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SINGULARIZING SUCCESSOR CARDINALS BY FORCING
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(Communicated by Mirna Džamonja)

Abstract. We exhibit models of set theory, using large cardinals and forcing,
in which successor cardinals can be made singular by some “Namba-like” fur-
ther set forcing, in most cases without collapsing cardinals below that successor
cardinal. For successors of regular cardinals, we work from consistency-wise
optimal assumptions in the ground model. Successors of singular cardinals re-
quire stronger hypotheses. Our partial orderings are different from Woodin’s
stationary tower forcing, which requires much stronger hypotheses when sin-
gularizing successors of regular cardinals, and collapses cardinals above the
cardinal whose cofinality is changed when singularizing successors of singular
cardinals.

1. Introduction and statements of results

In Zermelo Fraenkel set theory (ZFC), cardinals κ are either regular (cof(κ) = κ)
or singular (cof(κ) < κ), where cof is Hausdorff’s cofinality function (see [12]).
There are pronounced combinatorial differences between these two classes of car-
dinals. For example, the value of the cardinal power 2κ at singular κ is markedly
influenced by cardinal exponentiation below κ, whereas for regular κ, 2κ can be
made arbitrarily large by the forcing method, rather independent of behavior be-
low κ. There are a number of classical forcing constructions in which a particular
combinatorial situation is first prepared at a regular cardinal which is then made
singular by some singularization forcing, thus transferring some possibilities of reg-
ular cardinal combinatorics to singular cardinals (see [12] for further details). These
constructions typically use regular limit cardinals κ, i.e., inaccessible cardinals, for
which a variety of singularization forcings have been defined, which preserve κ and
other cardinals as cardinals when stepping into the generic extension.

In contrast, singularizing a successor cardinal κ+ by forcing will destroy κ+ as a
cardinal, since successor cardinals are always regular in ZFC. But it is a challenge
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to singularize to some small value of cofinality and preserve the cardinal κ and
possibly smaller ones in the process. Namba forcing [12, 18], also introduced by
Bukovský [5], singularizes the successor cardinal ℵ2 = ℵ+

1 without collapsing ℵ1;
for a ground model M , it yields a generic extension N ⊇ M such that ℵM

1 = ℵN
1 and

cofN (ℵM
2 ) = ℵ0. Such results provide important limitations for covering properties

in the spirit of Jensen [7] between the set theoretical universe and its constructible
inner models.

We describe “Namba-style singularizability” by forcing over M in

Definition 1. Sing(μ, δ) stands for: δ < μ are cardinals, and there is a set forcing
P such that the following properties are forced by P:

a) Cardinals <μ and their cofinalities are preserved between V and V [Ġ],

where Ġ is a canonical name for a generic filter for P;

b) cofV [Ġ](μ) = δ.

In ZFC, Namba forcing witnesses Sing(ℵ2,ℵ0). If μ is a measurable cardinal,
Prikry forcing witnesses Sing(μ,ℵ0). By combining Lévy collapse forcing and Prikry
forcing, we can force the singularizability of successor cardinals above ℵ2.

Theorem 2. Consider a ground model V in which μ is a measurable cardinal and
κ is a regular cardinal such that ℵ1 < κ < μ. Then there is a two-stage forcing
extension V ⊆ M ⊆ N such that

a) V , M , and N possess the same bounded subsets of κ;
b) cardinals ≤ κ are absolute between V and N , and κ is regular in N ;
c) μ = (κ+)M ;

d) cofN (μ) = ℵ0.

Hence M satisfies Sing(κ+,ℵ0).

Using higher cofinality singularization forcings of Gitik [8], Theorem 2 can be
generalized to uncountable cofinalities.

Theorem 3. Consider a ground model V of GCH with ℵ1 ≤ δ < μ, where δ is a
regular cardinal and μ is a measurable cardinal of Mitchell order o(μ) = δ. Then
there is a two-stage forcing extension V ⊆ M ⊆ N such that δ remains regular in
M , μ remains measurable in M , and for κ a fixed regular cardinal in M , δ < κ < μ,
in N :

a) κ and δ are regular;
b) μ = κ+;
c) Sing(κ+, δ) holds.

