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HARMONIZABLE STABLE FIELDS: REGULARITY

AND WOLD-TYPE DECOMPOSITIONS

DAVID A. REDETT

(Communicated by Mark M. Meerschaert)

Abstract. In this article, we examine the structure of harmonizable stable
fields. We start by examining horizontal and vertical regularity. We find
equivalent conditions for horizontal and vertical regularity in terms of the
harmonizable stable field’s spectral measure. We then give a Wold-type de-
composition in this setting. After that, we consider strong regularity. Here
too, we give equivalent conditions for strong regularity in terms of the field’s
spectral measure. In addition, we show that strong regularity is equivalent
to the field’s ability to be represented by a moving average random field. We
finish this article with a four-fold Wold-type decomposition.

1. Introduction

In this article, we examine harmonizable stable fields. These fields may be
thought of as infinite energy analogues of weakly stationary random fields. Much
is known about weakly stationary random fields and the results in this article par-
allel those known results. For background on weakly stationary random fields, one
might consult [7], [8] or [10]. Although the purpose of this paper is to generalize
these results to harmonizable stable fields, much of the motivation and inspiration
for this article was found in [1], [2], and [9]. In [1], [2], and [9], the authors devel-
oped the analogous theory for harmonizable stable sequences. The results in those
papers may be thought of as one-variable analogues of the results found in this pa-
per. Although one might hope that the results for harmonizable stable sequences
generalize directly to harmonizable stable fields, that is not the case. The results
are similar, but there are some differences. Much of the reason for this lies in the
fact that function theory in the unit disc of the complex plane does not generalize
directly to function theory in the unit bi-disc. In particular, outer functions on the
unit bi-disc do not share all the properties of outer functions on the unit disc. We
show how one might handle these shortcomings.

We finish this section by giving a brief breakdown of this article. In section
2, we give definitions and background material needed to present and prove our
main results. In section 3, we study horizontal regularity. Here, we find equiv-
alent conditions for horizontal regularity in terms of the field’s spectral measure.
We finish this section with a Wold-type decomposition in the context of horizontal
regularity and singularity. Analogous results are presented in the vertical direc-
tion without proofs for use in section 4. In section 4, we study strong regularity.
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Here too, we find equivalent conditions for strong regularity in terms of the field’s
spectral measure. In addition, we find equivalent conditions for strong regularity
in terms of the field’s ability to be represented by a moving average random field.
We end section 4 and this article with a four-fold Wold-type decomposition.

2. Harmonizable stable fields

In this section, we give the fundamental properties of harmonizable stable fields,
which we will use throughout this note. One might consult [1], [4] or [5] for the
analogous development for harmonizable stable sequences. We follow much of that
development in this section.

A real-valued random variable X is called symmetric α-stable, 0 < α ≤ 2, ab-
breviated SαS, if its characteristic function ϕX(t) = E exp {itX}, t ∈ R has the
form

ϕX(t) = exp {−c|t|α} , t ∈ R,

for some c ≥ 0. A finite collection of real-valued random variables are called jointly
SαS if all linear combinations of these random variables are SαS. A complex
random variable Z = X + iY is called isotropic α-stable if X and Y are jointly
SαS and Z has a radially symmetric distribution; that is, eiθZ and Z have the
same distribution for all real θ. This is equivalent to the following requirement on
ϕZ(t) = E exp

{
iRe(tZ)

}
, t ∈ C, the characteristic function of Z,

ϕZ(t) = exp {−c|t|α} , t ∈ C,

for some c ≥ 0. As in [5], we can define a length on Z, by

‖Z‖ =

{
c1/α, for 1 ≤ α ≤ 2,
c, for 0 < α < 1.

This length gives a metric on any family of random variables with the property that
any linear combination of its members is an isotropic α-stable random variable. We
point out that if Z1 and Z2 are independent, then

‖Z1 + Z2‖α = ‖Z1‖α + ‖Z2‖α for 1 ≤ α ≤ 2

and

‖Z1 + Z2‖ = ‖Z1‖+ ‖Z2‖ for 0 < α < 1.

