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SMOOTHING OF WEIGHTS IN THE BERNSTEIN

APPROXIMATION PROBLEM

ANDREW BAKAN AND JÜRGEN PRESTIN

(Communicated by Walter Van Assche)

Abstract. In 1924 S. Bernstein [Bull. Soc. Math. France 52 (1924), 399-
410] asked for conditions on a uniformly bounded R Borel function (weight)
w : R → [0,+∞) which imply the denseness of algebraic polynomials P in
the seminormed space C 0

w defined as the linear set {f ∈ C(R) | w(x)f(x) →
0 as |x| → +∞} equipped with the seminorm ‖f‖w := supx∈R w(x)|f(x)|. In
1998 A. Borichev and M. Sodin [J. Anal. Math 76 (1998), 219-264] completely
solved this problem for all those weights w for which P is dense in C 0

w but
for which there exists a positive integer n = n(w) such that P is not dense in
C 0

(1+x2)nw
. In the present paper we establish that if P is dense in C 0

(1+x2)nw

for all n ≥ 0, then for arbitrary ε > 0 there exists a weight Wε ∈ C∞(R) such

that P is dense in C 0
(1+x2)nWε

for every n ≥ 0 and Wε(x) ≥ w(x)+ e−ε|x| for

all x ∈ R.

1. Introduction

Let C(R) be the linear space of all continuous real-valued functions on R and
W(R) the set of all uniformly bounded on R Borel functions w : R → R

+ :=
[0,+∞) which have an unbounded support Sw := {x ∈ R |w(x) > 0} and satisfy
|x|nw(x) → 0 as |x| → ∞ for all n ∈ N0 := {0, 1, 2, . . . }. Denote by P the set
of all algebraic polynomials with real coefficients and by C∞(R) the family of all
real-valued infinitely continuously differentiable functions on R.

For w ∈ W(R) the seminormed space C 0
w(R) consists of the linear set of all

f ∈ C(R) with lim|x|→+∞ w(x) f(x) = 0 and the semi-norm ‖ · ‖w, where ‖f‖w :=
supx∈R w(x) |f(x)|.

We recall the definition of the so-called upper Baire function MF of F : R → R

as MF (x) := limδ↓0 supy∈(x−δ,x+δ) F (y) (see [15, p. 129]). If F is locally bounded

from above, then MF is an upper semicontinuous function and F (x) ≤ MF (x),
x ∈ R. It is easy to verify that for arbitrary −∞ < A < B < +∞, w ∈ W(R) and
f ∈ C(R) we have

sup
x∈(A,B)

w(x) |f(x)| = sup
x∈(A,B)

Mw(x) |f(x)| .
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This means that the seminormed spaces C 0
w(R) and C 0

Mw
(R) coincide identically

and, in particular, P is dense in C 0
w(R) iff it is dense in C 0

Mw
(R). Thus, it is possible

to assume everywhere below that w ∈ W∗(R) where W∗(R) denotes the family of
all those w ∈ W(R) which are upper semicontinuous on R, i.e., Mw(x) ≡ w(x) for
all x ∈ R.

Introduce

(1.1) Wdens(R) :=
{
w ∈ W∗(R) | P is dense in C 0

w(R)
}
.

In 1924 S. Bernstein [4] asked for conditions on w ∈ W∗(R) to be in Wdens(R).
This problem is known as Bernstein’s approximation problem. Various results to-
wards a final solution of Bernstein’s approximation problem have been obtained in-
dependently by L. Carleson [8], H. Pollard [17], S. N. Mergelyan [14] and L. de Bran-
ges [5] (see also the surveys of P. Koosis [11], A. Poltoratski [18] and M. Sodin [19]).

The solution of Bernstein’s problem given by L. de Branges [5] in 1959 was
slightly improved in 1996 by M. Sodin and P. Yuditskii [20] and attained the fol-
lowing form.

Let f be an entire function, Λf be the set of all its zeros, 0 ≤ r, ρ < ∞ and

σf (ρ) := limr→∞ r−ρ logMf (r), where Mf (r) := sup|z|=r |f(z)|. We say that f is

of minimal exponential type if σf (1) = 0. Denote by E0(R) the family of all entire
functions f of minimal exponential type which are real on the real axis (in short,
real) and have only real simple zeros.

Theorem A (L. de Branges, 1959 [5]). Let w ∈ W∗(R). Then P is not dense in
C 0

w(R) if and only if there exists an entire function B ∈ E0(R) such that ΛB ⊂
Sw = {x ∈ R |w(x) > 0} and∑

λ∈ΛB

1

w(λ)|B ′(λ)| < +∞.

In 1958 S. Mergelyan [14] proved that if algebraic polynomials are dense in C 0
w(R)

but are not dense in C 0
(1+x2)nw(R) for some positive integer n, then w has countable

support and the number of points in the set {x ∈ R | w(x) > 0, |x| < R} is o(R) as
R → +∞. Motivated by this result, A. Borichev and M. Sodin in 1998 [6] divided
Bernstein’s approximation problem into two parts.

Definition 1. Let w ∈ W∗(R). It is said that algebraic polynomials P are regularly
dense in C 0

w(R) if they are dense in C 0
(1+x2)nw(R) for all n ∈ N0.

Algebraic polynomials P are called singularly dense in C 0
w(R) if they are dense

in C 0
w(R) but not in C 0

(1+x2)nw(R) for a certain n ∈ N := {1, 2, . . . }.