Theorems 2 and 3 work from optimal large cardinal assumptions by the following
lower bounds on consistency strengths.

Theorem 4. Assume Sing(κ+, δ), where δ < κ are regular cardinals and κ ≥ ℵ2.
Then

a) if δ = ℵ0, κ
+ is a measurable cardinal in some inner model;

b) if δ > ℵ0, κ
+ is a measurable cardinal of Mitchell order δ in some inner

model.

For singular cardinals κ, our forcings singularizing κ+ are achieved from consid-
erably stronger large cardinals.
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Theorem 5. Let κ = supi<ω κi, where 〈κi | i < ω〉 is a strictly increasing sequence
of κ+-strongly compact cardinals. Then Sing(κ+,ℵ0) holds via a κ++-c.c. partial
ordering which adds no bounded subsets of κ.

Theorem 6. Let κ be κ+-strongly compact. Then there is a forcing extension in
which κ is a singular cardinal satisfying Sing(κ+,ℵ0) via a κ++-c.c. partial ordering
which adds no bounded subsets of κ.

Using Magidor’s work from his paper [16], it is possible to transfer the results of
Theorem 6 down to ℵω and ℵω1

.

Theorem 7. Let κ be κ+-supercompact. Then there is a forcing extension satisfying
Sing(ℵω+1,ℵ0) via a partial ordering which adds no bounded subsets of ℵω and
preserves cardinals ≥ ℵω+2.

Theorem 8. Let κ be κ++-supercompact in a ground model satisfying 2κ
+

= κ++.
Then there is a forcing extension with a partial ordering P such that forcing with P

changes the cofinality of ℵω1+1 to ℵ1 while preserving ℵω1
and all cardinals ≥ ℵω1+2.

The necessity of strong assumptions for Theorems 5 – 8 follows from

Theorem 9. Suppose that it is possible to define a set partial ordering P such that
for some singular cardinal κ:

a) κ remains a singular cardinal in V P;

b) (κ+)V < (κ+)V
P

.

Then there must be an inner model with a Woodin cardinal.

Note that singularizations of successor cardinals are also possible with Woodin’s
stationary tower forcing (see [15]). Assuming the existence of a Woodin cardinal λ
in a model V of ZFC, the stationary tower forcing P<λ can be defined so that for
any regular cardinals κ1 < κ2 < λ, in V P<λ we have that

a) cardinals below κ2 are preserved;
b) cof(κ2) = κ1;
c) if δ < κ2 is such that 2δ < κ2 in V , then V P<λ contains the same subsets

of δ as V .

However the chain condition on P<λ is large, and forcing with P<λ collapses many
cardinals above the cardinal being singularized. This is in sharp contrast to The-
orems 5 – 8, where no cardinal above the one being singularized is collapsed. In
addition, the hypotheses of the existence of a Woodin cardinal λ used in the defini-
tion of P<λ are far beyond what is needed to singularize the successor of a regular
cardinal, as Theorems 2 – 4 show.

This paper was initiated by the PhD project of the first author [1], where Theo-
rems 2 and 3 were proved by introducing some Prikry or Magidor-type tree forcings
with built-in Lévy collapses and analyzing generic extensions as two-stage itera-
tions. In Section 3 of this paper, we replace the tedious combinatorial work with
tree forcings by a general lemma on a “weak commutativity” of Lévy collapses
and some singularization forcings, and obtain Theorems 2 and 3 as corollaries. We
prove Theorems 4 and 9 in Section 2 as immediate consequences of certain covering
theorems. Successors of singular cardinals are treated in Section 4. We conclude
with remarks and further questions in Section 5.
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2. Lower bounds

We turn our attention now to obtaining lower bounds in consistency strength
for the hypotheses needed to define our singularization partial orderings.