Now, let Z be an independently scattered complex isotropic α-stable variable
valued set function defined on B(T2), the Borel subsets of T2, the distinguished
boundary of the unit bi-disc. That is, for all disjoint sets Δ1, · · · ,Δn ∈ B(T2),
Z(Δ1), · · · ,Z(Δn) are independent with

ϕZ(Δk)(t) =

{
exp {−|t|α‖Z(Δk)‖α} for 1 ≤ α ≤ 2
exp {−|t|α‖Z(Δk)‖} for 0 < α < 1

, t ∈ C.

Using Z, we define

μ(Δ) =

{
‖Z(Δ)‖α for 1 ≤ α ≤ 2
‖Z(Δ)‖ for 0 < α < 1

, for Δ ∈ B(T2),
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and observe that μ is a finite measure defined on B(T2). From this, it follows that

if f ∈ Lα(T2, μ) and X =

∫
[−π,π)

∫
[−π,π)

f(eiλ, eiθ) dZ(eiλ, eiθ), then

ϕX (t) = exp

{
−|t|α

∫
[−π,π)

∫
[−π,π)

∣∣f(eiλ, eiθ)∣∣α dμ(eiλ, eiθ)

}
, t ∈ C.

A complex random field Xm,n, (m,n) ∈ Z2 is called harmonizable SαS with
spectral measure μ, if μ is a finite (positive) measure defined on B(T2) with

E exp

⎧⎨
⎩iRe

⎛
⎝t

N∑
j=1

zjXtj ,lj

⎞
⎠
⎫⎬
⎭

= exp

⎧⎨
⎩−|t|α

∫
[π,π)

∫
[π,π)

∣∣∣∣∣∣
N∑
j=1

zje
−itjλ−iljθ

∣∣∣∣∣∣
α

dμ(eiλ, eiθ)

⎫⎬
⎭ ,

where t, zj ∈ C, and tj , lj ∈ Z, for j = 1, · · · , N . We see from this that Xm,n,
(m,n) ∈ Z2 is (strictly) stationary. We may define a harmonizable SαS field
equivalently through its spectral representation

Xm,n =

∫
[−π,π)

∫
[−π,π)

e−imλ−inθ dZ(eiλ, eiθ),

where Z is an independently scattered complex isotropic α-stable variable valued
set function defined on B(T2). If L(X) is the closure in probability of the linear
span of Xm,n, (m,n) ∈ Z2, then the correspondence between f and∫

[−π,π)

∫
[−π,π)

f(eiλ, eiθ) dZ(eiλ, eiθ)

gives an isomorphism between Lα(T2, μ) and L(X), that sends e−imλ−inθ to Xm,n.
Hence, every Y ∈ L(X) has a representation of the form∫

[−π,π)

∫
[−π,π)

f(eiλ, eiθ) dZ(eiλ, eiθ)

for some f ∈ Lα(T2, μ) and has a radially symmetric distribution.
When 1 < α ≤ 2 and Y1, Y2 ∈ L(X) with representing functions f1, f2 ∈

Lα(T2, μ), the covariation of Y1 with Y2 is defined by

[Y1, Y2]α =

∫
[−π,π)

∫
[−π,π)

f1(e
iλ, eiθ) |f2(eiλ, eiθ)|α−1 sgn(f2(eiλ, eiθ)) dμ(e

iλ, eiθ),

where sgn(f(eiλ, eiθ)) is a complex measurable function of modulus one such that
f(eiλ, eiθ) = |f(eiλ, eiθ)|sgn(f(eiλ, eiθ)). By Hölder’s inequality, we have that
|[Y1, Y2]α| ≤ ‖f1‖Lα(T2,μ)‖f2‖α−1

Lα(T2,μ) with equality if and only if Y1 = zY2, where

z ∈ C. The covariation of the harmonizable SαS sequence has the form

[Xm,n, Xk,l]α =

∫
[−π,π)

∫
[−π,π)

e−i(m−k)λ−i(n−l)θ dμ(eiλ, eiθ).

