MOTIVIC SERRE INVARIANTS MODULO THE SQUARE OF $\mathbb{L}-1$

TAKEHIKO YASUDA

(Communicated by Lev Borisov)

Abstract

Motivic Serre invariants defined by Loeser and Sebag are elements of the Grothendieck ring of varieties modulo $\mathbb{L}-1$. In this paper, we show that we can lift these invariants to modulo the square of $\mathbb{L}-1$ after tensoring the Grothendieck ring with \mathbb{Q} under certain assumptions.

1. Introduction

Let K be a complete discrete valuation field with a perfect residue field k. For a smooth projective irreducible K-variety X, Loeser and Sebag 9 defined the motivic Serre invariant $S(X)$. This invariant belongs to the ring $K_{0}\left(\operatorname{Var}_{k}\right) /(\mathbb{L}-1)$, where $K_{0}\left(\operatorname{Var}_{k}\right)$ is the Grothendieck ring of k-varieties and $\mathbb{L}:=\left[\mathbb{A}_{k}^{1}\right]$, the class of an affine line in this ring. Let $K_{0}\left(\operatorname{Var}_{k}\right)_{\mathbb{Q}}:=K_{0}\left(\operatorname{Var}_{k}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$. In this paper, we construct, under a certain assumption, an invariant

$$
\tilde{S}(X) \in K_{0}\left(\operatorname{Var}_{k}\right)_{\mathbb{Q}} /(\mathbb{L}-1)^{2}
$$

which coincides with $S(X)$ in $K_{0}\left(\operatorname{Var}_{k}\right)_{\mathbb{Q}} /(\mathbb{L}-1)$.
Remark 1.1. Loeser and Sebag defined the motivic Serre invariant more generally for smooth quasi-compact separated rigid K-spaces. For the sake of simplicity, we consider only the case where X is a projective variety.

Let \mathcal{O} be the valuation ring of K. The assumption we will make is that the desingularization theorem and the weak factorization theorem hold; their precise statements are as follows:

Assumption 1.2.

(1) (Desingularization) There exists a regular projective flat \mathcal{O}-scheme \mathcal{X} with the generic fiber $\mathcal{X}_{K}:=\mathcal{X} \otimes_{\mathcal{O}} K=X$ such that the special fiber $\mathcal{X}_{k}:=\mathcal{X} \otimes_{\mathcal{O}}$ k is a simple normal crossing divisor in \mathcal{X}. (We call such an \mathcal{X} a regular snc model of X.)
(2) (Weak factorization) Let \mathcal{X} and \mathcal{X}^{\prime} be regular snc models of X. Then there exist finitely many regular snc models of X,

$$
\mathcal{X}_{0}=\mathcal{X}, \mathcal{X}_{1}, \ldots, \mathcal{X}_{n}=\mathcal{X}^{\prime}
$$

[^0]such that for every i, either the birational map $\mathcal{X}_{i} \rightarrow \mathcal{X}_{i+1}$ is the blowup along a regular center $Z \subset \mathcal{X}_{i+1, k}$ which has normal crossing ${ }^{11}$ with $\mathcal{X}_{i+1, k}$ or its inverse $\mathcal{X}_{i+1} \rightarrow \mathcal{X}_{i}$ has the same description with $\mathcal{X}_{i+1, k}$ replaced with $\mathcal{X}_{i, k}$.

When X has dimension one, this assumption holds, as is well-known. Indeed the above desingularization theorem in this case follows from the desingularization theorem for excellent surfaces by Abhyankar, Hironaka and Lipman (see [8), while the weak factorization follows from the fact that every proper birational morphism of regular integral noetherian schemes of dimension two factors into a sequence of finitely many blowups at closed points. The last fact is well-known in the case of varieties over an algebraically closed field (for instance, [5, V, Cor. 5.4]) and is valid even in our situation as proved in [7, Th. 4.1] in a more general context. Assumption 1.2 holds also when k has characteristic zero. This follows from the recent generalizations to excellent schemes respectively by Temkin [12, 13] and by Abramovich and Temkin [2] of the Hironaka desingularization theorem and the weak factorization theorem of Abramovich, Karu, Matsuki and Włodarczyk [1].

