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ON A SPECIAL CASE OF WATKINS’ CONJECTURE
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Abstract. Watkins’ conjecture asserts that for a rational elliptic curve E the
degree of the modular parametrization is divisible by 2r, where r is the rank of
E. In this paper, we prove that if the modular degree is odd, then E has rank
zero. Moreover, we prove that the conjecture holds for all rank two rational
elliptic curves of prime conductor and positive discriminant.

1. Introduction

Given a rational elliptic curve E of conductor N , by the modularity theorem,
there exists a morphism of a minimal degree

φ : X0(N) → E,

that is defined over Q, where X0(N) is the classical modular curve. Its degree,
denoted by mE , is called the modular degree. While analyzing experimental data,
Watkins conjectured that for an elliptic curve of rank r, mE is divisible by 2r

[9, Conjecture 4.1]. In particular, if the modular degree is odd, the rank should be
zero; the proof of this assertion is the main result of this work.

The study of elliptic curves with odd modular degree was first developed in [1]
by Calegari and Emerton, where they showed that a rational elliptic curve with odd
modular degree has to satisfy a series of very restrictive hypotheses. For a detailed
list of conditions see [1, Theorem 1.1]. Later, building on this work, Yazdani [8]
studied abelian varieties having odd modular degree. As a by-product of his work,
he proves that if a rational elliptic curve has odd modular degree, then it has
rank zero, except perhaps if it has prime conductor and even analytic rank (see
[8, Theorem 3.8] for a more general statement). The main result of this paper is
the following theorem:

Theorem 1.1. If E/Q is an elliptic curve of odd modular degree, then E has rank
zero.

By the aforementioned results it is enough to restrict ourselves to the case where
E has prime conductor p and even analytic rank. Moreover, it is clear that we can
assume that the curve E is the strong Weil curve, that is, the kernel of the map
J0(p) → E is connected (J0(p) is the Jacobian of X0(p)).

The elliptic curve E gives rise to a normalized newform fE ∈ S2(Γ0(p)) by the
modularity theorem. The main idea of the article is to associate to fE (or E) an
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element vE of the Picard group X of a certain curve X (which is a disjoint union
of curves of genus zero) as in [3]. More precisely, X can be described as the free
Z-module of divisors supported on the isomorphism classes of supersingular elliptic
curves over Fp, denoted by e1, e2, . . . , en, where n− 1 is the genus of X0(p). They

are in bijection with the isomorphism classes of supersingular elliptic curves Ei/Fp.
The action of Hecke correspondences on X induces an action on X . There is a
correspondence between modular forms of level p and weight 2 and elements of
X ⊗ C that preserves the action of the Hecke operators ([3, Proposition 5.6]). Let
vE =

∑
vE(ei)ei ∈ X be an eigenvector for all Hecke operators tm corresponding

to fE , i.e. tmvE = a(m)vE, where fE(τ ) =
∑∞

m=1 a(m)qm. We normalize vE (up
to sign) such that the greatest common divisor of all its entries is 1. We define a
Z-bilinear pairing

〈−,−〉 : X × X → Z,

by requiring 〈ei, ej〉 = wiδi,j for all i, j ∈ {1, . . . , n}, where wi =
1
2#Aut(Ei).

We have the following key result of Mestre that relates the norm of vE to the
modular degree mE .

Proposition 1.2 ([6, Theorem 3]).

〈vE , vE〉 = mEt,

where t is the size of E(Q)tors.

The final ingredient we need is the Gross-Waldspurger formula on special values
of L-series [3]. An alternative approach is to use the Gross-Kudla formula for the
special values of triple products of L-functions [4].

In [5], while studying supersingular zeros of divisor polynomials of elliptic curves,
the authors posed the following conjecture.

Conjecture 1.3. If E is an elliptic curve of prime conductor p, root number 1,
and rank(E) > 0, then vE(ei) is an even number for all ei with j(Ei) ∈ Fp.

The conclusion of the conjecture holds for any elliptic curve E/Q of prime con-
ductor and root number −1, as well as for any curve of prime conductor that has
positive discriminant and no rational points of order 2 (see [5, Thrms. 1.1, 1.2, 1.4]).

In the last paragraph of this paper, we will show the connection between this
conjecture and Watkins’ conjecture:

Theorem 1.4. Let E/Q be an elliptic curve of prime conductor such that rank(E)
> 0. If vE(ei) is even number for all ei with j(Ei) ∈ Fp, then 4|mE .

In particular, as remarked before, this verifies Watkins’ conjecture if E has prime
conductor, disc(E) > 0, and rank(E) = 2.

2. Proof of the main theorem

We will give a series of propositions that will allow us to prove Theorem 1.1.

Proposition 2.1. If E/Q has non-zero rank, then L(E, 1) = 0.

Proof. This is a classical application of the Gross-Zagier and Kolyvagin theorems.
For a reference see [2, Theorem 3.22]. �
Proposition 2.2. If E/Q has prime conductor and non-zero rank, then E(Q)tors
is trivial.
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Proof. This is a well-known result; for example in [6] it is shown that the isogeny
classes of rational elliptic curves with conductor p and non-trivial rational torsion
subgroup are either 11.a, 17.a, 19.a and 37.b, or the so-called Neumann-Setzer
curves that have a 2-rational point. All these curves have rank zero [7]. �

Proposition 2.3. Let vE =
∑n

i=1 vE(ei)ei ∈ X be the vector corresponding to fE.
We have that

∑n
i=1 vE(ei) = 0.

