A REMARK ON THE PRODUCT PROPERTY FOR THE GENERALIZED MÖBIUS FUNCTION

MAREK JARNICKI AND PETER PFLUG

(Communicated by Harold P. Boas)

ABSTRACT. We discuss an example related to the product property for the generalized Möbius function.

1. INTRODUCTION

For a domain $G \subset \mathbb{C}^n$ and a set $\emptyset \neq A \subset G$, the generalized Möbius function $\mathbf{m}_G(A, \cdot)$ for G with poles at A is defined by the formula:

$$\boldsymbol{m}_G(A, z) := \sup\{|f(z)| : f \in \mathcal{O}(G, \mathbb{D}), \ f|_A \equiv 0\}, \quad z \in G,$$

where $\mathbb{D} \subset \mathbb{C}$ stands for the unit disc (cf. [Jar-Pfl 2013, Definition 8.2.2]). For an arbitrary set $A \subset \mathbb{C}^n$ with $A \cap G \neq \emptyset$ we put $\mathbf{m}_G(A, \cdot) := \mathbf{m}_G(A \cap G, \cdot)$. It is an open problem whether the generalized Möbius function has the following *product* property:

(PP) for any $n_j \in \mathbb{N}$, $G_j \subset \mathbb{C}^{n_j}$, and $\emptyset \neq A_j \subset G_j$, j = 1, 2, we have $\boldsymbol{m}_{G_1 \times G_2}(A_1 \times A_2, (z_1, z_2)) = \max\{\boldsymbol{m}_{G_1}(A_1, z_1), \boldsymbol{m}_{G_2}(A_2, z_2)\}, (z_1, z_2) \in G_1 \times G_2;$ cf. [Jar-Pfl 2013, § 18.3]. So far the product property (PP) has been proved only in the case where $\min\{\#A_1, \#A_2\} = 1$ (cf. [Jar-Pfl 2013, Theorem 18.3.2]). On the other hand, it is known that the generalized Green function $\boldsymbol{g}_G(A, \cdot)$ for G with poles at A has the product property (cf. [Edi1997], [Edi2001]). Recall that

$$\begin{split} \boldsymbol{g}_G(A,z) &:= \sup\{u(z): \ u: G \longrightarrow [0,1), \ \log u \in \mathcal{PSH}(G), \\ \forall_{a \in A} \ \exists_{C>0} \ \forall_{w \in G}: \ u(w) \leq C \|w-a\|\}, \quad z \in G. \end{split}$$

Clearly, $\boldsymbol{m}_G(A, \cdot) \leq \boldsymbol{g}_G(A, \cdot)$. Thus, if $\boldsymbol{m}_{G_j}(A_j, \cdot) \equiv \boldsymbol{g}_{G_j}(A_j, \cdot), j = 1, 2$, then (PP) is satisfied. Define $\boldsymbol{\Psi} : \mathbb{C}^n \times \mathbb{C}^n \longrightarrow \mathbb{C}$,

$$\Psi(z,w) := \sum_{s=1}^{n} z_s w_s = \langle z, \overline{w} \rangle, \quad z = (z_1, \dots, z_n), \ w = (w_1, \dots, w_n) \in \mathbb{C}^n,$$

where \langle , \rangle denotes the standard complex Euclidean scalar product in \mathbb{C}^n .

Let \mathcal{B}_n denote the class of all open unit balls $B = \{z \in \mathbb{C}^n : ||z|| < 1\}$, where || || is an arbitrary \mathbb{C} -norm.

Received by the editors March 18, 2017 and, in revised form, April 5, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 32F45.

Key words and phrases. Generalized Green function, generalized Möbius function, product property.

The research was partially supported by the OPUS grant no. 2015/17/B/ST1/00996 that was financed by the National Science Centre, Poland.

It is known (cf. [Jar-Pfl 2013, Proposition 18.3.1]) that the product property (PP) is equivalent to the following seemingly simpler condition:

(PP') for any $n \in \mathbb{N}$, $B_j \in \mathcal{B}_n$, and a finite set $\emptyset \neq A_j \subset B_j$, j = 1, 2, such that $A_1 \times A_2 \subset \Psi^{-1}(0)$ we have

$$|\Psi(z_1, z_2)| \le (\sup_{B_1 \times B_2} |\Psi|) \max\{m_{B_1}(A_1, z_1), m_{B_2}(A_2, z_2)\}, (z_1, z_2) \in B_1 \times B_2.$$

Notice the following example due to W. Zwonek (cf. [Jar-Pfl 2013, Example 8.2.28]): If $\mathbf{B} := \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| + |z_2| < 1\}$ and $A := \{(t, \sqrt{t}), (t, -\sqrt{t})\}$ with $0 < t \ll 1$, then $\mathbf{m}_{\mathbf{B}}(A, (0, 0)) < \mathbf{g}_{\mathbf{B}}(A, (0, 0))$.