Similarly to (1.1), we denote

Wreg(R) :=
{
w ∈ W∗(R) | P is regularly dense in C 0

w(R)
}
,

Wsing(R) :=
{
w ∈ W∗(R) | P is singularly dense in C 0

w(R)
}
.

It is obvious that Wreg(R) and Wsing(R) are two non-intersecting classes of
weights and

Wdens(R) = Wreg(R) 	Wsing(R),

where the symbol 	 denotes the union of two non-intersecting sets.
Thus, the finding of conditions on a given weight w ∈ W∗(R) to be in Wreg(R)

or in Wsing(R) divides Bernstein’s approximation problem into two independent
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parts: regular and singular, respectively. A complete solution of the singular part
was given by A. Borichev and M. Sodin [6] in 1998.

Theorem B. Let w ∈ W∗(R). Algebraic polynomials P are singularly dense in
C 0

w(R) if and only if w is discrete and there exist an entire function E ∈ E0(R) and
a non-negative integer n such that

w(x) =
∑
λ∈ΛE

w(λ)χλ(x), x ∈ R, χλ(x) :=

{
0, if x 
= λ,
1, if x = λ,

∑
λ∈ΛE

1

(1 + λ2)k w(λ) |E ′(λ)|

{
< +∞, if k = n+ 1,
= +∞, if k = n,

and ∑
λ∈ΛF

1

w (λ) |F ′(λ)| = +∞

for arbitrary transcendental entire functions F of minimal exponential type such
that ΛF ⊂ ΛE and E/F is transcendental.

The regular part of Bernstein’s approximation problem is still open, but the
following important result holds.

Theorem C (M. Sodin, 1996 [19]). If w ∈ Wreg(R), then w(x)+e−δ|x| ∈ Wreg(R)
for every δ > 0.

The following statement about perturbations of zeros of an entire function was
proved in [2, Lemma 5, p. 237] (2005).

Lemma A. For an arbitrary entire function B ∈ E0(R) with zeros ΛB = {bn}n≥1

there exist a constant C > 0 and a sequence of real positive numbers {δn}n≥1 such

that for any sequence of real numbers {dn}n≥1 satisfying

|bn − dn| ≤ δn, n ≥ 1,

one can find an entire function D ∈ E0(R) such that ΛD = {dn}n≥1 and

|B ′(bn)| ≤ C · |D ′(dn)|, n ≥ 1.

If the set of real numbers {|B ′(bn)|}n≥1 in Lemma A is bounded from below,
then the result of Lemma A can be improved as follows.

Lemma 1. Let B ∈ E0(R) and ΛB denote the set of its zeros. Assume that

(1.2)
∑

λ∈ΛB

1

|B ′(λ)| < ∞.

Then, for arbitrary δ > 0 there exist constants Cδ = Cδ(B), ρδ = ρδ(B) > 0 such
that for any set of real numbers {dλ}λ∈ΛB

satisfying

(1.3) |λ− dλ| ≤ ρδ e
−δ|λ|, λ ∈ ΛB ,

one can find an entire function D ∈ E0(R) such that ΛD = {dλ}λ∈ΛB
and

(1.4) |B ′(λ)| ≤ Cδ |D ′(dλ)| , λ ∈ ΛB.

Observe that the proof of Lemma 1 in section 3 gives the explicit expressions
for the constants ρδ and Cδ in (1.3) and in (1.4). Lemma 1 is instrumental for the
proof of the next statement.
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Lemma 2. Let ε > 0 and w ∈ Wreg(R). Then,

(1.5) wε(x) := sup
|t|≤e−ε|x|

(
w(x+ t) + e−ε|x+t|

)
∈ Wreg(R).

Proof. In view of [10, Example 1, p. 8], the function

(1.6) βε(x) := w(x) + e−ε|x|

is upper semicontinuous on R, and an application of [10, Theorem 1.2, p. 4] to the
supremum in (1.5) yields for each x ∈ R the existence of θε(x) ∈ [−1, 1] such that

(1.7) wε(x) = βε

(
x+ θε(x)e

−ε|x|
)
, x ∈ R.

To prove wε ∈ W∗(R), let x0 ∈ R, {xn}n≥1 ⊂ R, limn→∞ xn = x0, N1 :=

{n ≥ 1 | |θε(xn)|e−ε|xn| > e−ε|x0| } and let us choose an infinite sequence N2 :=
{nk}k≥1 ⊂ N such that limn→∞ wε(xn) = limk→∞ wε(xnk

). Since for every n ∈
N \ N1 we have |θε(xn)|e−ε|xn| ≤ e−ε|x0|, (1.7) and (1.5) yield wε(xn) ≤ wε(x0),
n ∈ N \ N1. Thus, if N2 ∩ (N \ N1) is infinite, then limn→∞ wε(xn) ≤ wε(x0).
Otherwise, it suffices to consider the case N2 ⊂ N1 in which limk→∞ |θε(xnk

)| = 1
and therefore limk→∞ wε(xnk

) ≤ max{βε(x0 − e−ε|x0|), βε(x0 + e−ε|x0|)} ≤ wε(x0),
by virtue of (1.7) and the upper semicontinuity of βε. This completes the proof of
wε ∈ W∗(R) (see [16, Theorem 2, p. 150]).