Note that the covariance of a weakly stationary random field has this form.
For Y1, Y2 ∈ L(X), if [Y1, Y2]α = 0, we say that Y2 is orthogonal to Y1, and write

Y2 ⊥ Y1, which is non-symmetric and was introduced by R. C. James in [6]. When
Y2 ⊥ Y1 and Y1 ⊥ Y2, we say that Y1 and Y2 are mutually orthogonal. We now
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make an important distinction between the Gaussian case, α = 2, and the non-
Gaussian case, 1 < α < 2, when it comes to the relationship between independence
and orthogonality. When α = 2, the independence of Y1 and Y2 is equivalent to
the mutual orthogonality of Y1 and Y2 and the mutual orthogonality of Y1 and
Y2. However, when 1 < α < 2, the independence of Y1 and Y2 implies the mutual
orthogonality of Y1 and Y2 and the mutual orthogonality of Y1 and Y2, but it is
not generally true that the mutual orthogonality of Y1 and Y2 and the mutual
orthogonality of Y1 and Y2 implies the independence of Y1 and Y2. This is because
when 0 < α < 2, the independence of Y1 and Y2 is equivalent to their representing
functions f1 and f2 having disjoint support; that is, f1 · f2 = 0 [μ]-a.e., see [12],
while the mutual orthogonality of Y1 and Y2, when 1 < α < 2 means, by defini-

tion, that

∫
[−π,π)

∫
[−π,π)

f1(e
iλ, eiθ) |f2(eiλ, eiθ)|α−1 sgn(f2(eiλ, eiθ)) dμ(e

iλ, eiθ) =

0 =

∫
[−π,π)

∫
[−π,π)

f2(e
iλ, eiθ) |f1(eiλ, eiθ)|α−1 sgn(f1(eiλ, eiθ)) dμ(e

iλ, eiθ).

In the sections that follow, most theorems are stated for 1 < α ≤ 2. This is
because orthogonality is used in their proofs. For those theorems that do not use
orthongonality, the theorems are stated and proved for 0 < α ≤ 2.

3. Horizontal and vertical regularity

For a harmonizable SαS field Xm,n, (m,n) ∈ Z2, we define the concepts of
regularity and singularity. Let L1(X : m) denote the closure in probability of the
linear span of {Xk,l : k ≤ m, l ∈ Z} and let L1(X : −∞) =

⋂
m L1(X : m). Xm,n,

(m,n) ∈ Z2 is called horizontally regular if L1(X : −∞) = {0} and horizontally
singular if L1(X : −∞) = L(X). Similarly, let L2(X : n) denote the closure
in probability of the linear span of {Xk,l : k ∈ Z, l ≤ n} and let L2(X : −∞) =⋂

n L
2(X : n). Xm,n, (m,n) ∈ Z2 is called vertically regular if L2(X : −∞) = {0}

and vertically singular if L2(X : −∞) = L(X). These definitions are consistent with
those given for weakly stationary random fields. It will be advantageous to redefine
these concepts in Lα(T2, μ), using the isomorphism that takes Xm,n to eimλ+inθ.
Under this isomorphism, it is straightforward to see that the following definitions are

equivalent to those just given. Xm,n, (m,n) ∈ Z
2 is horizontally regular if M

(α,1)
−∞ =

{0} and horizontally singular if M
(α,1)
−∞ = Lα(T2, μ), where M

(α,1)
−∞ =

⋂
m M

(α,1)
m

and M
(α,1)
m is equal to the span closure in Lα(T2, μ) of {eikλ+ilθ : k ≤ m, l ∈ Z}.

Similarly, Xm,n, (m,n) ∈ Z2 is vertically regular if M
(α,2)
−∞ = {0} and vertically

singular if M
(α,2)
−∞ = Lα(T2, μ), where M

(α,2)
−∞ =

⋂
n M

(α,2)
n and M

(α,2)
n is equal to

the span closure in Lα(T2, μ) of {eikλ+ilθ : k ∈ Z, l ≤ n}.
In what follows, μj j = 1, 2, are the marginals of μ. That is, for all B ∈ B(T),

μ1(B) = μ(B × T)

and

μ2(B) = μ(T×B).

