Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Strict $ S$-numbers of the Volterra operator


Authors: Özlem Bakşi, Taqseer Khan, Jan Lang and Vít Musil
Journal: Proc. Amer. Math. Soc. 146 (2018), 723-731
MSC (2010): Primary 47B06; Secondary 47G10
DOI: https://doi.org/10.1090/proc/13769
Published electronically: October 5, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For Volterra operator $ V\colon L^1(0,1)\to C[0,1]$ and summation operator $ \sigma \colon \ell ^1\to c$, we obtain exact values of Approximation, Gelfand, Kolmogorov and Isomorphism numbers.


References [Enhancements On Off] (What's this?)

  • [1] I. A. Alam, G. Habib, P. Lefèvre, and F. Maalouf, Essential norms of Volterra and Cesàro operators on Müntz spaces, arXiv:1612.03218, 2016.
  • [2] J. Bourgain and M. Gromov, Estimates of Bernstein widths of Sobolev spaces, Geometric aspects of functional analysis (1987-88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 176-185. MR 1008722, https://doi.org/10.1007/BFb0090054
  • [3] M. Š. Birman and M. Z. Solomjak, Piecewise polynomial approximations of functions of classes $ W_{p}{}^{\alpha}$, Mat. Sb. (N.S.) 73 (115) (1967), 331-355 (Russian). MR 0217487
  • [4] Bernd Carl and Irmtraud Stephani, Entropy, compactness and the approximation of operators, Cambridge Tracts in Mathematics, vol. 98, Cambridge University Press, Cambridge, 1990. MR 1098497
  • [5] D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. MR 929030
  • [6] David E. Edmunds and W. Desmond Evans, Hardy operators, function spaces and embeddings, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. MR 2091115
  • [7] D. E. Edmunds and J. Lang, Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case, Math. Nachr. 279 (2006), no. 7, 727-742. MR 2226408, https://doi.org/10.1002/mana.200510389
  • [8] D. E. Edmunds and J. Lang, Bernstein widths of Hardy-type operators in a non-homogeneous case, J. Math. Anal. Appl. 325 (2007), no. 2, 1060-1076. MR 2270069, https://doi.org/10.1016/j.jmaa.2006.02.025
  • [9] Jan Lang and David Edmunds, Eigenvalues, embeddings and generalised trigonometric functions, Lecture Notes in Mathematics, vol. 2016, Springer, Heidelberg, 2011. MR 2796520
  • [10] A. Kolmogoroff, Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse, Ann. of Math. (2) 37 (1936), no. 1, 107-110 (German). MR 1503273, https://doi.org/10.2307/1968691
  • [11] Pascal Lefèvre, The Volterra operator is finitely strictly singular from $ L^1$ to $ L^\infty$, J. Approx. Theory 214 (2017), 1-8. MR 3588527, https://doi.org/10.1016/j.jat.2016.11.001
  • [12] V. I. Levin, On a class of integral inequalities, Recueil Mathématiques 4 (1938), no. 46, 309-331.
  • [13] Mikhail A. Lifshits and Werner Linde, Approximation and entropy numbers of Volterra operators with application to Brownian motion, Mem. Amer. Math. Soc. 157 (2002), no. 745, viii+87. MR 1895252, https://doi.org/10.1090/memo/0745
  • [14] Albrecht Pietsch, $ s$-numbers of operators in Banach spaces, Studia Math. 51 (1974), 201-223. MR 0361883
  • [15] Albrecht Pietsch, History of Banach spaces and linear operators, Birkhäuser Boston, Inc., Boston, MA, 2007. MR 2300779
  • [16] Allan Pinkus, $ n$-widths in approximation theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 7, Springer-Verlag, Berlin, 1985. MR 774404
  • [17] Allan Pinkus, $ n$-widths of Sobolev spaces in $ L^p$, Constr. Approx. 1 (1985), no. 1, 15-62. MR 766094, https://doi.org/10.1007/BF01890021
  • [18] Erhard Schmidt, Über die Ungleichung, welche die Integrale über eine Potenz einer Funktion und über eine andere Potenz ihrer Ableitung verbindet, Math. Ann. 117 (1940), 301-326 (German). MR 0003430, https://doi.org/10.1007/BF01450021
  • [19] V. M. Tihomirov and S. B. Babadžanov, Diameters of a function class in an $ L_{p}$-space $ (p\geq1)$, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 11 (1967), no. 2, 24-30 (Russian, with Uzbek summary). MR 0209747
  • [20] V. M. Tihomirov, Diameters of sets in functional spaces and the theory of best approximations, Russian Math. Surveys 15 (1960), no. 3, 75-111. MR 0117489, https://doi.org/10.1070/RM1960v015n03ABEH004093

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47B06, 47G10

Retrieve articles in all journals with MSC (2010): 47B06, 47G10


Additional Information

Özlem Bakşi
Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210-1174 — and — Department of Mathematics, Yildiz Technical University, Faculty of Art and Science, Istanbul, Turkey
Email: baksi@yildiz.edu.tr

Taqseer Khan
Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210-1174 — and — Aligarh Muslim University, Aligarh, U.P.-202002, India
Email: taqi.khan91@gmail.com

Jan Lang
Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210-1174
Email: lang@math.osu.edu

Vít Musil
Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210-1174 — and — Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic
Email: musil@karlin.mff.cuni.cz

DOI: https://doi.org/10.1090/proc/13769
Keywords: Integral operator, summation operator, $s$-numbers.
Received by editor(s): February 27, 2017
Received by editor(s) in revised form: March 31, 2017
Published electronically: October 5, 2017
Additional Notes: This research was partly supported by the United States-India Educational Foundation (USIEF), by the grant P201-13-14743S of the Grant Agency of the Czech Republic and by the grant SVV-2017-260455
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society