Let \mathcal{X} be a regular snc model of X, let $\mathcal{X}_{\mathrm{sm}}$ be its \mathcal{O}-smooth locus and let $\mathcal{X}_{\mathrm{sm}, k}:=\mathcal{X}_{\mathrm{sm}} \otimes_{\mathcal{O}} k$. Then $\mathcal{X}_{\mathrm{sm}}$ is a weak Neron model of X in the sense of [3] and by definition,

$$
S(X)=\left[\mathcal{X}_{\mathrm{sm}, k}\right] \in K_{0}\left(\operatorname{Var}_{k}\right) /(\mathbb{L}-1) .
$$

To define our invariant $\tilde{S}(X)$, we also need information on the non-smooth locus of \mathcal{X}. Regard \mathcal{X}_{k} as a divisor and write it as $\mathcal{X}_{k}=\sum_{i \in I} a_{i} D_{i}$, where D_{i} are the irreducible components of \mathcal{X}_{k} and a_{i} are the multiplicities of D_{i} in \mathcal{X} respectively. For a subset $H \subset I$, we define

$$
D_{H}^{\circ}:=\bigcap_{h \in H} D_{h} \backslash \bigcup_{i \in I \backslash H} D_{i} .
$$

When $H=\{i\}$, we abbreviate it to D_{i}°, and when $H=\{i, j\}$, to $D_{i j}^{\circ}$. These locally closed subsets give the stratification

$$
\mathcal{X}_{k}=\bigsqcup_{\emptyset \neq H \subset I} D_{H}^{\circ}
$$

and the stratification

$$
\mathcal{X}_{\mathrm{sm}, k}=\bigcup_{i \in I: a_{i}=1} D_{i}^{\circ} .
$$

From the second stratification, we see that

$$
S(X)=\sum_{i \in I: a_{i}=1}\left[D_{i}^{\circ}\right] \in K_{0}\left(\operatorname{Var}_{k}\right) /(\mathbb{L}-1) .
$$

Loeser and Sebag proved in the paper cited above that this is independent of the model \mathcal{X} and depends only on X.

[^1]Definition 1.3. For a regular snc model \mathcal{X} of X, we define

$$
\tilde{S}(\mathcal{X}):=\sum_{i \in I: a_{i}=1}\left[D_{i}^{\circ}\right]+\sum_{\substack{\{i, j\} \subset I: \\\left(a_{i}, a_{j}\right)=1}} \frac{1}{a_{i} a_{j}}\left[D_{i j}^{\circ}\right](1-\mathbb{L})
$$

as an element of $K_{0}\left(\operatorname{Var}_{k}\right)_{\mathbb{Q}} /(\mathbb{L}-1)^{2}$. Here (a, b) denotes the greatest common divisor of a and b.

Obviously, the two invariants $S(X)$ and $\tilde{S}(\mathcal{X})$ coincide when they are sent to $K_{0}\left(\operatorname{Var}_{k}\right)_{\mathbb{Q}} /(\mathbb{L}-1)$ by the natural maps.

The following is our main theorem:
Theorem 1.4. Let X be a smooth projective K-variety. Under Assumption 1.2, the invariant $\tilde{S}(\mathcal{X})$ is independent of the chosen regular snc model \mathcal{X} and depends only on X.

The theorem allows us to think of $\tilde{S}(\mathcal{X})$ as an invariant of X and denote it by $\tilde{S}(X)$, which is what was mentioned at the beginning of this Introduction.

