
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 2, February 2018, Pages 547–554
http://dx.doi.org/10.1090/proc/13780

Article electronically published on September 6, 2017

MOTIVIC SERRE INVARIANTS MODULO

THE SQUARE OF L− 1

TAKEHIKO YASUDA

(Communicated by Lev Borisov)

Abstract. Motivic Serre invariants defined by Loeser and Sebag are elements
of the Grothendieck ring of varieties modulo L − 1. In this paper, we show

that we can lift these invariants to modulo the square of L− 1 after tensoring
the Grothendieck ring with Q under certain assumptions.

1. Introduction

Let K be a complete discrete valuation field with a perfect residue field k. For a
smooth projective irreducibleK-varietyX, Loeser and Sebag [9] defined the motivic
Serre invariant S(X). This invariant belongs to the ring K0(Vark)/(L− 1), where
K0(Vark) is the Grothendieck ring of k-varieties and L := [A1

k], the class of an affine
line in this ring. Let K0(Vark)Q := K0(Vark) ⊗Z Q. In this paper, we construct,
under a certain assumption, an invariant

S̃(X) ∈ K0(Vark)Q/(L− 1)2

which coincides with S(X) in K0(Vark)Q/(L− 1).

Remark 1.1. Loeser and Sebag defined the motivic Serre invariant more generally
for smooth quasi-compact separated rigid K-spaces. For the sake of simplicity, we
consider only the case where X is a projective variety.

Let O be the valuation ring of K. The assumption we will make is that the
desingularization theorem and the weak factorization theorem hold; their precise
statements are as follows:

Assumption 1.2.

(1) (Desingularization) There exists a regular projective flat O-scheme X with
the generic fiber XK := X⊗OK = X such that the special fiber Xk := X⊗Ok
is a simple normal crossing divisor in X . (We call such an X a regular
snc model of X.)

(2) (Weak factorization) Let X and X ′ be regular snc models of X. Then there
exist finitely many regular snc models of X,

X0 = X , X1, . . . ,Xn = X ′,
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such that for every i, either the birational map Xi ��� Xi+1 is the blowup
along a regular center Z ⊂ Xi+1,k which has normal crossings1 with Xi+1,k

or its inverse Xi+1 ��� Xi has the same description with Xi+1,k replaced
with Xi,k.

When X has dimension one, this assumption holds, as is well-known. Indeed
the above desingularization theorem in this case follows from the desingularization
theorem for excellent surfaces by Abhyankar, Hironaka and Lipman (see [8]), while
the weak factorization follows from the fact that every proper birational morphism
of regular integral noetherian schemes of dimension two factors into a sequence of
finitely many blowups at closed points. The last fact is well-known in the case of
varieties over an algebraically closed field (for instance, [5, V, Cor. 5.4]) and is
valid even in our situation as proved in [7, Th. 4.1] in a more general context.
Assumption 1.2 holds also when k has characteristic zero. This follows from the
recent generalizations to excellent schemes respectively by Temkin [12, 13] and by
Abramovich and Temkin [2] of the Hironaka desingularization theorem and the
weak factorization theorem of Abramovich, Karu, Matsuki and W�lodarczyk [1].

Let X be a regular snc model of X, let Xsm be its O-smooth locus and let
Xsm,k := Xsm ⊗O k. Then Xsm is a weak Neron model of X in the sense of [3] and
by definition,

S(X) = [Xsm,k] ∈ K0(Vark)/(L− 1).

To define our invariant S̃(X), we also need information on the non-smooth locus
of X . Regard Xk as a divisor and write it as Xk =

∑
i∈I aiDi, where Di are the

irreducible components of Xk and ai are the multiplicities of Di in X respectively.
For a subset H ⊂ I, we define

D◦
H :=

⋂
h∈H

Dh \
⋃

i∈I\H
Di.

When H = {i}, we abbreviate it to D◦
i , and when H = {i, j}, to D◦

ij . These locally
closed subsets give the stratification

Xk =
⊔

∅�=H⊂I

D◦
H

and the stratification

Xsm,k =
⋃

i∈I: ai=1

D◦
i .

From the second stratification, we see that

S(X) =
∑

i∈I: ai=1

[D◦
i ] ∈ K0(Vark)/(L− 1).

Loeser and Sebag proved in the paper cited above that this is independent of the
model X and depends only on X.