Thus even the simpler condition (PP') cannot be a direct consequence of the product property for the generalized Green function.

For $\emptyset \neq S \subset \mathbb{C}^n$ define $S^\circ := \{ w \in \mathbb{C}^n : \sup_{z \in S} |\Psi(z, w)| < 1 \}$. Our aim is to prove the following two propositions.

Proposition 1. The condition (PP') is equivalent to the following one: (PP'') for any $n \ge 2$ and $1 \le d \le n - 1$ we have:

$$|\Psi(z_1, z_2)| \le \max\{\boldsymbol{m}_{\boldsymbol{B}}(M, z_1), \boldsymbol{m}_{\boldsymbol{B}^{\circ}}(M^{\circ}, z_2)\}, \quad (z_1, z_2) \in \boldsymbol{B} \times \boldsymbol{B}^{\circ},$$

where $\boldsymbol{B} \in \mathcal{B}_n$ and $M = \mathbb{C}^d \times \{0\}^{n-d}$.

Note that in this case $M^{\circ} = \{0\}^d \times \mathbb{C}^{n-d}$. We conjecture that in the above situation we have

(*)
$$\boldsymbol{m}_{\boldsymbol{B}}(M,\cdot) \equiv \boldsymbol{g}_{\boldsymbol{B}}(M,\cdot), \quad \boldsymbol{m}_{\boldsymbol{B}^{\circ}}(M^{\circ},\cdot) = \boldsymbol{g}_{\boldsymbol{B}^{\circ}}(M^{\circ},\cdot).$$

If (*) were true, we could get (PP'') (and hence the product property for the generalized Möbius function in the full generality) as a consequence of the product property for the generalized Green function.

So far we have verified (*) only in the following special case.

Proposition 2. Assume that

(**)
$$||(z,\lambda w)|| \le ||(z,w)||, \quad (z,w) \in \mathbb{C}^d \times \mathbb{C}^{n-d}, \ \lambda \in \mathbb{T} := \partial \mathbb{D}.$$

Then (*) is satisfied.

2. Proofs

Remark 3. (a) $\|\cdot\|^{\circ} := \sup_{z \in B} |\Psi(z, \cdot)|$ is a \mathbb{C} -norm. (b) If $M \subset \mathbb{C}^n$ is a \mathbb{C} -vector subspace, then

$$M^{\circ} = \{ w \in \mathbb{C}^n : \forall_{z \in M} : \Psi(z, w) = 0 \} = \{ \overline{w} : w \in M^{\perp} \}$$

 $(M^{\perp} \text{ is taken in the sense of the scalar product } \langle , \rangle)$. Consequently, M° is a \mathbb{C} -vector space and dim $M^{\circ} = n - \dim M$.

(c) Let
$$U : \mathbb{C}^n \longrightarrow \mathbb{C}^n$$
 be a unitary isomorphism. Put $U'(w) := \overline{U(\overline{w})}$. Then $\Psi(U(z), U'(w)) = \Psi(z, w), z, w \in \mathbb{C}^n$. Consequently, $(U(S))^\circ = U'(S^\circ)$.

Proof of Proposition 1. We have to prove that $(PP'') \Longrightarrow (PP')$. First we prove that (PP'') implies that

(a) for any n we have

$$|\Psi(z,w)| \le \max\{m_{\boldsymbol{B}}(M,z), m_{\boldsymbol{B}^{\circ}}(M^{\circ},w)\}, \quad (z,w) \in \boldsymbol{B} \times \boldsymbol{B}^{\circ},$$

where $\boldsymbol{B} \in \mathcal{B}_n$ and M is a \mathbb{C} -vector subspace of \mathbb{C}^n .

744

Put $M_0 := \mathbb{C}^d \times \{0\}^{n-d}$. Let $U : \mathbb{C}^n \longrightarrow \mathbb{C}^n$ be a unitary mapping such that $U(M) = M_0$. Put $U'(w) := \overline{U(w)}$. Let us apply (PP'') to (U(B), U(M)). Using Remark 3(c) and the fact that the generalized Möbius function is holomorphically invariant (cf. [Jar-Pfl 2013, Remark 8.2.4(l)]), we get for $(z, w) \in \mathbf{B} \times \mathbf{B}^\circ$:

$$\begin{aligned} |\Psi(z,w)| &= |\Psi(U(z),U'(w))| \\ &\leq \max\{\boldsymbol{m}_{U(\boldsymbol{B})}(U(M),U(z)),\boldsymbol{m}_{(U(\boldsymbol{B}))^{\circ}}((U(M))^{\circ},U'(w))\} \\ &= \max\{\boldsymbol{m}_{\boldsymbol{B}}(M,z),\boldsymbol{m}_{\boldsymbol{B}^{\circ}}(M^{\circ},w)\}, \end{aligned}$$

which gives (a).