2. Preparatory reductions

We generalize the invariant $\tilde{S}(\mathcal{X})$ as follows. Let \mathcal{X} be a regular flat \mathcal{O}-scheme of finite type such that \mathcal{X}_{K} is smooth and $\mathcal{X}_{k}=\bigcup_{i \in I} D_{i}$ is a simple normal crossing divisor in \mathcal{X}. (We no longer suppose that \mathcal{X} or \mathcal{X}_{K} is projective.) For a constructible subset $C \subset \mathcal{X}_{k}$, we define

$$
\tilde{S}(\mathcal{X}, C):=\sum_{\substack{i \in I: \\ a_{i}=1}}\left[D_{i}^{\circ} \cap C\right]+\sum_{\substack{\{i, j\} \subset I: \\\left(a_{i}, a_{j}\right)=1}} \frac{1}{a_{i} a_{j}}\left[D_{i j}^{\circ} \cap C\right](1-\mathbb{L})
$$

as an element of $K_{0}\left(\operatorname{Var}_{k}\right)_{\mathbb{Q}} /(\mathbb{L}-1)^{2}$.
Let $f: \mathcal{Y} \rightarrow \mathcal{X}$ be the blowup along a smooth irreducible center $Z \subset \mathcal{X}_{k}$ which has normal crossings with \mathcal{X}_{k}. Then, \mathcal{Y} is an \mathcal{O}-scheme satisfying the same conditions as \mathcal{X} does, and we can similarly define $\tilde{S}\left(\mathcal{Y}, C^{\prime}\right)$ for a constructible subset $C^{\prime} \subset \mathcal{Y}_{k}$.

Theorem 1.4 follows from:
Proposition 2.1. Let \mathcal{X} be as above. For any constructible subset $C \subset \mathcal{X}_{k}$, we have

$$
\tilde{S}(\mathcal{X}, C)=\tilde{S}\left(\mathcal{Y}, f^{-1}(C)\right)
$$

Indeed, Theorem 1.4 is a direct consequence of this proposition with $C=\mathcal{X}_{k}$ and Assumption 1.2 .

In what follows, we will prove this proposition. First we will reduce it to the local situation by using:

Lemma 2.2.

(1) If C is the disjoint union $\bigsqcup_{s=1}^{l} C_{s}$ of constructible subsets C_{s}, then

$$
\tilde{S}(\mathcal{X}, C)=\sum_{s=1}^{l} \tilde{S}\left(\mathcal{X}, C_{s}\right)
$$

(2) Let $\mathcal{X}=\bigcup_{\lambda \in \Lambda} U_{\lambda}$ be an open covering. Suppose that for every constructible subset $C \subset \mathcal{X}_{k}$ and for every $\lambda \in \Lambda$,

$$
\tilde{S}\left(\mathcal{X}, C \cap U_{\lambda}\right)=\tilde{S}\left(\mathcal{Y}, f^{-1}\left(C \cap U_{\lambda}\right)\right)
$$

Then, for every constructible subset $C \subset \mathcal{X}_{k}$, we have

$$
\tilde{S}(\mathcal{X}, C)=\tilde{S}\left(\mathcal{Y}, f^{-1}(C)\right)
$$

Proof. The first assertion is obvious. To show the second one, we first claim that there exists a stratification $C=\bigsqcup_{s=0}^{n} C_{s}$ with C_{s} constructible such that each C_{s} is contained in some U_{λ}. Indeed we can take C_{0} as $C \cap U_{\lambda}$ such that C and C_{0} have equal dimension, then construct C_{1} applying the same procedure to $C \backslash U_{\lambda}$ and so on.

By the assumption, for every $s, \tilde{S}\left(\mathcal{X}, C_{s}\right)=\tilde{S}\left(\mathcal{Y}, f^{-1}\left(C_{s}\right)\right)$. Now, from the first assertion, we get

$$
\tilde{S}(\mathcal{X}, C)=\sum_{s} \tilde{S}\left(\mathcal{X}, C_{s}\right)=\sum_{s} \tilde{S}\left(\mathcal{Y}, f^{-1}\left(C_{s}\right)\right)=\tilde{S}\left(\mathcal{Y}, f^{-1}(C)\right) .
$$