1That Z has normal crossings with Xi+1,k means that for every closed point x ∈ Xi+1,k, there
exists a regular system of parameters x1, . . . , xd ∈ OXi+1,x such that in an open neighborhood of x,

the support of the special fiber Xi+1,k is the zero locus of
∏

v∈V xv for some subset V ⊂ {1, . . . , d}
and Z is the common zero locus of xw, w ∈ W , for some W ⊂ {1, . . . , d}.
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Definition 1.3. For a regular snc model X of X, we define

S̃(X ) :=
∑

i∈I: ai=1

[D◦
i ] +

∑
{i,j}⊂I:
(ai,aj)=1

1

aiaj
[D◦

ij ](1− L)

as an element of K0(Vark)Q/(L − 1)2. Here (a, b) denotes the greatest common
divisor of a and b.

Obviously, the two invariants S(X) and S̃(X ) coincide when they are sent to
K0(Vark)Q/(L− 1) by the natural maps.

The following is our main theorem:

Theorem 1.4. Let X be a smooth projective K-variety. Under Assumption 1.2,
the invariant S̃(X ) is independent of the chosen regular snc model X and depends
only on X.

The theorem allows us to think of S̃(X ) as an invariant of X and denote it by

S̃(X), which is what was mentioned at the beginning of this Introduction.

2. Preparatory reductions

We generalize the invariant S̃(X ) as follows. Let X be a regular flat O-scheme of
finite type such that XK is smooth and Xk =

⋃
i∈I Di is a simple normal crossing

divisor in X . (We no longer suppose that X or XK is projective.) For a constructible
subset C ⊂ Xk, we define

S̃(X , C) :=
∑
i∈I:
ai=1

[D◦
i ∩ C] +

∑
{i,j}⊂I:
(ai,aj)=1

1

aiaj
[D◦

ij ∩ C](1− L)

as an element of K0(Vark)Q/(L− 1)2.
Let f : Y → X be the blowup along a smooth irreducible center Z ⊂ Xk which has

normal crossings with Xk. Then, Y is an O-scheme satisfying the same conditions
as X does, and we can similarly define S̃(Y , C ′) for a constructible subset C ′ ⊂ Yk.

Theorem 1.4 follows from:

Proposition 2.1. Let X be as above. For any constructible subset C ⊂ Xk, we
have

S̃(X , C) = S̃(Y , f−1(C)).

Indeed, Theorem 1.4 is a direct consequence of this proposition with C = Xk

and Assumption 1.2.
In what follows, we will prove this proposition. First we will reduce it to the

local situation by using:

Lemma 2.2.

(1) If C is the disjoint union
⊔l

s=1 Cs of constructible subsets Cs, then

S̃(X , C) =

l∑
s=1

S̃(X , Cs).

(2) Let X =
⋃

λ∈Λ Uλ be an open covering. Suppose that for every constructible
subset C ⊂ Xk and for every λ ∈ Λ,

S̃(X , C ∩ Uλ) = S̃(Y , f−1(C ∩ Uλ)).
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Then, for every constructible subset C ⊂ Xk, we have

S̃(X , C) = S̃(Y , f−1(C)).

Proof. The first assertion is obvious. To show the second one, we first claim that
there exists a stratification C =

⊔n
s=0 Cs with Cs constructible such that each Cs

is contained in some Uλ. Indeed we can take C0 as C∩Uλ such that C and C0 have
equal dimension, then construct C1 applying the same procedure to C \ Uλ and so
on.

By the assumption, for every s, S̃(X , Cs) = S̃(Y , f−1(Cs)). Now, from the first
assertion, we get

S̃(X , C) =
∑
s

S̃(X , Cs) =
∑
s

S̃(Y , f−1(Cs)) = S̃(Y , f−1(C)).

�
Let x ∈ Xk be a closed point and take a local coordinate system x1, . . . , xd ∈

OX ,x. By shrinking X if necessary, we may suppose that x1, . . . , xd are global

sections of OX and that the special fiber Xk is the zero locus of
∏d′

i=1 xi, d
′ ≤ d

(thus we identify I with {1, . . . , d′}) and Z is the common zero locus of xj , j ∈ J ,
for some subset J ⊂ {1, . . . , d}. From the first assertion of the above lemma, since
we obviously have

S̃(X , C \ Z) = S̃(Y , f−1(C \ Z)),

we may also assume that

(2.1) C ⊂ Z.

In a few following sections, we will prove Proposition 2.1 in this situation, discussing
separately in the cases (�I =)d′ = 1, d′ = 2 and d′ ≥ 3. Before that, we prepare
some notation and a lemma.