Proof of Theorem 4a). Suppose ℵ2 ≤ κ. Let μ = (κ+)V . Assume Sing(μ,ℵ0) holds
in V and is witnessed via P. We work below 0¶ (the sharp for a strong cardinal),
and take K =df K

V as the core model below 0¶. (If 0¶ exists, then all uncountable
cardinals of V , in particular μ, are measurable in some inner model.) Let G be V -
generic for P. Since P is set forcing, K = KV = KV [G], and V [G] does not contain
0¶. Further, since Sing(μ,ℵ0) implies that forcing with P changes μ’s cofinality to
ω but preserves all cardinals and cofinalities ≤ κ, in V [G], cof(μ) = ω, |μ| = κ,
and ℵ2 ≤ κ < μ. In addition, since μ is regular in V and K ⊆ V , μ is regular in
K. Putting all of this together, we thus have that in V [G], ℵ2 < μ, μ is regular
in K, and cof(μ) < |μ|. By [6, Theorem 1], μ is therefore measurable in K. This
completes the proof of Theorem 4a). �

Proof of Theorem 4b). Theorem 4b) follows from (and in fact, is explicitly stated
as part of) [17, Theorem 0.1]. �

Proof of Theorem 9. Let P ∈ V and κ be as in the hypotheses for Theorem 9.
Assume that there is no inner model with a Woodin cardinal. Then by the work of
[14], it is possible to build K within V and assume that it satisfies standard facts
about core models. In particular, we know that K computes successors of singular
cardinals correctly. This means that

(κ+)K = (κ+)V .

Consider now V P. By the absoluteness of K and its properties under set forcing,
it is possible to build the same K within V P. Since by assumption (a), κ remains
a singular cardinal in V P, it is still the case that

(κ+)K = (κ+)V
P

.

However, since by assumption (b),

(κ+)V < (κ+)V
P

,

we have that

(κ+)K = (κ+)V < (κ+)V
P

= (κ+)K .

This contradiction completes the proof of Theorem 9. �

3. Singularizing successors of regular cardinals

The results in this section are based on a lemma about the Lévy collapse,

Coll(κ,<μ) = {f | f : κ× μ → μ, ∀〈ξ, ν〉 ∈ dom(f)[f(〈ξ, ν〉) < ν], |dom(f)| < κ},

partially ordered by p ≤ q iff p ⊇ q. The term Coll(κ,<μ) can be interpreted in
various models of ZFC.

Fix a transitive ground model M of ZFC and let μ be inaccessible in M . Let
κ < μ be regular in M .
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Lemma 10. Let P ∈ M be a partial ordering which does not add bounded subsets
of μ. Let G be M -generic for P. Let H be M [G]-generic for (Coll(κ,<μ))M [G].
Then

H̄ = H ∩ (Coll(κ,<μ))M

is an M -generic filter for (Coll(κ,<μ))M . Hence, the two-stage forcing iteration
M [G][H] is also of the form

M [G][H] = M [H̄ ][G∗],

where M [H̄ ][G∗] is a two-stage iteration by Coll(κ,<μ) and some quotient forcing
from M [H̄ ].

Proof. Obviously, H̄ is a filter for (Coll(κ,<μ))M . It remains to show M -genericity.
Let D̄ ∈ M be dense in Coll(κ,<μ), i.e., in M ,

∀p ∈ Coll(κ,<μ)∃q ∈ Coll(κ,<μ)[q ≤ p ∧ q ∈ D̄].

By a reflection argument, it is possible to find λ < μ with cofM (λ) ≥ κ such that

∀p ∈ (Coll(κ,<μ))M ∩ (Vλ)
M∃q ∈ (Coll(κ,<μ))M ∩ (Vλ)

M [q ≤ p ∧ q ∈ D̄],

i.e., D̄ ∩ (Vλ)
M is dense in (Coll(κ,<μ))M ∩(Vλ)

M . Define, in M [G],

D = {p ∈ (Coll(κ,<μ))M [G] | p ∩ (Vλ)
M ∈ D̄}.