Let $x \in \mathcal{X}_{k}$ be a closed point and take a local coordinate system $x_{1}, \ldots, x_{d} \in$ $\mathcal{O}_{\mathcal{X}, x}$. By shrinking \mathcal{X} if necessary, we may suppose that x_{1}, \ldots, x_{d} are global sections of $\mathcal{O}_{\mathcal{X}}$ and that the special fiber \mathcal{X}_{k} is the zero locus of $\prod_{i=1}^{d^{\prime}} x_{i}, d^{\prime} \leq d$ (thus we identify I with $\left\{1, \ldots, d^{\prime}\right\}$) and Z is the common zero locus of $x_{j}, j \in J$, for some subset $J \subset\{1, \ldots, d\}$. From the first assertion of the above lemma, since we obviously have

$$
\tilde{S}(\mathcal{X}, C \backslash Z)=\tilde{S}\left(\mathcal{Y}, f^{-1}(C \backslash Z)\right)
$$

we may also assume that

$$
\begin{equation*}
C \subset Z \tag{2.1}
\end{equation*}
$$

In a few following sections, we will prove Proposition 2.1 in this situation, discussing separately in the cases $(\sharp I=) d^{\prime}=1, d^{\prime}=2$ and $d^{\prime} \geq 3$. Before that, we prepare some notation and a lemma.

Notation 2.3. For $i \in I$, let D_{i} be the prime divisor of \mathcal{X} given by $x_{i}=0$ and let $E_{i} \subset \mathcal{Y}_{k}$ be its strict transform. Let $E_{0} \subset \mathcal{Y}_{k}$ be the exceptional divisor of the blowup $f: \mathcal{Y} \rightarrow \mathcal{X}$. We denote $f^{-1}(C)$ by \tilde{C}.

The multiplicity of E_{i} in \mathcal{Y}_{k} is a_{i} for $i \in I$ and

$$
\begin{equation*}
a_{0}:=\sum_{Z \subset D_{i}} a_{i} \tag{2.2}
\end{equation*}
$$

for $i=0$. We will use the following lemma several times.
Lemma 2.4. For $i \in I \backslash J$, if $C \subset Z \cap D_{i}$, then we have $\tilde{C} \subset E_{i}$.
Proof. The morphism $\tilde{C} \rightarrow C$ is a $\mathbb{P}^{\sharp J-1}$-bundle. The divisor E_{i} is the blowup of D_{i} along $Z \cap D_{i}$, which has codimension $\sharp J$ in D_{i}. It follows that $E_{i} \cap \tilde{C} \rightarrow C$ is also a $\mathbb{P}^{\sharp J-1}$-bundle. Hence \tilde{C} and $E_{i} \cap \tilde{C}$ coincide and the lemma follows.

$$
\text { 3. The case } d^{\prime}=1
$$

We now begin the proof of Proposition 2.1 in the situation described just before Notation 2.3, In this section, we consider the case $d^{\prime}=1$.

Since $Z \subset \mathcal{X}_{k}$, recalling $I=\left\{1, \ldots, d^{\prime}\right\}$, we see that $1 \in J$. Then

$$
\tilde{S}(\mathcal{X}, C)= \begin{cases}{[C]} & \left(a_{1}=1\right) \\ 0 & (\text { otherwise })\end{cases}
$$

From (2.2), $a_{0}=a_{1}$, and $\left(a_{0}, a_{1}\right)=a_{1}$. Hence, if $a_{1} \neq 1$, then

$$
\tilde{S}(\mathcal{Y}, \tilde{C})=0=\tilde{S}(\mathcal{X}, C)
$$

If $a_{1}=1$, then recalling that $C \subset Z$, we see that $\tilde{C} \subset E_{0}=f^{-1}(Z)$ and that

$$
\tilde{S}(\mathcal{Y}, \tilde{C})=\left[\tilde{C} \backslash E_{1}\right]+\left[E_{1} \cap \tilde{C}\right](1-\mathbb{L})
$$