Assume that wε /∈ Wreg(R). Then, for some m ∈ N0 we have (1 + x2m)wε /∈
Wdens(R), and by Theorem A there exists an entire function F ∈ E0(R) such that

(1.8)
∑
λ∈ΛF

1

(1 + λ2m)wε(λ) |F ′(λ)| < ∞.

It follows from wε ∈ W∗(R) that
∑

λ∈ΛF
1/|F ′(λ)| < ∞, and therefore (1.2) holds

for B = F .
By Theorem C,

(1.9) βε ∈ Wreg(R).

From (1.8) and (1.7) we obtain

(1.10)
∑
λ∈ΛF

1

(1 + λ2m) βε(λ+ θε(λ)e−ε|λ|) |F ′(λ)| < ∞.

Applying Lemma 1 for δ = ε/2, we find Tε > 0 such that e−εx/2 ≤ ρε/2, x ≥ Tε,
and then we find an entire function D ∈ E0(R) with zeros ΛD = {dλ}λ∈ΛB

, where

dλ = λ, λ ∈ ΛF ∩ [−Tε, Tε], dλ = λ+ θ(λ)e−ε|λ|, λ ∈ ΛF \ [−Tε, Tε].

Hence, in view of (1.4) and (1.10) we have

∞ >
∑

λ∈ΛF \[−Tε,Tε]

1

(1 + λ2m) βε

(
λ+ θε(λ)e−ε|λ|

)
|F ′(λ)|

≥ 1

Cε/2

∑
λ∈ΛF \[−Tε,Tε]

1 + d2mλ
1 + λ2m

1

(1 + d2mλ ) βε (dλ) |D ′(dλ)|

≥ 1

22mCε/2

∑
λ∈ΛF \[−Tε,Tε]

1

(1 + d2mλ ) βε (dλ) |D ′(dλ)|
,
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from which it follows that∑
λ∈ΛD

(
1 + λ2m

)−1
βε(λ)

−1 |D ′(λ)|−1
< ∞.

By Theorem A this means that (1 + x2m) · βε /∈ Wdens(R) and therefore βε /∈
Wreg(R). This contradicts (1.9) and finishes the proof of Lemma 2. �

We are now ready to prove our main result.

Theorem 1. For arbitrary w ∈ Wreg(R) and ε > 0 there exists Wε ∈ C∞(R) such
that Wε ∈ Wreg(R) and Wε(x) ≥ w(x) + e−ε|x| for all x ∈ R.

Proof. Since the statement of the theorem for ε = ε0 > 0 implies its validity for all
ε ≥ ε0, we can assume without loss of generality that ε ∈ (0, 1).

Let wε be defined as in (1.5), βε as in (1.6) and

Ωρ(x) := sup
|s|≤ρe−ε|x|

βε(x+ s), x ∈ R, ρ ∈ (0, 1].

Since

(1.11) w(x) ≤ w(x) + e−ε|x| = βε(x) ≤ Ωρ(x) ≤ wε(x), x ∈ R,

by Lemma 2,
Ωρ ∈ Wreg(R), ρ ∈ (0, 1].

For arbitrary ω ∈ C∞(R) satisfying

(1.12) 0 < ω(x) ≤ e−ε|x|/4, x ∈ R,

let us introduce

(1.13) Kω(x, t) :=

(∫ ω(x)

−ω(x)

exp

(
− ω(x)2

ω(x)2 − s2

)
ds

)−1

exp

(
− ω(x)2

ω(x)2 − t2

)
,

where t ∈ (−ω(x), ω(x)), x ∈ R and Kω(x,±ω(x)) := 0. For example, we may take
ω(x) = (1/4) exp(−x2 − ε2/4). Obviously,∫ ω(x)

−ω(x)

Kω(x, t)dt = 1, x ∈ R,

and therefore the weight

(1.14) Wε(x) :=

∫ ω(x)

−ω(x)

Kω(x, t)Ω1/2(x+ t)dt =

∫ x+ω(x)

x−ω(x)

Kω(x, t− x)Ω1/2(t)dt

belongs to C∞(R).
Let x ∈ R be arbitrary and let t ∈ R satisfy |t| ≤ ω(x). Then, by (1.12) we

have that |t| ≤ e−ε|x|/4, and the inequalities e1/4 ≤ 4/3 and 0 < ε < 1 imply that
(3/4)e−ε|x| ≤ e−ε|x+t| ≤ (4/3)e−ε|x|. Thus, for every ρ ∈ (1/3, 1],

(3ρ− 1)e−ε|x|/4 ≤ ρe−ε|x+t| + t ≤ (16ρ+ 3)e−ε|x|/12,

and therefore

Ω(3ρ−1)/4(x)≤Ωρ(x+ t)≤Ω(16ρ+3)/12(x), ρ∈(1/3, 1), |t|≤e−ε|x|/4, x ∈ R,

from which we infer for ρ = 1/2 that

βε(x)≤Ω1/8(x)≤Ω1/2(x+ t)≤Ω11/12(x)≤Ω1(x)=wε(x),(1.15)

|t|≤ω(x), x ∈ R.
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In view of (1.11) this means that the weight Wε satisfies

(1.16) w(x) + e−ε|x| ≤ Wε(x) ≤ wε(x), x ∈ R.