We show that D ∈ M [G] is dense in (Coll(κ,<μ))M [G]. First, let r ∈
(Coll(κ,<μ))M [G]. Then r ∩ (Vλ)

M ∈ (Coll(κ,<μ))M ∩ (Vλ)
M , since r cannot

be cofinal in λ because cofM (λ) = cofM [G](λ) ≥ κ. Take q ∈ (Coll(κ,<μ))M ∩ Vλ

such that q ≤ r ∩ (Vλ)
M and q ∈ D̄. Define p = q ∪ r � (κ × (μ \ λ)) ≤ r. Then

p ∈ D.
By theM [G]-genericity ofH, take p ∈ H∩D. Then p∩(Vλ)

M ∈ D̄, p∩(Vλ)
M ≥ p,

p∩(Vλ)
M ∈ H∩(Coll(κ,<μ))M = H̄. Hence, p∩(Vλ)

M ∈ D̄∩H̄ �= ∅. This completes
the proof of Lemma 10. �

Proof of Theorem 2. Given Lemma 10, it is now possible to prove Theorems 2 and
3. For the proof of Theorem 2, inM , let μ be measurable, and let P be Prikry-forcing
for μ. Let G be M -generic for P, and let H be M [G]-generic for (Coll(κ,<μ))M [G].
Form H̄ as above. Then M [H̄ ] is a generic extension of M in which μ = κ+.
Thus, by Lemma 10, because M [H̄ ][G∗] = M [G][H], in M [H̄], there is a set generic
extension preserving all cardinals ≤ κ in which κ+ has been singularized with
countable cofinality. This completes the proof of Theorem 2. �

Proof of Theorem 3. Suppose we start with a model V of GCH in which there
exist δ < μ, δ and μ regular cardinals such that o(μ) = δ. By the work of [8],
V can be generically extended to a model M in which μ remains measurable, δ
remains regular, and it is possible to change μ’s cofinality to δ without either
collapsing cardinals or adding bounded subsets of μ. Suppose that in M , κ is
regular, δ < κ < μ. The argument used in the proof of Theorem 2 then applies to
produce a generic extension M [H̄ ] having a further set generic extension in which
all cardinals ≤ κ are preserved and κ+ has been singularized with cofinality δ. This
completes the proof of Theorem 3. �

We remark that by their definitions, the partial orderings witnessing the conclu-
sions of Theorems 2 and 3 are both (2μ)+-c.c. In particular, assuming 2μ = μ+,
each of these forcings is μ++-c.c. This is best possible, since by a theorem of Shelah
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(which says that if δ is a regular cardinal such that after forcing with Q, cof(δ) �= |δ|,
then Q collapses δ+; see [19, Lemma 4.9] and [12, Corollary 23.20]), both of these
partial orderings must collapse μ+.

4. Singularizing successors of singular cardinals

In this section, we will prove Theorems 5 – 8. We begin with the proof of
Theorem 5.

Proof of Theorem 5. Suppose κ = supi<ω κi, where 〈κi | i < ω〉 is a strictly in-
creasing sequence of κ+-strongly compact cardinals. The definition of our forcing
partial ordering P uses an idea of Sargsyan found in [3] which builds upon the work
of [11] and [2]. Since each κi is κ

+-strongly compact, let 〈Ui | i < ω〉 be such that
Ui is a κi-additive, uniform ultrafilter over κ+. P may now be defined as the set of
all finite sequences of the form 〈α1, . . . , αn, f〉 satisfying the following properties:

a) 〈α1, . . . , αn〉 ∈ [κ+]<ω.
b) f is a function having domain Tα1,...,αn

={〈β1,. . . ,βm〉∈ [κ+]<ω | 〈α1, . . . , αn〉
is an initial segment of 〈β1, . . . , βm〉} such that f(〈β1, . . . , βm〉) ∈ Um.

The ordering on P is given by 〈β1, . . . , βm, g〉 ≤ 〈α1, . . . , αn, f〉 iff the following
criteria are met.

a) 〈α1, . . . , αn〉 is an initial segment of 〈β1, . . . , βm〉.
b) For i = n+ 1, . . . ,m, βi ∈ f(〈α1, . . . , αn, . . . , βi−1〉).
c) For every 
s ∈ dom(g) (which must be a subset of dom(f)), g(
s) ⊆ f(
s).