Notation 2.3. For i ∈ I, let Di be the prime divisor of X given by xi = 0 and let
Ei ⊂ Yk be its strict transform. Let E0 ⊂ Yk be the exceptional divisor of the
blowup f : Y → X . We denote f−1(C) by C̃.

The multiplicity of Ei in Yk is ai for i ∈ I and

(2.2) a0 :=
∑

Z⊂Di

ai

for i = 0. We will use the following lemma several times.

Lemma 2.4. For i ∈ I \ J , if C ⊂ Z ∩Di, then we have C̃ ⊂ Ei.

Proof. The morphism C̃ → C is a P�J−1-bundle. The divisor Ei is the blowup of
Di along Z ∩Di, which has codimension �J in Di. It follows that Ei ∩ C̃ → C is
also a P�J−1-bundle. Hence C̃ and Ei ∩ C̃ coincide and the lemma follows. �

3. The case d′ = 1

We now begin the proof of Proposition 2.1 in the situation described just before
Notation 2.3. In this section, we consider the case d′ = 1.

Since Z ⊂ Xk, recalling I = {1, . . . , d′}, we see that 1 ∈ J . Then

S̃(X , C) =

{
[C] (a1 = 1),

0 (otherwise).
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From (2.2), a0 = a1, and (a0, a1) = a1. Hence, if a1 	= 1, then

S̃(Y , C̃) = 0 = S̃(X , C).

If a1 = 1, then recalling that C ⊂ Z, we see that C̃ ⊂ E0 = f−1(Z) and that

S̃(Y , C̃) = [C̃ \ E1] + [E1 ∩ C̃](1− L).

To compute the right hand side of this equality, we first observe that C̃ is a P�J−1-
bundle over C. The divisor E1 is the blowup of D1 along Z. Therefore E1 ∩ C̃ is a
P�J−2-bundle over C. Hence

S̃(Y , C̃) = [C]([P�J−1]− [P�J−2]) + [C][P�J−2](1− L)

= [C]
(
L�J−1 + (1 + L+ · · ·+ L�J−2)(1− L)

)
= [C](L�J−1 + 1− L�J−1)

= [C]

= S̃(X , C).

We conclude that if d′ = 1, then S̃(X , C) = S̃(Y , C̃).

4. The case d′ = 2

Next we consider the case d′ = 2. We have

C = (C ∩D◦
1) 
 (C ∩D◦

2) 
 (C ∩D◦
12).

From the case �I = 1 treated in the last section, we have

S̃(X , C ∩D◦
i ) = S̃(Y , f−1(C ∩D◦

i )) (i = 1, 2).

Therefore, from Lemma 2.2, replacing C with C ∩D◦
12, we may suppose that

(4.1) C ⊂ D◦
12 = D1 ∩D2.

Then we have

S̃(X , C) =

{
1

a1a2
[C](1− L) ((a1, a2) = 1),

0 (otherwise).

We next compute S̃(Y , C̃) separately in the case Z ⊂ D1 ∩ D2 and in the case
Z 	⊂ D1 ∩D2.

In the former case, we have a0 = a1 + a2 	= 1 and

S̃(Y , C̃) =
∑

i∈{1,2}:
(a0,ai)=1

1

a0ai
[C̃ ∩E◦

0i](1− L).

If (a1, a2) 	= 1, then (a0, a1) 	= 1 and (a0, a2) 	= 1, which show that S̃(Y , C̃) = 0 =

S̃(X , C). If (a1, a2) = 1, then we have (a0, a1) = (a0, a2) = 1, and

S̃(Y , C̃) =
2∑

i=1

1

a0ai
[C̃ ∩ E◦

0i](1− L).

Since E1 ∩ C̃ = E0 ∩ E1 ∩ C̃ → C is a trivial P�J−2-bundle and E1 ∩ E2 ∩ C̃ → C
is a hyperplane in it, E◦

01 ∩ C̃ → C is a trivial A�J−2-bundle. (Note that if �J = 2,
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then E1 ∩E2 = ∅ and E1 ∩ C̃ = E◦
01 ∩ C̃ → C is an isomorphism and still a trivial

A�J−2-bundle.) Similarly for E◦
02 ∩ C̃ → C. Hence

S̃(Y , C̃) =

(
1

(a1 + a2)a1
+

1

(a1 + a2)a2

)
[C]L�J−2(1− L)

=
1

a1a2
[C]L�J−2(1− L)

�
=

1

a1a2
[C](1− L)

= S̃(X , C).

Here the equality marked with � follows from

L(1− L) = (L− 1)(1− L) + 1− L = 1− L mod (L− 1)2.

