thus $v_{E}\left(e_{k}\right)$ is even. Hence Proposition 2.2 implies that

$$
m_{E} \equiv \sum_{i} v_{E}\left(e_{i}\right)^{2} \quad(\bmod 4) .
$$

If E_{i} is defined over \mathbb{F}_{p} (i.e. $\bar{i}=i$), then by the assumption

$$
v_{E}\left(e_{i}\right)^{2} \equiv 0 \quad(\bmod 4) .
$$

Hence

$$
m_{E} \equiv \sum_{i}^{\prime} 2 v_{E}\left(e_{i}\right)^{2} \quad(\bmod 4)
$$

where we sum over the pairs $\{i, \bar{i}\}$ with $i \neq \bar{i}$. Using again Proposition 2.1 and the Gross-Kudla formula, we get that

$$
\sum_{i} v_{E}\left(e_{i}\right)^{3} \equiv \sum_{i}^{\prime} 2 v_{E}\left(e_{i}\right) \equiv 0 \quad(\bmod 4)
$$

where the second sum is over the pairs $\{i, \bar{i}\}$ for which $v_{E}\left(e_{i}\right)$ is odd. It follows that the number of such pairs is even, hence $m_{E} \equiv 0(\bmod 4)$.

Acknowledgments

The authors would like to thank A. Dujella, I. Gusić, M. Mereb, F. Najman and the anonymous reviewer for their useful comments and suggestions.

References

[1] Frank Calegari and Matthew Emerton, Elliptic curves of odd modular degree, Israel J. Math. 169 (2009), 417-444, DOI 10.1007/s11856-009-0017-x. MR2460912
[2] Henri Darmon, Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics, vol. 101, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR 2020572
[3] Benedict H. Gross, Heights and the special values of L-series, Number theory (Montreal, Que., 1985), CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115-187. MR894322
[4] Benedict H. Gross and Stephen S. Kudla, Heights and the central critical values of triple product L-functions, Compositio Math. 81 (1992), no. 2, 143-209. MR 1145805
[5] Matija Kazalicki and Daniel Kohen, Supersingular zeros of divisor polynomials of elliptic curves of prime conductor, Res. Math. Sci. 4 (2017), Paper No. 10, 15, DOI 10.1186/s40687-017-0099-8. MR3647576
[6] J.-F. Mestre, La méthode des graphes. Exemples et applications (French), Proceedings of the international conference on class numbers and fundamental units of algebraic number fields (Katata, 1986), Nagoya Univ., Nagoya, 1986, pp. 217-242. MR891898
[7] William Stein and Mark Watkins, Modular parametrizations of Neumann-Setzer elliptic curves, Int. Math. Res. Not. 27 (2004), 1395-1405, DOI 10.1155/S1073792804133916. MR2052021
[8] Soroosh Yazdani, Modular abelian varieties of odd modular degree, Algebra Number Theory 5 (2011), no. 1, 37-62, DOI 10.2140/ant.2011.5.37. MR2833784
[9] Mark Watkins, Computing the modular degree of an elliptic curve, Experiment. Math. 11 (2002), no. 4, 487-502 (2003). MR 1969641

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

E-mail address: matija.kazalicki@math.hr
Departamento de Matemática, Universidad de Buenos Aires and IMAS-CONiCET, Ciudad Universitaria, Buenos Aires Argentina

E-mail address: dkohen@dm.uba.ar

[^0]: Received by the editors January 20, 2017 and, in revised form, March 31, 2017.
 2010 Mathematics Subject Classification. Primary 11G05; Secondary 11G20.
 The first author's work was supported by the QuantiXLie Center of Excellence.
 The second author's work was supported by a doctoral fellowship of the Consejo Nacional de Inevsitagciones Científicas y Técnicas.