To compute the right hand side of this equality, we first observe that \tilde{C} is a $\mathbb{P}^{\sharp J-1}{ }_{-}$ bundle over C. The divisor E_{1} is the blowup of D_{1} along Z. Therefore $E_{1} \cap \tilde{C}$ is a $\mathbb{P}^{\sharp J-2}$-bundle over C. Hence

$$
\begin{aligned}
\tilde{S}(\mathcal{Y}, \tilde{C}) & =[C]\left(\left[\mathbb{P}^{\sharp J-1}\right]-\left[\mathbb{P}^{\sharp J-2}\right]\right)+[C]\left[\mathbb{P}^{\sharp J-2}\right](1-\mathbb{L}) \\
& =[C]\left(\mathbb{L}^{\sharp J-1}+\left(1+\mathbb{L}+\cdots+\mathbb{L}^{\sharp J-2}\right)(1-\mathbb{L})\right) \\
& =[C]\left(\mathbb{L}^{\sharp J-1}+1-\mathbb{L}^{\sharp J-1}\right) \\
& =[C] \\
& =\tilde{S}(\mathcal{X}, C) .
\end{aligned}
$$

We conclude that if $d^{\prime}=1$, then $\tilde{S}(\mathcal{X}, C)=\tilde{S}(\mathcal{Y}, \tilde{C})$.

4. The case $d^{\prime}=2$

Next we consider the case $d^{\prime}=2$. We have

$$
C=\left(C \cap D_{1}^{\circ}\right) \sqcup\left(C \cap D_{2}^{\circ}\right) \sqcup\left(C \cap D_{12}^{\circ}\right) .
$$

From the case $\sharp I=1$ treated in the last section, we have

$$
\tilde{S}\left(\mathcal{X}, C \cap D_{i}^{\circ}\right)=\tilde{S}\left(\mathcal{Y}, f^{-1}\left(C \cap D_{i}^{\circ}\right)\right) \quad(i=1,2)
$$

Therefore, from Lemma 2.2, replacing C with $C \cap D_{12}^{\circ}$, we may suppose that

$$
\begin{equation*}
C \subset D_{12}^{\circ}=D_{1} \cap D_{2} \tag{4.1}
\end{equation*}
$$

Then we have

$$
\tilde{S}(\mathcal{X}, C)= \begin{cases}\frac{1}{a_{1} a_{2}}[C](1-\mathbb{L}) & \left(\left(a_{1}, a_{2}\right)=1\right) \\ 0 & (\text { otherwise })\end{cases}
$$

We next compute $\tilde{S}(\mathcal{Y}, \tilde{C})$ separately in the case $Z \subset D_{1} \cap D_{2}$ and in the case $Z \not \subset D_{1} \cap D_{2}$.

In the former case, we have $a_{0}=a_{1}+a_{2} \neq 1$ and

$$
\tilde{S}(\mathcal{Y}, \tilde{C})=\sum_{\substack{i \in\{1,2\}: \\\left(a_{0}, a_{i}\right)=1}} \frac{1}{a_{0} a_{i}}\left[\tilde{C} \cap E_{0 i}^{\circ}\right](1-\mathbb{L})
$$

If $\left(a_{1}, a_{2}\right) \neq 1$, then $\left(a_{0}, a_{1}\right) \neq 1$ and $\left(a_{0}, a_{2}\right) \neq 1$, which show that $\tilde{S}(\mathcal{Y}, \tilde{C})=0=$ $\tilde{S}(\mathcal{X}, C)$. If $\left(a_{1}, a_{2}\right)=1$, then we have $\left(a_{0}, a_{1}\right)=\left(a_{0}, a_{2}\right)=1$, and

$$
\tilde{S}(\mathcal{Y}, \tilde{C})=\sum_{i=1}^{2} \frac{1}{a_{0} a_{i}}\left[\tilde{C} \cap E_{0 i}^{\circ}\right](1-\mathbb{L})
$$