In the case Z 	⊂ D1∩D2, we have either Z ⊂ D1 or Z ⊂ D2. Since the two cases
are similar, we only discuss the former case. Since 2 ∈ I \ J , from assumptions

(2.1) and (4.1) and Lemma 2.4, we have C̃ ⊂ E0 ∩ E2. Since a0 = a1, C̃ → C is a

P�J−1-bundle and C̃ ∩ E1 → C is a P�J−2-bundle, we have

S̃(Y , C̃) =
1

a0a2
[C̃ ∩E◦

0,2](1− L)

=
1

a1a2
[C̃ \ E1](1− L)

=
1

a1a2
[C][P�J−1 \ P�J−2](1− L)

=
1

a1a2
[C]L�J−1(1− L)

=
1

a1a2
[C](1− L)

= S̃(X , C).

We have completed the proof that S̃(Y , C̃) = S̃(X , C), when d′ = 2.

5. The case d′ ≥ 3

As in the last section, by induction on �I, we may suppose that

(5.1) C ⊂
⋂
i∈I

Di.

Then S̃(X , C) = 0. On the other hand, S̃(Y , C̃) is a Q-linear combination of

Ai :=
[
C̃ ∩ E◦

0i

]
(1− L), i ∈ I,

and

B := δ1,a0

[
C̃ ∩ E◦

0

]
,

with δ1,a0
being the Kronecker delta. Thus it suffices to show that Ai = 0, i ∈ I,

and that B = 0.
We first show that B = 0. If �(I ∩ J) ≥ 2, then

a0 =
∑

i∈I∩J

ai > 1.
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Hence B = 0. If �(I ∩J) < 2, then I \J is non-empty. Assumptions (2.1) and (5.1)

and Lemma 2.4 show that C̃ ∩ E◦
0 is empty, hence B = 0.

Next we show that Ai = 0. If �(I \J) ≥ 2, then from Lemma 2.4, for every i ∈ I,

there exists i′ ∈ I \ {i} such that C̃ ⊂ Ei′ . Hence C̃ ∩E◦
0i = ∅ and Ai = 0.

If �(I \ J) = 1, then by the same reasoning as above, Ai = 0 for i ∈ I ∩ J . For
i ∈ I \ J ,

C̃ ∩E◦
0i = P

�J−1
C \

⋃
j∈I∩J

Hj ,

where P
�J−1
C denotes the trivial P�J−1-bundle P�J−1 × C over C and Hj are coor-

dinate hyperplanes of P�J−1
C . Since �(I ∩ J) ≥ 2,

Ai = [C][G�(I∩J)−1
m × A�J−�(I∩J)](1− L)

= −[C]L�J−�(I∩J)(L− 1)�(I∩J) = 0 mod (L− 1)2.

If �(I \ J) = 0, equivalently if Z ⊂ Di for every i ∈ I, then for every i ∈ I,

C̃ ∩ E◦
0i = P

�J−2
C \

⋃
j∈I\{i}

Hj ,

where Hj are coordinate hyperplanes of P�J−2
C . We have

Ai = [C][G�I−2
m × A�J−�I ](1− L) = −[C]L�J−�I(L− 1)�I−1 = 0 mod (L− 1)2.

We thus have proved that S̃(X , C) = S̃(Y , C̃) = 0 also when d′ ≥ 3, which com-
pletes the proofs of Proposition 2.1 and Theorem 1.4.

6. Closing comments

It is natural to try to refine S̃(X) further by lifting it to K0(Vark)Q/(L− 1)n for
n > 2 and by adding extra terms of the form

c[D◦
H ](1− L)�H−1

with c ∈ Q, H ⊂ I, �H ≥ 3. However the author did not manage to find such a
refinement.

The original invariant considered by Serre [11] and denoted by i(X) was defined
for a K-analytic manifold when the residue field k is finite and lives in Z/(�k− 1).

There seems to be no counterpart of S̃(X) in this context, at least in a naive way,
because Z⊗ZQ = Q is a field and the ideal generated by (�k−1)2 in it is the entire
field.

The author has no convincing explanation of the meaning of fractional coefficients
appearing in the definition of S̃(X). However, as a possibly related work, we
note that Denef and Loeser [4] previously also considered motivic invariants with
coefficients in Q.

Nicaise and Sebag [10, Th. 5.4] gave a nice interpretation of the Euler charac-
teristic representation of S(X) in terms of cohomology of the generic fiber (see also
[6] for another proof). It would be interesting to look for a similar interpretation

of representations of S̃(X) or S̃(X) itself.
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