It follows from the right-hand side inequality of (1.16) that Wε ∈ Wreg(R), and
therefore the left-hand side inequality of (1.16) completes the proof. �

Since the weight Wε defined in (1.14) depends on an arbitrary function ω ∈
C∞(R) satisfying (1.12), we prove in the next corollary that the special choice
ω = φε yields a good upper estimate for W ′

ε . Here,

φε(x) :=
e−ε

4κ

∫ 1

−1

e
− 1

1−t2 e−ε|x+t|dt, x ∈ R, ε > 0,(1.17)

κ :=

∫ 1

−1

e
− 1

1−t2 dt =
K1(1/2)−K0(1/2)√

e
∈
(
1.2

e
,
1.21

e

)
,(1.18)

K1, K0 are modified Bessel functions (see [9, (13), p. 5]) and (1.18) is proved in
section 4.

Corollary 1. Let ε ∈ (0, 1), w ∈ Wreg(R) and wε be defined as in (1.5). Then
there exists a weight Wε ∈ C∞(R) ∩Wreg(R) such that Wε(x) ≥ w(x) + e−ε|x| and
|W ′

ε (x)| ≤ 74 eε|x|wε(x) for all x ∈ R.

Theorem 1 allows us to assume without loss of generality that each weight in
the regular part of Bernstein’s approximation problem is continuous and positive
on the whole real axis. It also allows us to apply to this part of the problem the
sufficient conditions for the denseness of algebraic polynomials in C 0

w(R) obtained
earlier under this assumption (see [17, p. 869], [14, p. 80]). On the other hand,
Lemma 2 makes it possible to replace any weight w ∈ W∗(R) by the greater step
function

ŵ(x) =
∑
n∈Z

wnχ[σn log(1 + |n|), σn log(1 + |n+ 1|)](x), x ∈ R,

wn := sup
x ∈ [σn log(1 + |n|), σn log(1 + |n+ 1|)]

w(x), σn := sign(n), n ∈ Z,

such that algebraic polynomials are regularly dense in C 0
w(R) if and only if they

are regularly dense in C 0
ŵ(R). Here, sign(n) is equal to 1 if n > 0, 0 if n = 0 and

−1 if n < 0.
Notice also that Theorem 1 can be efficiently applied to a representation of the

so-called p-regular measures for 1 ≤ p < ∞. Recall (see [6, p. 250]) that a non-
negative Borel measure μ on R is called p-regular if all its moments

∫
R
xndμ(x),

n ≥ 0, are finite and algebraic polynomials are dense in Lp(R, (1 + x2)npdμ(x))
for every n ≥ 0. Here, for arbitrary non-negative Borel measures μ, ν on R and
g ∈ L1(R, dμ), we write dν(x) = g(x)dμ(x) or dν = gdμ if ν(A) =

∫
A
g(x)dμ(x) for

arbitrary Borel subset A of R. According to [3, Lemma 4, p. 203], if μ is p-regular,
then there exists a finite non-negative Borel measure ν on R and w ∈ Wreg(R)
such that dμ = wp dν (the converse is evident). Taking for this w the weight Wε

from Theorem 1, we obtain dμ = wp dν = W p
ε (w/Wε)

p dν = W p
ε dν̃ where ν̃ is also

a non-negative finite Borel measure on R as follows from dν̃ = (w/Wε)
p dν and

w(x) ≤ Wε(x) for all x ∈ R. Thus, the following assertion holds.
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Corollary 2. Let 1 ≤ p < ∞ and a measure μ be p-regular. Then, for every
ε > 0, there exists a finite non-negative Borel measure νε on R and a weight Wε ∈
C∞(R) ∩Wreg(R) such that Wε(x) ≥ e−ε|x| for all x ∈ R and dμ = W p

ε dνε.

2. Auxiliary results

Lemma 3. Let the real numbers a, b, x and Δ ∈ (0, 1) satisfy

(2.1) b ∈ (a−Δ2, a+Δ2), 0 /∈ (a−Δ, a+Δ) and x /∈ (a− 2Δ, a+ 2Δ).

Then, ∣∣∣∣(1− x

a

)(
1− x

b

)−1
∣∣∣∣ ≤ (1 + Δ)

2
.

Proof. The conditions (2.1) imply that |a| ≥ Δ, b ∈ (a −Δ, a + Δ) and therefore
that |x − b| ≥ Δ. Thus, ||b| − |a|| ≤ |b − a| ≤ Δ2 and |b| ≤ |a| + Δ2, i.e.,
|b|/|a| ≤ 1 + Δ2/|a| ≤ 1 + Δ. Finally,∣∣∣∣1− x/a

1− x/b

∣∣∣∣ = |b|
|a|

|x− a|
|x− b| =

|b|
|a|

|b− a+ (x− b)|
|x− b|

≤ |b|
|a|

|b− a|+ |x− b|
|x− b| ≤ (1 + Δ) ·

(
1 +

|b− a|
|x− b|

)
≤ (1 + Δ)

2
,

which completes the proof. �

Lemma 4. Let ε ∈ (0, 1/(2e)), Cε ∈ (0,+∞) and f be an entire function satisfying

(2.2) |f(z)| ≤ Cεe
ε|z|, z ∈ C.

Then,

|f ′(z)|,
∣∣∣∣ f(z)z − λ

∣∣∣∣ ≤ Cεe
ε|z|, λ ∈ Λf , z ∈ C.