Now we prove that (a) implies

(b) for any n we have

$$|\Psi(z,w)| \le \max\{m_{B_1}(A_1,z), m_{B_2}(A_2,w)\}, (z,w) \in B_1 \times B_2$$

where $\boldsymbol{B}_j \in \mathfrak{B}_n, \ \emptyset \neq A_j \subset \boldsymbol{B}_j, \ A_j$ is finite, j = 1, 2, are such that $A_1 \times A_2 \subset \Psi^{-1}(0)$, and $\Psi(\boldsymbol{B}_1 \times \boldsymbol{B}_2) \subset \mathbb{D}$.

Define $\boldsymbol{B} := \boldsymbol{B}_1, \ M := \operatorname{span} A_1$. Observe that $\boldsymbol{B}_2 \subset \boldsymbol{B}^\circ$ and $A_2 \subset M^\circ$. Consequently,

$$|\Psi(z,w)| \le \max\{m_{B}(M,z), m_{B^{\circ}}(M^{\circ},w)\} \le \max\{m_{B_{1}}(A_{1},z), m_{B_{2}}(A_{2},w)\},\ (z,w) \in B \times B^{\circ}.$$

Notice that the cases dim M = 0 or dim M = n follow from the fact that (PP) is true if max{ $\#A_1, \#A_2$ } = 1.

Finally, we prove (b) \implies (PP').

Let $C := \sup_{\boldsymbol{B}_1 \times \boldsymbol{B}_2} |\Psi|, r := 1/\sqrt{C}$. Then $|\Psi| \le 1$ on $(r\boldsymbol{B}_1) \times (r\boldsymbol{B}_2)$. Thus,

$$\begin{aligned} \frac{1}{C} |\Psi(z_1, z_2)| &= |\Psi(rz_1, rz_2)| \le \max\{ m_{rB_1}(rA_1, rz_1), m_{rB_2}(rA_2, rz_2) \} \\ &= \max\{ m_{B_1}(A_1, z_1), m_{B_2}(A_2, z_2) \}, \quad (z_1, z_2) \in B_1 \times B_2. \end{aligned}$$

Remark 4. (a) (**) implies that $||(z, \lambda w)|| = ||(z, w)||, (z, w) \in \mathbb{C}^d \times \mathbb{C}^{n-d}, \lambda \in \mathbb{T}$. (b) By the maximum principle for plurisubharmonic functions we have $||(z, \lambda w)|| \le 1$

- $\begin{aligned} \|(z,w)\|, & (z,w) \in \mathbb{C}^n, \ \lambda \in \overline{\mathbb{D}}. \ \text{ In particular, for every } (z,w) \in \mathbf{B} \text{ the set} \\ \mathbf{B}_z &:= \{w \in \mathbb{C}^{n-d} : \|(z,w)\| < 1\} \text{ is a convex balanced domain.} \end{aligned}$
- (c) $(\boldsymbol{B}^{\circ}, M^{\circ})$ satisfies the condition analogous to (**), namely $\|(\lambda u, v)\|^{\circ} \leq \|(u, v)\|^{\circ}$, $(u, v) \in \mathbb{C}^{d} \times \mathbb{C}^{n-d}, \lambda \in \mathbb{T}$. Indeed, fix (u, v) and λ . Then

$$\begin{aligned} \|(\lambda u, v)\|^{\circ} &= \sup_{(z,w)\in B} |\Psi((z,w), (\lambda u, v))| \\ &= \sup_{(z,w)\in B} |\Psi((z,\overline{\lambda}w), (u,v))| \le \sup_{(z,w)\in B} |\Psi((z,w), (u,v))| = \|(u,v)\|^{\circ}. \end{aligned}$$

Proof of Proposition 2. By Remark 4(c), to get (*) we only need to consider the case of (\mathbf{B}, M) .

Let $h_{\boldsymbol{B}_z}$ denote the Minkowski functional of \boldsymbol{B}_z ,

$$h_{\boldsymbol{B}_z}(w) := \inf\{t > 0 : \|(z, w/t)\| < 1\}, \quad w \in \mathbb{C}^{n-d}.$$