Since $E_{1} \cap \tilde{C}=E_{0} \cap E_{1} \cap \tilde{C}_{\tilde{C}} \rightarrow C$ is a trivial $\mathbb{P}^{\sharp J-2}$-bundle and $E_{1} \cap E_{2} \cap \tilde{C} \rightarrow C$ is a hyperplane in it, $E_{01}^{\circ} \cap \tilde{C} \rightarrow C$ is a trivial $\mathbb{A}^{\sharp J-2}$-bundle. (Note that if $\sharp J=2$,
then $E_{1} \cap E_{2}=\emptyset$ and $E_{1} \cap \tilde{C}=E_{01}^{\circ} \cap \tilde{C} \rightarrow C$ is an isomorphism and still a trivial $\mathbb{A}^{\sharp J-2}$-bundle.) Similarly for $E_{02}^{\circ} \cap \tilde{C} \rightarrow C$. Hence

$$
\begin{aligned}
\tilde{S}(\mathcal{Y}, \tilde{C}) & =\left(\frac{1}{\left(a_{1}+a_{2}\right) a_{1}}+\frac{1}{\left(a_{1}+a_{2}\right) a_{2}}\right)[C] \mathbb{L}^{\sharp J-2}(1-\mathbb{L}) \\
& =\frac{1}{a_{1} a_{2}}[C] \mathbb{L}^{\sharp J-2}(1-\mathbb{L}) \\
& \star \frac{1}{=} \frac{1}{a_{1} a_{2}}[C](1-\mathbb{L}) \\
& =\tilde{S}(\mathcal{X}, C) .
\end{aligned}
$$

Here the equality marked with \star follows from

$$
\mathbb{L}(1-\mathbb{L})=(\mathbb{L}-1)(1-\mathbb{L})+1-\mathbb{L}=1-\mathbb{L} \quad \bmod (\mathbb{L}-1)^{2} .
$$

In the case $Z \not \subset D_{1} \cap D_{2}$, we have either $Z \subset D_{1}$ or $Z \subset D_{2}$. Since the two cases are similar, we only discuss the former case. Since $2 \in I \backslash J$, from assumptions (2.1) and (4.1) and Lemma [2.4, we have $\tilde{C} \subset E_{0} \cap E_{2}$. Since $a_{0}=a_{1}, \tilde{C} \rightarrow C$ is a $\mathbb{P}^{\sharp} J-1$-bundle and $\tilde{C} \cap E_{1} \rightarrow C$ is a $\mathbb{P}^{\sharp J-2}$-bundle, we have

$$
\begin{aligned}
\tilde{S}(\mathcal{Y}, \tilde{C}) & =\frac{1}{a_{0} a_{2}}\left[\tilde{C} \cap E_{0,2}^{\circ}\right](1-\mathbb{L}) \\
& =\frac{1}{a_{1} a_{2}}\left[\tilde{C} \backslash E_{1}\right](1-\mathbb{L}) \\
& =\frac{1}{a_{1} a_{2}}[C]\left[\mathbb{P}^{\sharp J-1} \backslash \mathbb{P}^{\sharp J-2}\right](1-\mathbb{L}) \\
& =\frac{1}{a_{1} a_{2}}[C] \mathbb{L}^{\sharp J-1}(1-\mathbb{L}) \\
& =\frac{1}{a_{1} a_{2}}[C](1-\mathbb{L}) \\
& =\tilde{S}(\mathcal{X}, C) .
\end{aligned}
$$

We have completed the proof that $\tilde{S}(\mathcal{Y}, \tilde{C})=\tilde{S}(\mathcal{X}, C)$, when $d^{\prime}=2$.

5. The case $d^{\prime} \geq 3$

As in the last section, by induction on $\sharp I$, we may suppose that

$$
\begin{equation*}
C \subset \bigcap_{i \in I} D_{i} . \tag{5.1}
\end{equation*}
$$

Then $\tilde{S}(\mathcal{X}, C)=0$. On the other hand, $\tilde{S}(\mathcal{Y}, \tilde{C})$ is a \mathbb{Q}-linear combination of

$$
A_{i}:=\left[\tilde{C} \cap E_{0 i}^{\circ}\right](1-\mathbb{L}), \quad i \in I,
$$

and

$$
B:=\delta_{1, a_{0}}\left[\tilde{C} \cap E_{0}^{\circ}\right],
$$

with $\delta_{1, a_{0}}$ being the Kronecker delta. Thus it suffices to show that $A_{i}=0, i \in I$, and that $B=0$.