The usual density argument shows that forcing with P adds a cofinal ω sequence
to (κ+)V . It is possible to prove a Prikry lemma for P; i.e., given 〈α1, . . . , αn, f〉 ∈ P

and formula ϕ in the language of forcing with respect to P, there is a condition
〈α1, . . . , αn, f

′〉 ≤ 〈α1, . . . , αn, f〉 deciding ϕ. More specifically, we have the follow-
ing.

Lemma 11. Given any formula ϕ in the forcing language with respect to P and
any condition 〈α1, . . . , αn, f〉 ∈ P, there is a condition

〈α1, . . . , αn, f
′〉 ≤ 〈α1, . . . , αn, f〉

deciding ϕ.

Proof. The proof of Lemma 11 is essentially the same as the proof of [3, Lemma 2]
and generalizes the proofs of [11, Lemma 4.1] and [2, Lemma 1.1]. We will quote
verbatim as appropriate, making the necessary minor changes where warranted.
Specifically, let s = 〈α1, . . . , αn〉, and say that n =df length(s). For any t ∈ Ts, call
t sufficient if, for some g, 〈t, g〉 ‖ ϕ (i.e., 〈t, g〉 decides ϕ). For t sufficient, let gt be
a witness, with gt(r) = κ+ for all r ∈ dom(gt) if t is not sufficient. If s is sufficient,
then we are done. If not, then for any t ∈ Ts, sufficient or otherwise, one of the sets

Xt = {α < κ+ | ∃g[〈t�{α}, g〉 � ϕ]},
Yt = {α < κ+ | ∃g[〈t�{α}, g〉 � ¬ϕ]}, or

Zt = {α < κ+ | ∀g[〈t�{α}, g〉 does not decide ϕ]}
is an element of Ulength(t). Let At be that set, and for i ≤ length(t), let t � i be the
first i members of t. For t ∈ Ts, define f ′ by

f ′(t) = f(t) ∩
⋂

n≤i≤length(t)

gt�i(t) ∩ At.
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Note that by the definition of P, f ′(t) ∈ Ulength(t), which means that 〈s, f ′〉 is a
well-defined member of P extending 〈s, f〉.

Now, let t be sufficient and of minimal lengthm+1 > n, with 〈t, f ′′〉 ≤ 〈s, f ′〉 and
f ′′ = f ′ � Tt. Let t

′ be the sequence t without its last element. It then follows that
At′ must be eitherXt′ or Yt′ , so we suppose without loss of generality that At′ = Xt′ .
It must be the case that 〈t′, f ′ � Tt′〉 � ϕ, since if some extension 〈t′′, g′〉 � ¬ϕ,
such a condition must add elements to t′, since t′ isn’t sufficient. The first element
added to t′, α, must come from Xt′ , yielding a condition 〈t′�{α}�u, g′〉 � ¬ϕ.
However, by construction,

〈t′�{α}�u, g′〉 ≤ 〈t′�{α}, f ′ � Tt′�{α}〉 ≤ 〈t′�{α}, gt′�{α}〉 � ϕ,

which is a contradiction. Thus, 〈t′, f ′ � Tt′〉 ‖ ϕ, which contradicts the minimality
of the length of t for sufficiency. This completes the proof of Lemma 11. �

Lemma 12. Forcing with P adds no new subsets of any δ < κ.

Proof. The proof of Lemma 12 is virtually identical to the proof of [3, Lemma
3]. As before, we will quote verbatim as appropriate, making the necessary minor
changes where warranted. Given δ < κ, suppose that p = 〈α1, . . . , αn, f〉 � “τ ⊆
δ”. Without loss of generality, by extending p if necessary, we also assume that
κn > δ. Further, by Lemma 11, for each β < τ , we let 〈α1, . . . , αn, fβ〉 be such that
〈α1, . . . , αn, fβ〉 ‖ “β ∈ τ”.