Proof. Cauchy’s formula [21, (3), p. 81]

f ′(z) =
1

2πi

∫
|z−ζ|=1/ε

f(ζ)dζ

(ζ − z)2

and (2.2) for any z ∈ C yield

|f ′(z)| ≤ ε max
|ζ−z|=1/ε

|f(ζ)| ≤ εCε max
|ζ−z|=1/ε

eε|ζ|

≤ εCεe
ε(|z|+ 1/ε) = εeCεe

ε|z| ≤ Cεe
ε|z|.

For arbitrary λ ∈ Λf and z ∈ C satisfying |z − λ| ≥ 1/(2ε) it follows from (2.2)
that ∣∣∣∣ f(z)z − λ

∣∣∣∣ ≤ 2εCεe
ε|z| ≤ Cεe

ε|z|,

which by the maximum modulus principle [21, p. 165] yields∣∣∣∣ f(z)z − λ

∣∣∣∣ ≤ max
|ζ−λ|=1/(2ε)

∣∣∣∣ f(ζ)ζ − λ

∣∣∣∣ = 2ε max
|ζ−λ|=1/(2ε)

|f(ζ)|

≤ 2εCε max
|ζ−λ|=1/(2ε)

eε|ζ| ≤ 2εCεe
ε(|z|+ 1/ε) ≤ 2εeCεe

ε|z| ≤ Cεe
ε|z|,

provided that |z − λ| ≤ 1/(2ε). This finishes the proof of Lemma 4. �
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Lemma 5. Let ε ∈ (0, 1/(2e)), Cε ∈ (0,+∞) and B be an entire function from the
class E0(R) satisfying

(2.3) (a) |B(z)| ≤ Cεe
ε|z|, z ∈ C, (b) ΘB :=

∑
λ∈ΛB

1

|B ′(λ)| < ∞.

Then, for arbitrary λ ∈ ΛB the inequality

(2.4)

∣∣∣∣ B(x)

x− λ

∣∣∣∣ ≥ |B ′(λ)| /2

holds for every real x satisfying

(2.5) |x− λ| ≤ e−ε

1 + 2CεΘB
e−ε|λ|.

Thus,

(2.6) min
μ∈ΛB\{λ}

|λ− μ| > e−ε

1 + 2CεΘB
e−ε|λ|, λ ∈ ΛB .

Proof. Let λ ∈ ΛB and

Bλ(x) :=
B(x)

x− λ
.

Obviously, Bλ(λ) = B ′(λ), and it follows from Lemma 4 that

|B ′
λ(z)| ≤ Cεe

ε|z|, z ∈ C.

Furthermore, (2.3)(b) yields

|B ′(λ)| ≥ Θ−1
B .

Assume that x ∈ [−1, 1] and

|Bλ(x+ λ)− Bλ(λ)| > |Bλ(λ)| /2.

Then,

Θ−1
B /2 ≤ |B ′(λ)| /2 = |Bλ(λ)| /2 < |Bλ(x+ λ)−Bλ(λ)|

=

∣∣∣∣∣
∫ |x|

0

B ′
λ(λ+ σt)dt

∣∣∣∣∣ ≤ Cε

∫ |x|

0

eε|λ+ σt|dt ≤ Cεe
ε(1 + |λ|)|x|

<
(
Cε +Θ−1

B /2
)
eε(1 + |λ|)|x|,

where σ = 1 if x > 0 and σ = −1 if x < 0. This means that if

|x| ≤ e−ε(1 + |λ|)

1 + 2CεΘB
,

then

|Bλ(x+ λ)−B ′(λ)| ≤ |B ′(λ)| /2,
and therefore

|Bλ(λ+ x)| = |B ′(λ) +Bλ(λ+ x)−B ′(λ)|
≥ |B ′(λ)| − |Bλ(λ+ x)− B ′(λ)| ≥ |B ′(λ)| /2,

which was to be proved. �
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Lemma 6. Let f : R → R be integrable on every compact segment [a, b] of the real
line, ω ∈ C∞(R) be strictly positive on R, κ be defined in (1.18) and

fω(x) :=
1

κ

∫ 1

−1

f(x+ tω(x)) exp

(
− 1

1− t2

)
dt, x ∈ R.(2.7)

Then, fω ∈ C∞(R) and for every x ∈ R we have

f ′
ω(x) =

1

κω(x)

1∫
−1

f(x+ tω(x))
2t

(t2 − 1)2
exp

(
− 1

1− t2

)
dt

− ω ′(x)

ω(x)
fω(x) +

2ω ′(x)

κω(x)

1∫
−1

f(x+ tω(x))
t2

(t2 − 1)
2 exp

(
− 1

1− t2

)
dt.(2.8)

Proof. Since

κfω(x) =
1

ω(x)

∫ x+ω(x)

x−ω(x)

f(t) exp

(
− ω(x)2

ω(x)2 − (t− x)2

)
dt, x ∈ R,

then fω ∈ C∞(R) and for arbitrary x ∈ R we obtain

κf ′
ω(x) = −κfω(x)

ω ′(x)

ω(x)
+

1

ω(x)

∫ x+ω(x)

x−ω(x)

f(t)Tω(x, t)dt,

where

Tω(x, t) :=
d

dx
exp

(
− ω(x)2

ω(x)2 − (t− x)2

)
=

[
2ω(x)ω ′(x)(t− x)2

((t− x)2 − ω(x)2)2
+

2ω(x)2(t− x)

((t− x)2 − ω(x)2)2

]
exp

(
− ω(x)2

ω(x)2 − (t− x)2

)
,

from which (2.8) follows easily by the change of variables. Lemma 6 is proved. �

3. Proof of Lemma 1

3.1. If Lemma 1 is proved for δ = δ0 > 0, then for arbitrary δ1 > δ0 it follows from
|λ − dλ| ≤ ρδ0 e

−δ1|λ| ≤ ρδ0 e
−δ0|λ|, λ ∈ ΛB that Lemma 1 also holds for δ = δ1

with Cδ1 = Cδ0 and ρδ1 = ρδ0 . Therefore, it is sufficient to prove Lemma 1 only for
those numbers δ which satisfy

0 < δ < 1/e.