We first show that $B=0$. If $\sharp(I \cap J) \geq 2$, then

$$
a_{0}=\sum_{i \in I \cap J} a_{i}>1 .
$$

Hence $B=0$. If $\sharp(I \cap J)<2$, then $I \backslash J$ is non-empty. Assumptions (2.1) and (5.1) and Lemma 2.4 show that $\tilde{C} \cap E_{0}^{\circ}$ is empty, hence $B=0$.

Next we show that $A_{i}=0$. If $\sharp(I \backslash J) \geq 2$, then from Lemma 2.4, for every $i \in I$, there exists $i^{\prime} \in I \backslash\{i\}$ such that $\tilde{C} \subset E_{i^{\prime}}$. Hence $\tilde{C} \cap E_{0 i}^{\circ}=\emptyset$ and $A_{i}=0$.

If $\sharp(I \backslash J)=1$, then by the same reasoning as above, $A_{i}=0$ for $i \in I \cap J$. For $i \in I \backslash J$,

$$
\tilde{C} \cap E_{0 i}^{\circ}=\mathbb{P}_{C}^{\sharp J-1} \backslash \bigcup_{j \in I \cap J} H_{j},
$$

where $\mathbb{P}_{C}^{\sharp J-1}$ denotes the trivial $\mathbb{P}^{\sharp J-1}$-bundle $\mathbb{P}^{\sharp J-1} \times C$ over C and H_{j} are coordinate hyperplanes of $\mathbb{P}_{C}^{\sharp J-1}$. Since $\sharp(I \cap J) \geq 2$,

$$
\begin{aligned}
A_{i} & =[C]\left[\mathbb{G}_{m}^{\sharp(I \cap J)-1} \times \mathbb{A}^{\sharp J-\sharp(I \cap J)}\right](1-\mathbb{L}) \\
& =-[C] \mathbb{L}^{\sharp J-\sharp(I \cap J)}(\mathbb{L}-1)^{\sharp(I \cap J)}=0 \quad \bmod (\mathbb{L}-1)^{2} .
\end{aligned}
$$

If $\sharp(I \backslash J)=0$, equivalently if $Z \subset D_{i}$ for every $i \in I$, then for every $i \in I$,

$$
\tilde{C} \cap E_{0 i}^{\circ}=\mathbb{P}_{C}^{\sharp J-2} \backslash \bigcup_{j \in I \backslash\{i\}} H_{j},
$$

where H_{j} are coordinate hyperplanes of $\mathbb{P}_{C}^{\sharp J-2}$. We have

$$
A_{i}=[C]\left[\mathbb{G}_{m}^{\sharp I-2} \times \mathbb{A}^{\sharp J-\sharp I}\right](1-\mathbb{L})=-[C] \mathbb{L}^{\sharp J-\sharp I}(\mathbb{L}-1)^{\sharp I-1}=0 \quad \bmod (\mathbb{L}-1)^{2} .
$$

We thus have proved that $\tilde{S}(\mathcal{X}, C)=\tilde{S}(\mathcal{Y}, \tilde{C})=0$ also when $d^{\prime} \geq 3$, which completes the proofs of Proposition 2.1 and Theorem 1.4 .

6. Closing comments

It is natural to try to refine $\tilde{S}(X)$ further by lifting it to $K_{0}\left(\operatorname{Var}_{k}\right)_{\mathbb{Q}} /(\mathbb{L}-1)^{n}$ for $n>2$ and by adding extra terms of the form

$$
c\left[D_{H}^{\circ}\right](1-\mathbb{L})^{\sharp H-1}
$$

with $c \in \mathbb{Q}, H \subset I, \sharp H \geq 3$. However the author did not manage to find such a refinement.

The original invariant considered by Serre [11] and denoted by $i(X)$ was defined for a K-analytic manifold when the residue field k is finite and lives in $\mathbb{Z} /(\sharp k-1)$. There seems to be no counterpart of $\tilde{S}(X)$ in this context, at least in a naive way, because $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}=\mathbb{Q}$ is a field and the ideal generated by $(\sharp k-1)^{2}$ in it is the entire field.