Finally, we introduce the following notation. Let A ⊆ Z2 and g be in Lα(T2, μ),
1 < α ≤ 2. Then, we define

[A]μ = span
{
eimλ+inθ : (m,n) ∈ A

}
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and
[g]A,μ = span

{
eimλ+inθg(eiλ, eiθ) : (m,n) ∈ A

}
,

where, in both cases, the closure is in Lα(T2, μ).
Now, let Aλ = {(m,n) : m ≥ 0, n ∈ Z} and Aθ = {(m,n) : m ∈ Z, n ≥ 0} and

define Hα
λ (T

2, μ) = [Aλ]μ and Hα
θ (T

2, μ) = [Aθ]μ. Also, let Bλ = {(m, 0) : m ≥ 0}
and Bθ = {(0, n) : n ≥ 0} and define Hα(Tλ) = [Bλ]σ2 and Hα(Tθ) = [Bθ]σ2 ,
where here and henceforth, σ2 will denote normalized Lebesgue measure on T2.
Note that Hα(Tλ) and Hα(Tθ) are just the usual Hardy spaces, with respect to
the appropriate variable, on the unit circle in the complex plane. Using the present
notation, we recall that a function g in Hα(Tλ) is called outer if [g]Bλ,σ2 = Hα(Tλ).
The definition is defined analogously for functions in Hα(Tθ). Henceforth, σ will
denote normalized Lebesgue measure on T. Now, if ξ is a finite measure on B(T),
then for a product measure of the form σ ⊗ ξ and for f in Hα

λ (T
2, σ ⊗ ξ) and θ

fixed, we define the cut function, fθ(e
iλ) = f(eiλ, eiθ). Note that fθ ∈ Hα(Tλ) for

[μ2]-a.e. eiθ. We say f in Hα
λ (T

2, σ ⊗ ξ) is θ-outer if fθ is outer for [ξ]-a.e. eiθ. In
an analogous way, we define λ-outer.

Theorem 1. Let Xm,n, (m,n) ∈ Z2 be a harmonizable SαS field with 1 < α ≤ 2
and spectral measure μ. Then, the following are equivalent:

(1) Xm,n, (m,n) ∈ Z
2 is horizontally regular.

(2) μ is absolutely continuous with respect to σ ⊗ μ2 with density f satisfying

(I)

∫
[−π,π)

log
(
f(eiλ, eiθ)

)
dσ(eiλ) > −∞ for [μ2]-a.e. e

iθ.

(3) μ is absolutely continuous with respect to σ ⊗ μ2 with density f(eiλ, eiθ) =∣∣ϕ(eiλ, eiθ)∣∣α, where ϕ is a θ-outer function in Hα
λ (T

2, σ ⊗ μ2).

Proof. (1) ⇒ (2): Suppose Xm,n, (m,n) ∈ Z2 is horizontally regular. By definition,

M
(α,1)
−∞ = {0}. Since 1 < α ≤ 2, it follows that M

(2,1)
m ⊆ M

(α,1)
m , for m ∈ Z, and

hence M
(2,1)
−∞ ⊆ M

(α,1)
−∞ = {0}. It then follows from the theory of weakly stationary

random fields (see [8] or [10]) that such a μ is absolutely continuous with respect
to σ ⊗ μ2 with density f satisfying satisfying (I).

(2) ⇒ (3): Suppose that μ is absolutely continuous with respect to σ ⊗ μ2 with
density f satisfying (I). Let E be the subset of T for which the above inequality
holds. Now, define, for eiθ ∈ E,

ϕ(z, eiθ) = exp

[
1

α

∫
[−π,π)

eiλ + z

eiλ − z
log

(
f(eiλ, eiθ)

)
dσ(eiλ)

]
|z| < 1,

and for eiθ �∈ E, define ϕ(z, eiθ) = 1. It is well known from the theory of functions
(see [11]), that for each eiθ ∈ E, ϕθ is an outer function and the radial limits
of ϕθ exist for [σ]-a.e. eiλ and |ϕ(eiλ, eiθ)|α = f(eiλ, eiθ) for [σ]-a.e. eiλ, where
ϕ(eiλ, eiθ) denotes the radial limit function of ϕ(z, eiθ). It follows that f(eiλ, eiθ) =
|ϕ(eiλ, eiθ)|α [σ ⊗ μ2]-a.e., ϕ is in Hα

λ (T
2, σ ⊗ μ2), and ϕ is θ-outer.