Using the holomorphic contractibility with respect to the mapping $B_z \ni w \mapsto (z, w) \in B$ (cf. [Jar-Pfl 2013, Remark 8.2.4(l)]) and the fact that B_z is a convex balanced domain, gives

$$m_{B}(M,(z,w)) \le g_{B}(M,(z,w)) \le g_{B_{z}}(0,w) = h_{B_{z}}(w), \quad (z,w) \in B;$$

cf. [Jar-Pfl 2013, Proposition 2.3.1(c)]. Fix a family $(L_i)_{i \in I}$ of \mathbb{C} -linear mappings $L_i: \mathbb{C}^n \longrightarrow \mathbb{C}$ such that $\| \| = \sup_{i \in I} |L_i|$. Write $L_i(z, w) = P_i(z) + Q_i(w)$. Observe that $||(z,w)|| \leq 1 \iff \forall_{\lambda \in \mathbb{T}} : ||(z,\lambda w)|| \leq 1 \iff \forall_{i \in I, \lambda \in \mathbb{T}} : |L_i(z,\lambda w)| \leq 1 \iff$ $\forall_{i \in I} : |P_i(z)| + |Q_i(w)| \le 1$. Moreover, $||(z, w)|| < 1 \implies \forall_{i \in I} : |P_i(z)| + |Q_i(w)| < 1$. Consequently, for all $i \in I$ and $\lambda \in \mathbb{T}$ the function $f_{i,\lambda}(z,w) := \frac{Q_i(w)}{1-\lambda P_i(z)}, (z,w) \in \mathbf{B}$, is well defined, $|f_{i,\lambda}| \leq 1$, and $f_{i,\lambda} = 0$ on $M \cap B$. In particular, for $(z, w) \in B$ we get

$$\boldsymbol{m}_{\boldsymbol{B}}(M,(z,w)) \ge \sup\{|f_{i,\lambda}(z,w)| : i \in I, \ \lambda \in \mathbb{T}\} = \sup\{\frac{|Q_i(w)|}{1-|P_i(z)|} : i \in I\}.$$

Observe that for $(z, w) \in \mathbf{B}$ we have

$$h_{{\boldsymbol{B}}_z}(w) = \inf\{t>0: \|(z,w/t)\|<1\} = \inf\{t>0: \|(z,w/t)\|\leq 1\}.$$

Indeed, we may assume that $w \neq 0$. Let $\inf\{t > 0 : ||(z, w/t)|| \leq 1\} = 1/r$, where $r := \sup\{s > 0 : ||(z, sw)|| \le 1\}$. Note that ||(z, rw)|| = 1 and r > 1. In view of (**) we have $||(z, \lambda w)|| = 1$ for all $|\lambda| = r$. Hence, by the maximum principle for plurisubharmonic functions, we get $||(z, \lambda w)|| \leq 1$ for all $|\lambda| \leq r$ and thus, either $\|(z,\lambda w)\| < 1$ for all $|\lambda| < r$, or $\|(z,\lambda w)\| = 1$ for all $|\lambda| \leq 1$. The second case is impossible because ||(z, w)|| < 1. Thus, finally, $1/r = \inf\{t > 0 : ||(z, w/t)|| < 1\}$.

Consequently, if $(z, w) \in \mathbf{B}$, then

$$\begin{aligned} h_{B_z}(w) &= \inf\{t > 0 : \forall_{i \in I} |L_i(z, w/t)| \le 1\} \\ &= \inf\{t > 0 : \forall_{i \in I} |P_i(z)| + \frac{1}{t} |Q_i(w)| \le 1\} = \sup\left\{\frac{|Q_i(w)|}{1 - |P_i(z)|} : i \in I\right\}, \\ \text{nich finishes the proof.} \end{aligned}$$

which finishes the proof.

Remark 5. Let $A: \mathbb{C}^{n-d} \longrightarrow \mathbb{C}^d$ be \mathbb{C} -linear. Using the linear isomorphism $(z,w) \mapsto (z+A(w),w)$ one may extend the equality $m_B(M,\cdot) \equiv g_B(M,\cdot)$ to all \mathbb{C} -norms such that

 $\|(z+(1-\lambda)A(w),\lambda w)\| \le \|(z,w)\|, \quad (z,w) \in \mathbb{C}^n, \ \lambda \in \mathbb{T}.$

References

- [Edi1997] Armen Edigarian, On the product property of the pluricomplex Green function, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2855–2858, DOI 10.1090/S0002-9939-97-03951-8. MR1403123
- [Edi2001] Armen Edigarian, On the product property of the pluricomplex Green function. II, Bull. Polish Acad. Sci. Math. 49 (2001), no. 4, 389-394. MR1872673
- [Jar-Pfl 2013] Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, Second extended edition, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter GmbH & Co. KG, Berlin, 2013. MR3114789

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, INSTITUTE OF MATHEMATICS, JAGIEL-LONIAN UNIVERSITY, ŁOJASIEWICZA 6, 30-348 KRAKÓW, POLAND

E-mail address: Marek.Jarnicki@im.uj.edu.pl

INSTITUT FÜR MATHEMATIK, CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG, POSTFACH 2503, D-26111 Oldenburg, Germany

E-mail address: Peter.Pflug@uni-oldenburg.de

746