3.2. Let B be an entire function satisfying the conditions of Lemma 1. Then,
these conditions are met by any translation of B of the form BTa

(z) := B(z + a),
a ∈ R \ {0} because ΛBTa

= ΛB − a, ΘBTa
= ΘB and BTa

∈ E0(R), where ΘB

denotes the value of the series in (1.2).
We show that if Lemma 1 is proved for the function B, then it also holds for any

BTa
, a ∈ R \ {0}, with constants ρδ(BTa

) = e−δ|a|ρδ(B) and Cδ(BTa
) = Cδ(B).

Let δ > 0, a be an arbitrary non-zero real number and E := BTa
. If {eλ}λ∈ΛE

is any collection of real numbers satisfying |λ − eλ| ≤ ρδ(E) exp (−δ|λ|), λ ∈ ΛE ,
then in view of ΛE = ΛB − a we have

|λ− a− eλ−a| ≤ ρδ(E)e−δ|λ−a| ≤ eδ|a|ρδ(E)e−δ|λ| = ρδ(B)e−δ|λ|, λ ∈ ΛB ,
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and therefore the numbers dλ := eλ−a + a, λ ∈ ΛB, satisfy condition (1.3). Thus,
there exists an entire function D ∈ E0(R) such that ΛD = {dλ}λ∈ΛB

and |B ′(λ)| ≤
Cδ(B) |D ′(dλ)|, λ ∈ ΛB. Then, for the function G(z) := D(z + a) we have G ∈
E0(R), ΛG = ΛD−a = {dλ − a}λ∈ΛB

= {dλ+a − a}λ∈ΛE
= {eλ}λ∈ΛE

and |E ′(λ)| =
|B ′(a+λ)| ≤ Cδ(B) |D ′(da+λ)| = Cδ(B) |G ′(da+λ−a)| = Cδ(B) |G ′(eλ)|, λ ∈ ΛE .
This implies the validity of Lemma 1 for BTa

, as claimed.

We conclude that to prove Lemma 1 for all translations BTa
, a ∈ R, of the

entire function B it is sufficient to prove it for at least one of them. We specify
the translation of B by choosing an a ∈ R \ ΛB such that minλ∈ΛB ,λ>a(λ − a) =
minλ∈ΛB ,λ<a(a−λ) if ΛB is unbounded in both directions, a > 1+maxΛB if ΛB is
bounded from above and a < −1 + minΛB if ΛB is bounded from below. Consid-
ering such BTa

as the initial function B in Lemma 1, we can therefore assume that
the set ΛB of all zeros of B in Lemma 1 obeys the following additional properties:

(3.1)

(a) 0 /∈ ΛB ;

(b) min
λ∈ΛB ,λ>0

|λ| = min
λ∈ΛB ,λ<0

|λ| if supΛB = +∞ and inf ΛB = −∞;

(c) minΛB > 1 if inf ΛB > −∞;

(d) maxΛB < −1 if supΛB < +∞.

Observe that (3.1)(b) means the existence of two neighboring zeros λ1, λ2 ∈ ΛB of
B (i.e., λ1 < λ2, (λ1, λ2) ∩ ΛB = ∅) such that λ1 = −λ2.

3.3. Denote by ΘB the value of the series in (1.2) and let

(3.2) ε := δ/2 ∈ (0, 1/(2e) ), ρδ :=

(
e−ε

4 + 8CεΘB

)2

∈ (0, 1/16),

where

Cε := sup
z∈C

e−ε|z||B(z)| < ∞.

Then, for the function B the conditions of Lemma 5 are fulfilled and (2.5) implies
that

(3.3) [λ1−2Δλ1
, λ1+2Δλ1

] ∩ [λ2−2Δλ2
, λ2+2Δλ2

]=∅, λ1, λ2∈ΛB, λ1 
=λ2,

where

(3.4) Δλ :=
√
ρδ e−ε|λ| ∈ (0, 1/4), λ ∈ ΛB.

Actually, assume that there exist λ1, λ2 ∈ ΛB such that λ1 < λ2, (λ1, λ2)∩ΛB = ∅
and

(3.5) λ1 + 2Δλ1
≥ λ2 − 2Δλ2

.

By virtue of (2.6),

(3.6) λ1 < λ2 − 4Δλ2
, λ1 + 4Δλ1

< λ2,

and therefore

λ2 − λ1 > 2Δλ1
+ 2Δλ2

,

which contradicts (3.5) and proves (3.3).
Introduce the following neighborhood of ΛB :

(3.7) ΛΔB :=
⊔

λ∈ΛB

[λ−2Δλ, λ+2Δλ ] .
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We now prove that for any two neighboring zeros λ1 < λ2 of B the midpoint of
the interval [λ1, λ2] does not belong to ΛΔB . In fact, it follows from λ1, λ2 ∈ ΛB ,
λ1 < λ2, (λ1, λ2) ∩ ΛB = ∅ and (3.6) that

λ1 + λ2

2
< λ2 − 2Δλ2

, λ1 + 2Δλ1
<

λ1 + λ2

2
,

which proves

(3.8) λ1 < λ2, λ1, λ2 ∈ ΛB , (λ1, λ2) ∩ ΛB = ∅ ⇒ λ1 + λ2

2
/∈ ΛΔB.