(3) ⇒ (1): Suppose μ is absolutely continuous with respect to σ⊗μ2 with density

f(eiλ, eiθ) =
∣∣ϕ(eiλ, eiθ)∣∣α, where ϕ is a θ-outer function in Hα

λ (T
2, σ ⊗ μ2). Let

J : Lα(T2, μ) → Lα(T2, σ⊗μ2) be the linear transformation that takes eimλ+inθ to
eimλ+inθϕ(eiλ, eiθ). Note that J is an onto isometry and that

J(L1(X : m)) = span{eikλ+inθϕ(eiλ, eiθ) : k ≤ m,n ∈ Z}.
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It suffices to prove that
⋂

m J(L1(X : m)) = {0}. To see this, note that∫
[−π,π)

∫
[−π,π)

e−ijλ+ikλ+inθϕ(eiλ, eiθ) dσ(eiλ)dμ2(e
iθ) = 0, for k < j,

since ϕ(eiλ, eiθ) ∈ Hα(Tλ) for [μ2]-a.e. eiθ. This says that eijλ is orthogonal to{
eikλ+inθϕ(eiλ, eiθ) : k < j, n ∈ Z

}
. Therefore, if ψ ∈

⋂
m

J(L1(X : m)), then eijλ

is orthogonal to ψ for all j ∈ Z. Since e−inθψ ∈
⋂

m J(L1(X : m)), for all n ∈ Z, it
follows that eijλ+inθ is orthogonal to ψ for all (j, n) ∈ Z2. We can conclude from
this that ψ = 0 [σ ⊗ μ2]-a.e. �

Let μ = μa + μs be the Lebesgue decomposition of μ relative to σ ⊗ μ2. Here,
μa is absolutely continuous with respect to σ ⊗ μ2 and μs is singular with respect

to σ ⊗ μ2. We will use
dμa

d(σ ⊗ μ2)
to denote the Radon-Nikodym derivative of μa

with respect to σ ⊗ μ2.

Theorem 2. Let 0 < α ≤ 2; then

∫
[−π,π)

log
dμa(e

iλ, eiθ)

d(σ ⊗ μ2)
dσ(eiλ) = −∞ for [μ2]-

a.e. eiθ, if and only if Xm,n, (m,n) ∈ Z2 is horizontally singular.

Proof. (⇒) From the assumption and the theory of weakly stationary random fields

(see [8] or [10]), it follows thatM
(2,1)
n = L2(T2, μ) for all n. NowM

(2,1)
n ⊆ M

(α,1)
n for

all n andM
(α,1)
n is the closure ofM

(2,1)
n in Lα(T2, μ). Therefore,M

(α,1)
n = Lα(T2, μ)

for all n. That is, Xm,n, (m,n) ∈ Z2 is horizontally singular.

(⇐) If M
(α,1)
n = Lα(T2, μ) for all n, then it follows that M

(2,1)
n = M

(α,1)
n ∩

L2(T2, μ) = Lα(T2, μ)∩L2(T2, μ) = L2(T2, μ) for all n. Therefore, by the theory of

weakly stationary random fields (see [8] or [10]),

∫
[−π,π)

log
dμa(e

iλ, eiθ)

d(σ ⊗ μ2)
dσ(eiλ) =

−∞ for [μ2]-a.e. e
iθ. �

Before we state the next theorem, let U1 and U2 be the operators on L(X) with
the property that U1Xm,n = Xm+1,n and U2Xm,n = Xm,n+1.

Theorem 3. Let 1 < α ≤ 2 and Xm,n, (m,n) ∈ Z2 be a harmonizable SαS field.
Then, there exists a unique decomposition

Xm,n = X(1)
m,n +X(2)

m,n,

where

(1) X
(1)
m,n and X

(2)
m,n are in L(X) for all (m,n) ∈ Z2.