The author has no convincing explanation of the meaning of fractional coefficients appearing in the definition of $\tilde{S}(X)$. However, as a possibly related work, we note that Denef and Loeser [4] previously also considered motivic invariants with coefficients in \mathbb{Q}.

Nicaise and Sebag [10, Th. 5.4] gave a nice interpretation of the Euler characteristic representation of $S(X)$ in terms of cohomology of the generic fiber (see also [6] for another proof). It would be interesting to look for a similar interpretation of representations of $\tilde{S}(X)$ or $\tilde{S}(X)$ itself.

References

[1] Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), no. 3, 531-572, DOI 10.1090/S0894-0347-02-00396-X. MR 1896232
[2] Dan Abramovich and Michael Temkin, Functorial factorization of birational maps for qe schemes in characteristic 0, arXiv:1606.08414.
[3] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR1045822
[4] Jan Denef and François Loeser, Definable sets, motives and p-adic integrals, J. Amer. Math. Soc. 14 (2001), no. 2, 429-469, DOI 10.1090/S0894-0347-00-00360-X. MR 1815218
[5] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, SpringerVerlag, New York-Heidelberg, 1977. MR0463157
[6] Ehud Hrushovski and François Loeser, Monodromy and the Lefschetz fixed point formula (English, with English and French summaries), Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 2, 313-349, DOI 10.24033/asens.2246. MR3346173
[7] Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195-279. MR0276239
[8] Joseph Lipman, Desingularization of two-dimensional schemes, Ann. Math. (2) 107 (1978), no. 1, 151-207. MR 0491722
[9] François Loeser and Julien Sebag, Motivic integration on smooth rigid varieties and invariants of degenerations, Duke Math. J. 119 (2003), no. 2, 315-344, DOI 10.1215/S0012-7094-03-11924-9. MR 1997948
[10] Johannes Nicaise and Julien Sebag, Motivic Serre invariants, ramification, and the analytic Milnor fiber, Invent. Math. 168 (2007), no. 1, 133-173, DOI 10.1007/s00222-006-0029-7. MR2285749
[11] Jean-Pierre Serre, Classification des variétés analytiques p-adiques compactes (French), Topology 3 (1965), 409-412, DOI 10.1016/0040-9383(65)90005-4. MR0179170
[12] Michael Temkin, Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math. 219 (2008), no. 2, 488-522, DOI 10.1016/j.aim.2008.05.006. MR2435647
[13] Michael Temkin, Functorial desingularization of quasi-excellent schemes in characteristic zero: the nonembedded case, Duke Math. J. 161 (2012), no. 11, 2207-2254, DOI 10.1215/00127094-1699539. MR 2957701

Department of Mathematics, Graduate School of Science, Osaka University, ToyONAKA, OsAKA 560-0043, Japan

E-mail address: takehikoyasuda@math.sci.osaka-u.ac.jp

[^0]: Received by the editors January 24, 2017 and, in revised form, April 4, 2017.
 2010 Mathematics Subject Classification. Primary 14D06; Secondary 14E05.
 Most of this work was done during the author's stay at Institut des Hautes Études Scientifiques. He is grateful for its hospitality and great environment. He also wishes to thank François Loeser for inspiring discussion and helpful comments. This work was partly supported by JSPS KAKENHI grant No. JP15K17510 and JP16H06337.

[^1]: ${ }^{1}$ That Z has normal crossings with $\mathcal{X}_{i+1, k}$ means that for every closed point $x \in \mathcal{X}_{i+1, k}$, there exists a regular system of parameters $x_{1}, \ldots, x_{d} \in \mathcal{O}_{\mathcal{X}_{i+1}, x}$ such that in an open neighborhood of x, the support of the special fiber $\mathcal{X}_{i+1, k}$ is the zero locus of $\prod_{v \in V} x_{v}$ for some subset $V \subset\{1, \ldots, d\}$ and Z is the common zero locus of $x_{w}, w \in W$, for some $W \subset\{1, \ldots, d\}$.