Together with (3.1) this property means that

(3.9) 0 /∈ ΛΔB .

Actually, if ΛB is unbounded in both directions, then according to (3.1)(b) the
origin is the midpoint of a segment joining two neighboring zeros of B which have
opposite signs. It follows from (3.8) that (3.9) holds. In the case when ΛB is
bounded from one side the distance minλ∈ΛB

|λ| between 0 and ΛB is greater than
1, by virtue of (3.1)(c),(d). But in view of (3.4), 2Δλ < 1/2, and therefore (3.9)
follows readily from (3.7).

3.4. If {dλ}λ∈ΛB
are arbitrary numbers satisfying (1.3), it follows from (1.3), (3.2)

and (3.4) that

(3.10) dλ ∈
[
λ−Δ2

λ, λ+Δ2
λ

]
⊂ [λ−Δλ, λ+Δλ ] , λ ∈ ΛB ,

and in view of (3.3) that

(3.11) dλ0
/∈ [λ−2Δλ, λ+2Δλ ] , λ0, λ∈ΛB, λ0 
=λ.

It is worth remembering that according to the Lindelöf theorem [13, Theorem 15,
p. 28] a set Λ ⊂ R \ {0} is the set of all zeros of some entire function from the
class E0(R) if and only if there exists a finite limit of δΛ(R) and nΛ(R)/R → 0 as
R → +∞. Here,

δΛ(R) :=
∑

λ∈Λ∩(−R,R)
1/λ, nΛ(R) := card

{
λ ∈ Λ

∣∣ |λ| < R
}
, R > 0,

and cardA ∈ N0 ∪ {+∞} denotes the number of elements in a set A. Then, all
functions f ∈ E0(R) satisfying Λf = Λ are given by the following formula:

f(z) = A lim
R→∞

∏
λ∈Λ∩(−R,R)

(1− z/λ) , A ∈ R \ {0}, z ∈ C,

where f(0) = A 
= 0. Thus,

(3.12) B(z) = B(0) lim
R→∞

∏
λ∈ΛB∩(−R,R)

(1− z/λ) , z ∈ C,

and it follows from limR→+∞ nB(R)/R = 0 that
∑

λ∈ΛB
1/λ2 < ∞.

Denote ΛD := {dλ}λ∈ΛB
. Since ΛB = {λ}λ∈ΛB

satisfies the conditions of Lin-
delöf’s theorem, they are also met by the set ΛD because

|dλ − λ| ≤ ρδ
δ2λ2

, λ ∈ ΛB,

by virtue of (1.3) and the inequality

(3.13) exp(−x) ≤ 1/x2, x > 0.
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Therefore, ΛD is the set of all zeros of the entire function

(3.14) D(z) := lim
R→∞

∏
λ∈ΛB

dλ∈(−R,R)

(1− z/dλ) , z ∈ C,

which belongs to the class E0(R).
Let m denote the Lebesgue measure on R. Then it follows from (3.4), (3.7) and

(3.13) that

m
(
ΛΔB

)
≤ 4

√
ρδ

∑
λ∈ΛB

e−ε|λ| ≤ 4ε−2√ρδ
∑
λ∈ΛB

1/λ2 < ∞.

Hence, the set
R

+
B := [0,+∞) \

(
ΛΔB ∪ −ΛΔB

)
is unbounded, and in view of (3.10), (3.3) and (3.7) we have

(3.15) {λ |λ ∈ ΛB ∩ (−R,R)} = {λ |λ ∈ ΛB , dλ ∈ (−R,R)} , R ∈ R
+
B .

3.5. Let us estimate |B ′(λ0)|/|D ′(dλ0
)| for arbitrary λ0 ∈ ΛB . It follows from

(2.4), (2.5), (3.2) and (3.4) that∣∣∣∣B(x)

x− λ

∣∣∣∣ ≥ |B ′(λ)| /2, x ∈ [λ− 4Δλ, λ+ 4Δλ] , λ ∈ ΛB ,

and therefore, by (3.10), we have

|B ′(λ0)| ≤
2

|λ0|
|B(dλ0

)|∣∣∣∣1− dλ0

λ0

∣∣∣∣ .
Then, by (3.12), (3.14) and (3.15),

|B ′(λ0)|
|D ′(dλ0

)| ≤
2

|λ0|
|B(dλ0

)|∣∣∣∣1− dλ0

λ0

∣∣∣∣ |D ′(dλ0
)|

=
2|dλ0

||B(0)|
|λ0|

lim
R→+∞
R∈R

+
B

∏
λ∈ΛB∩ (−R,R)

λ �=λ0

∣∣∣∣ 1− dλ0
/λ

1− dλ0
/dλ

∣∣∣∣ .(3.16)

The relations (3.7) and (3.9) imply that 0 /∈ [λ − 2Δλ, λ+ 2Δλ ] and therefore
|λ| ≤ 2Δλ, which together with the consequence |dλ| ≤ |λ| + Δ2