Note that the domains of all of the fβs for β < δ and f are the same, namely
Tα1,...,αn

. Therefore, by the choice of p and the definition of P, for each s ∈ Tα1,...,αn
,

fβ(s) and f(s) lie in an ultrafilter Ulength(s) that is κn-additive. This means that
g(s) =

⋂
β<δ fβ(s) ∩ f(s) is such that g(s) ∈ Ulength(s), and q = 〈α1, . . . , αn, g〉 is a

well-defined element of P such that q ≤ p and q decides the statement “β ∈ τ” for
every β < δ. Hence, forcing with P adds no new subsets of δ. This completes the
proof of Lemma 12. �

By Lemma 12, forcing with P adds no new bounded subsets of κ. Since any
two conditions having the same stem are compatible and the number of stems is
|[κ+]<ω| = κ+, P is κ++-c.c. This completes the proof of Theorem 5. �

Proof of Theorem 6. Suppose V � “κ is κ+-strongly compact”. Fix U a κ-additive,
fine measure over Pκ(κ

+). We may now define strongly compact Prikry forcing Q

as in [2] as the set of all finite sequences of the form 〈p1, . . . , pn, f〉 satisfying the
following properties:

a) Each pi ∈ Pκ(κ
+).

b) p1 ⊆ · · · ⊆ pn.
c) f is a function having domain Tp1,...,pn

= {〈q1, . . . , qm〉 | q1 ⊆ · · · ⊆ qm and
〈p1, . . . , pn〉 is an initial segment of 〈q1, . . . , qm〉} such that f(〈q1, . . . , qm〉) ∈
U .

The ordering on P is given by 〈q1, . . . , qm, g〉 ≤ 〈p1, . . . , pn, f〉 iff the following
criteria are met.

a) 〈p1, . . . , pn〉 is an initial segment of 〈q1, . . . , qm〉.
b) For i = n+ 1, . . . ,m, qi ∈ f(〈p1, . . . , pn, . . . , qi−1〉).
c) For every 
s ∈ dom(g) (which must be a subset of dom(f)), g(
s) ⊆ f(
s).

Let G be V -generic over Q. Because |Pκ(κ
+)| = |[κ+]<κ| = κ+ and |[κ+]<ω| =

κ+, there are only κ+ many possibilities for stems for members of Q. Since any
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two conditions having the same stem are compatible, Q is therefore κ++-c.c. By
[2, Lemma 1.1] and the remark in the paragraph immediately following, forcing
with Q adds no new bounded subsets of κ. Thus, κ is a cardinal in V [G]. A routine
density argument (mentioned in the paragraph immediately prior to [2, Lemma
1.1]) tells us that the ω sequence r = 〈pi | i < ω〉 generated by G changes the
cofinality of both κ and (κ+)V to ω and also collapses (κ+)V to κ. And, if we let
r � κ = 〈pi ∩κ | i < ω〉, by the density argument just mentioned, r � κ also changes
κ’s cofinality to ω. Consequently, in V [r � κ] ⊆ V [G], κ is a singular cardinal having
cofinality ω.

For A ∈ U , let A � κ = {p∩κ | p ∈ A}. Define U � κ = {A � κ | A ∈ U}. It is easy
to verify that U � κ is a κ-additive, fine measure over Pκ(κ). Let QU�κ be defined
in the same manner as Q except that U � κ is used in its definition instead of U .
Because |Pκ(κ)| = |[κ]<κ| = κ and |[κ]<ω| = κ, there are only κ many possibilities
for stems for members of QU�κ. As in the preceding paragraph, this just means
that QU�κ is κ+-c.c. Further, since [2, Lemma 1.5] and the paragraph immediately
following tell us that r � κ generates a V -generic object G∗ for QU�κ and r generates

G, V [r � κ] = V [G∗] and V [r] = V [G]. Hence, (κ+)V [r�κ] = (κ+)V [G∗] = (κ+)V . In
addition, as V [r � κ] ⊆ V [r], V , V [r � κ], and V [r] all contain the same bounded
subsets of κ.