Proof. The vector e0 =
∑n

i=1
ei
wi

corresponds to the Eisenstein series ([3, For-

mula 4.9]). Moreover, the pairing 〈−,−〉 : X ×X → Z is compatible with the Hecke
operators. Since the space of cuspforms is orthogonal to the Eisenstein series, we
obtain

〈vE , e0〉 =
n∑

i=1

vE(ei) = 0.

�

Proposition 2.4. The numbers wk are all equal to 1 unless j(Ek) = 0 (in which
case wk = 3) or j(Ek) = 1728 (in which case wk = 2). The value j = 0 is a super-
singular j-invariant precisely for p ≡ 2 (mod 3) and j = 1728 is a supersingular
j-invariant for p ≡ 3 (mod 4).

Proof. See [3, Table 1.3 p. 117]. �

Given −D a fundamental negative discriminant, Gross defines

bD =
n∑

i=1

hi(−D)

u(−D)
ei,

where hi(−D) is the number of optimal embeddings of the order of discriminant −D
into End(Ei) modulo conjugation by End(Ei)

× and u(−D) is the number of units
of the order. We are in position to state (a special case of) the Gross-Waldspurger
formula [3, Proposition 13.5].

Proposition 2.5. If −D is a fundamental negative discriminant with
(

−D
p

)
= −1,

then

L(E, 1)L(E ⊗ εD, 1) =
(fE , fE)√

D

mD
2

〈vE , vE〉
,

where εD is the quadratic character associated to −D, (fE , fE) is the Petersson
inner product on Γ0(p) and

mD = 〈vE , bD〉.

We will use the formula in the case that −D = −4 (and thus p ≡ 3 mod 4).
In this situation a rational elliptic curve of j-invariant equal to 1728 with complex
multiplication by Z[i] reduces mod p to the supersingular elliptic curve Ek and
this reduction induces two optimal embeddings of Z[i] into End(Ek). On the other
hand, we know that

∑
i hi(−4) = 2h(−4) = 2, where h(−4) is the class number of

the quadratic imaginary field Q(
√
−1) ([3, Formula 1.12]); thus hi = 0 unless i = k

in which case hk(−4) = 2. Since u(−4) = 4, we obtain that b4 = 1
2ek.

Now we have the necessary ingredients in order to prove Theorem 1.1.
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Proof of Theorem 1.1. As remarked in the introduction, it is enough to prove the
theorem when E has prime conductor p and it is the strong Weil curve. Suppose
on the contrary that E has positive rank. In consequence, by Proposition 1.2 and
Proposition 2.2 we know that 〈vE , vE〉 must be odd. Moreover,

〈vE , vE〉 =
n∑

i=1

wivE(ei)
2 ≡

n∑
i=1

wivE(ei) (mod 2).

Using Propositions 2.3 and 2.4 we obtain that if p ≡ 1 (mod 4) 〈vE , vE〉 is even
and if p ≡ 3 (mod 4), then 〈vE , vE〉 ≡ vE(ek) (mod 2), where k is the only index
such that wk = 2. In that case, since L(E, 1) = 0 (by Proposition 2.1), Proposition
2.5 implies that

m4 = 〈vE , b4〉 = 0.

Since b4 = 1
2ek, we get that

m4 = vE(ek) = 0.

Therefore, 〈vE , vE〉 is even, leading to a contradiction. �

Remark 2.6. Another proof along the same lines uses that if L(E, 1) = 0, then∑
i

wi
2vE(ei)

3 = 0.

This is proved in [4, Corollary 11.5], as a consequence of the Gross-Kudla formula
of special values of triple product L-functions. The number

∑
i wi

2vE(ei)
3 clearly

has the same parity as 〈vE , vE〉, leading to the desired contradiction.

3. The proof of Theorem 1.4

Proof of Theorem 1.4. For a given ei, denote by ī ∈ {1, 2, . . . , n} the unique index
such that eī corresponds to the curve Ep

i . Then [3, Proposition 2.4] implies that
v(ei) = v(eī). By Proposition 2.4 we have that j(Ek) ∈ Fp whenever wk 	= 1, and
thus vE(ek) is even. Hence Proposition 2.2 implies that

mE ≡
∑
i

vE(ei)
2 (mod 4).

If Ei is defined over Fp (i.e. ī = i), then by the assumption

vE(ei)
2 ≡ 0 (mod 4).

Hence

mE ≡
∑′

i

2vE(ei)
2 (mod 4),

where we sum over the pairs {i, ī} with i 	= ī. Using again Proposition 2.1 and the
Gross-Kudla formula, we get that

∑
i

vE(ei)
3 ≡

∑′

i

2vE(ei) ≡ 0 (mod 4),

where the second sum is over the pairs {i, ī} for which vE(ei) is odd. It follows that
the number of such pairs is even, hence mE ≡ 0 (mod 4). �
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