λ of (3.10) yields
in view of (3.4) |dλ/λ| ≤ 1 + Δ2

λ/|λ| ≤ 1 + Δλ/2 ≤ 2 for every λ ∈ ΛB. Thus, in
(3.16) we have |dλ0

|/|λ0| ≤ 2.
Setting in Lemma 3, x = dλ0

, a = λ, b = dλ and Δ = Δλ with λ0 and λ taken
from (3.16), we obtain the validity of the conditions (2.1),

dλ ∈ (λ−Δ2
λ, λ+Δ2

λ), 0 /∈ (λ−Δλ, λ+Δλ), dλ0
/∈ (λ− 2Δλ, λ+ 2Δλ),

as a consequence of (3.10), (3.7), (3.9), and (3.11). Hence, the factors in (3.16)
satisfy ∣∣∣(1− dλ0

/λ) (1− dλ0
/dλ)

−1
∣∣∣ ≤ (1 + Δλ)

2 =
(
1 +

√
ρδ e−ε|λ|

)2

,

by virtue of (3.4). It follows therefore from (3.16) that

(3.17)
|B ′(λ0)|
|D ′(dλ0

)| ≤ Cδ := 4|B(0)|
∏

λ∈ΛB

(
1 +

√
ρδ e−ε|λ|

)2

< ∞, λ0 ∈ ΛB,
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where the product above is finite in view of (3.13), (3.1)(a) and
∑

λ∈ΛB
1/λ2 < ∞.

Lemma 1 is proved, and the formulas (3.17), (3.2) together with the reasoning of
subsection 3.2 establish the explicit expressions for the constants ρδ and Cδ in (1.3)
and in (1.4).

4. Proof of Corollary 1

We first prove (1.18). It follows from

1∫
−1

e
− 1

1−t2 dt =
1

e

∞∫
0

e−tdt√
t(t+ 1)3/2

=
2

e

∞∫
0

e−td

√
t

t+ 1
=

2

e

∞∫
0

e−t

√
t

t+ 1
dt

= −2

e

d

dx

∫ ∞

0

e−xtdt√
t(t+ 1)

∣∣∣
x=1

= −2

e

d

dx
ex/2

∫ ∞

1

e−(x/2)tdt√
t2 − 1)

∣∣∣
x=1

and [9, (19), p. 82] that

κ = −2

e

d

dx
ex/2K0(x/2)

∣∣∣
x=1

= −K0(1/2) +K ′
0(1/2)√

e
=

K1(1/2)−K0(1/2)√
e

,

by virtue of [9, (21), p. 79]. The values in [1, p. 417], e0.5K0(0.5) = 1.52410 . . . and
e0.5K1(0.5) = 2.73100 . . . finish the proof of (1.18). Similarly, we obtain

1∫
−1

2|t|
(t2 − 1)

2 exp

(
− 1

1− t2

)
dt =

2

e
,

1∫
−1

t2

(t2 − 1)
2 exp

(
− 1

1− t2

)
dt =

κ

2
.(4.1)

Let the function φε be defined in (1.17). In order to prove Corollary 1, we observe
that all constant functions belong to the set C∞(R), and therefore we can apply
Lemma 6 to the function 4eεφε which coincides with the function fω in (2.7) for
ω ≡ 1 and f(x) = exp(−ε|x|). Thus, (2.8) and (1.17) yield for every x ∈ R that

φ ′
ε(x) =

e−ε

4κ

1∫
−1

e−ε|x+t| 2te
− 1

1−t2

(1− t2)2
dt, φε(x) =

e−ε

4κ

1∫
−1

e−ε|x+t|e
− 1

1−t2 dt.(4.2)

It follows from (4.2), (4.1), (1.18) and

−|x| − 1 ≤ −|x+ t| ≤ 1− |x|, |t| ≤ 1, t, x ∈ R,

that

|φ ′
ε(x)| ≤ (5/12) e−ε|x|, (e−2ε/4) e−ε|x| ≤ φε(x) ≤ (1/4) e−ε|x|, x ∈ R.(4.3)

Let Wε be defined as in (1.14) with ω = φε. Then by Theorem 1, Wε ∈ C∞(R)∩
Wreg(R) and Wε(x) ≥ w(x) + e−ε|x| for all x ∈ R. Furthermore, Wε is equal to the
function fω in (2.7) for ω = φε and f = Ω1/2. Thus, by (2.8), we obtain

W ′
ε (x) =

1

κφε(x)

1∫
−1

Ω1/2(x+ tφε(x))
2t

(t2 − 1)2
exp

(
− 1

1− t2

)
dt− φ ′

ε(x)

φε(x)
Wε(x)

+
2φ ′

ε(x)

κφε(x)

1∫
−1

Ω1/2(x+ tφε(x))
t2

(t2 − 1)2
exp

(
− 1

1− t2

)
dt.(4.4)
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According to (1.15) and (1.16), Ω1/2(x + tφε(x)) ≤ wε(x) and Wε(x) ≤ wε(x)
for all |t| ≤ 1 and x ∈ R. Therefore, it follows from (4.1), (4.3) and (4.4) that

|W ′
ε (x)| ≤ wε(x)

[
4e2εeε|x|

κ
· 2
e
+

10e2ε

6
+

2

κ
· 10e

2ε

6
· κ
2

]
≤ 10e2εeε|x|wε(x) ≤ 74eε|x|wε(x),

which completes the proof of Corollary 1.
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