Working now in V [r � κ], let P = Q/(r � κ); i.e., P is the quotient forcing of
Q with respect to r � κ. Take G∗∗ as the quotient generic object G/G∗. P is
the desired forcing over V [r � κ] witnessing Sing(κ+,ℵ0). This is since V [r � κ]
and V [r � κ][G∗∗] = V [G∗][G∗∗] = V [G] contain the same bounded subsets of
κ, cofV [G]((κ+)V [r�κ]) = ω, and P = Q/(r � κ) is κ++-c.c. because Q is. This
completes the proof of Theorem 6. �

Proof of Theorem 7. When proving Theorems 7 and 8, we will omit precise def-
initions of the partial orderings, generic extensions, and submodels used, which
are rather technical in nature. Instead, we refer readers to the relevant paper by
Magidor. In particular, for the proof of Theorem 7, suppose V �“ZFC + κ is κ+-
supercompact”. By the proof of [16, Theorem 1], there is a partial ordering Q ∈ V
and submodel V ′ ⊆ V [G] (where G is V -generic over Q) such that the following
hold.

a) G generates generic sequences r = 〈pi | i < ω〉 and 
f = 〈fi | i < ω〉 such

that r changes the cofinality of both κ and κ+ to ℵ0 and 
f collapses κ to
ℵω.

b) V ′ = V [〈r � κ, 
f〉], where as in the proof of Theorem 6, r � κ = 〈pi ∩ κ | i <
ω〉.

c) In both V ′ and V [G], κ = ℵω.
d) V ′ and V [G] contain the same bounded subsets of κ.

e) (κ+)V = (κ+)V
′
< (κ+)V [G].

f) cofV [G]((κ+)V
′
) = ℵ0.

g) V ′ and V [G] have the same cardinals ≥ (κ++)V .

We now let Q∗ be the partial ordering and G∗ the V -generic object over Q∗

such that V [G∗] = V ′, take P = Q/(〈r � κ, 
f〉) as the quotient forcing of Q with

respect to 〈r � κ, 
f〉, and let G∗∗ once again be the quotient generic object G/G∗.
Then the argument found in the last paragraph of the proof of Theorem 6 in
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tandem with properties a) – g) above shows that P is the desired forcing witnessing
Sing(ℵω+1,ℵ0) over V

′. This completes the proof of Theorem 7. �
Proof of Theorem 8. Finally, to prove Theorem 8, suppose V �“ZFC + κ is κ++-

supercompact + 2κ
+

= κ++”. By the proof of [16, Theorem 2], there is a partial
ordering Q ∈ V and submodel V ′ ⊆ V [G] (where G is V -generic over Q) such that
the following hold:

a) G generates generic sequences r = 〈pi | i < ω1〉 and 
f = 〈fi | i < ω1〉 such
that r changes the cofinality of both κ and κ+ to ℵ1 and 
f collapses κ to
ℵω1

.

b) V ′ = V [〈r � κ, 
f〉], where in analogy to the proofs of Theorems 6 and 7,
r � κ = 〈pi ∩ κ | i < ω1〉.

c) In both V ′ and V [G], κ = ℵω1
.

d) (κ+)V = (κ+)V
′
< (κ+)V [G].

e) cofV [G]((κ+)V
′
) = ℵ1.

f) V ′ and V [G] have the same cardinals ≥ (κ++)V .

We once again let Q∗ be the partial ordering and G∗ the V -generic object over

Q∗ such that V [G∗] = V ′, take P = Q/(〈r � κ, 
f〉) as the quotient forcing of Q with

respect to 〈r � κ, 
f〉, and let G∗∗ be the quotient generic object G/G∗. Then the
arguments found above in tandem with properties a) – f) show that P is the desired
forcing over V ′ singularizing ℵω1+1 in cofinality ℵ1 while preserving ℵω1

and also
preserving all cardinals ≥ ℵω1+2. This completes the proof of Theorem 8. �

5. Remarks and further questions

We note that there are key differences between the singularizing forcings con-
structed in Theorems 7 and 8. Specifically, the partial ordering P of Theorem 7
will not add new bounded subsets of ℵω (and therefore won’t collapse any cardi-
nals below ℵω), whereas the partial ordering P of Theorem 8 will collapse cardinals
below ℵω1

(and thus adds new bounded subsets of ℵω1
). This is since the sequence

〈pi | i < ω1〉 collapses cardinals below κ (see [16] for further details). Also, easy
modifications of the definitions of the singularizing forcings found in Theorems 7
and 8 will allow us to prove analogues of these theorems for other “small” singular
cardinals of both countable and uncountable cofinality, as well as an analogue of
Theorem 6 for uncountable cofinality (using supercompactness instead of strong
compactness assumptions).

The theorems in this paper raise a number of questions. In particular:

(i) Can we have sequences of consecutive successor cardinals below ℵω which
are simultaneously singularizable? This is possible for ℵ2 (since Namba
forcing is always definable in any model of ZFC) and for ℵ3 (by Theorems
2 and 3 above). Are there other examples, of length 2 or longer? Note
that the existence of such sequences has high consistency strength. In
particular, if κ and κ+ are both singularizable with κ > ℵ2, then there is
an inner model with a Woodin cardinal.1

1An outline of the proof that this is true is as follows. Assume there is no inner model with
a Woodin cardinal. Then as in the proof of Theorem 9, it is possible to build K within V and
assume it satisfies standard facts about core models. Let λ = (κ+)K . If λ < (κ+)V , it must be
the case that cof(λ) = κ. Let W be a forcing extension of V in which κ has been singularized

and (ℵ2)W = (ℵ2)V . We have cofW (λ) = cofW (κ) < (|κ|)W = (|λ|)W , contradicting covering.
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(ii) Can we obtain a model of ZFC in which κ is inaccessible and it is possible
to singularize all regular cardinals in the interval [ℵ3, κ) while preserving
that ℵ2 and κ are cardinals?

(iii) Are there other successors of singular cardinals at which one can outright
prove that a singularizing forcing exists, assuming the appropriate large
cardinal hypotheses?

(iv) Is it possible to weaken the large cardinal assumptions used to prove The-
orems 5 – 8? What are the optimal hypotheses?

(v) Is it possible to prove versions of Theorems 5 – 8 in which the cofinality of
κ+, the successor of the singular cardinal, is changed to a cofinality different
from κ’s? This can be done with the stationary tower forcing. Note that by
Shelah’s theorem of [19, Lemma 4.9] and [12, Corollary 23.20], any partial
ordering accomplishing this would have to collapse (at least) κ++ as well
as κ+.

(vi) Is it possible to prove a version of Theorem 8 in which no bounded subsets
of ℵω1

are added by the singularizing forcing? More weakly, is it possible to
prove a version of Theorem 8 in which no cardinals below ℵω1

are collapsed?
The analogous stationary tower forcing will not add bounded subsets of ℵω1

assuming GCH. Work of Gitik [10] shows that any partial ordering with a
definition similar to the one given in Theorem 8 will of necessity have to
collapse a stationary subset of cardinals below ℵω1

.
(vii) What applications (if any) are there for the singularizing forcings con-

structed in this paper?

We conclude by remarking that Assaf Rinot has contacted us concerning the
above list of questions. In particular, he has pointed out that the version of Question
2 in which ℵ3 and ℵ2 are replaced by ℵ2 and ℵ1 respectively has been answered
affirmatively by Jensen [13, Section 6.4] (with an earlier answer also given by Gitik
[9], and a version of Gitik’s answer using a simpler proof and a weaker assumption
given by Magidor). Finally, regarding Question 7, Rinot has informed us that the
partial orderings we construct which witness the conclusions of Theorems 5 and 6
fall into the class Cλ defined in his joint paper with Ari Brodsky [4]. Readers may
consult [4, Definition 1.3] for the definition of Cλ, [4, Proposition B] for a proof
that each of these partial orderings is an element of Cλ, and [4, Main Theorem] for
the properties of members of Cλ.
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