(2) U1X
(j)
m,n = X

(j)
m+1,n and U2X

(j)
m,n = X

(j)
m,n+1 for j = 1, 2 and for all (m,n) ∈

Z
2.

(3) X
(1)
m,n and X

(2)
m,n are independent.

(4) X
(1)
m,n is horizontally regular and X

(2)
m,n is horizontally singular.

Proof. If the conditions of Theorem 2 are satisfied, it follows that Xm,n is horizon-

tally singular and so we may set X
(1)
m,n = 0 and X

(2)
m,n = Xm,n and the theorem

holds. If, on the other hand, the conditions of Theorem 2 are not satisfied, let Ea
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and Es be the support of μa and μs respectively, and let

R =

{
eiθ :

∫
[−π,π)

log
dμa(e

iλ, eiθ)

d(σ ⊗ μ2)
dσ(eiλ) > −∞

}
.

Now, define N = Ea ∩ (T×R). Since Xm,n is harmonizable, there exists an L(X)-
valued Borel measure Z on T2 such that for every (m,n),

Xm,n =

∫
[−π,π)

∫
[−π,π)

e−(imλ+inθ) dZ(eiλ, eiθ).

Now, define Z(1)(A) = Z(A ∩N), Z(2)(A) = Z(A ∩Nc),

X(1)
m,n =

∫
[−π,π)

∫
[−π,π)

e−(imλ+inθ) dZ(1)(eiλ, eiθ),

and

X(2)
m,n =

∫
[−π,π)

∫
[−π,π)

e−(imλ+inθ) dZ(2)(eiλ, eiθ).

By their construction, it is straightforward to see that X
(1)
m,n and X

(2)
m,n satisfy

conditions 1, 2 and 3 of the theorem. It remains to show that X
(1)
m,n is horizontally

regular and X
(2)
m,n is horizontally singular.

First, we will show that X
(1)
m,n is horizontally regular. By definition, μ(1)(B) =

μ(B ∩ N) for every B in B(T2). By Theorem 1, we need to show that μ(1) is

absolutely continuous with respect to σ ⊗ μ
(1)
2 and∫

[−π,π)

log
dμ(1)(eiλ, eiθ)

d(σ ⊗ μ
(1)
2 )

dσ(eiλ) > −∞ for [μ
(1)
2 ]-a.e. eiθ.

Let A ∈ B(T2); then

μ(1)(A) =

∫ ∫
A

dμ(1)(ξ, η) =

∫ ∫
A∩N

dμ(ξ, η)

=

∫ ∫
A∩Ea∩(T×R)

dμa(ξ, η)

d(σ ⊗ μ2)
d(σ ⊗ μ2)(ξ, η)

=

∫ ∫
A∩(T×R)

dμa(ξ, η)

d(σ ⊗ μ2)
d(σ ⊗ μ2)(ξ, η)

=

∫ ∫
A

1T×R
dμa(ξ, η)

d(σ ⊗ μ2)
d(σ ⊗ μ2)(ξ, η).(1)

Let B ∈ B(T); then

μ
(1)
2 (B) = μ(1)(T×B) =

∫ ∫
T×B

1T×R
dμa(ξ, η)

d(σ ⊗ μ2)
d(σ ⊗ μ2)(ξ, η)

=

∫
B

[∫
[−π,π)

1T×R(e
iλ, η)

dμa(e
iλ, η)

d(σ ⊗ μ2)
dσ(eiλ)

]
dμ2(η)

=

∫
B

g(η) dμ2(η),(2)

where

g(η) =

{ ∫
[−π,π)

dμa(e
iλ,η)

d(σ⊗μ2)
dσ(eiλ) if η ∈ R,

0 if η �∈ R.
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Now, if we define


(ξ, η) =

{
1 if g(η) = 0,

1
g(η)1T×R(ξ, η)

dμa(ξ,η)
d(σ⊗μ2)

if g(η) > 0,

then

μ(1)(A) =

∫ ∫
A


(ξ, η)g(η) d(σ ⊗ μ2)(ξ, η) =

∫ ∫
A


(ξ, η) d(σ ⊗ μ
(1)
2 )(ξ, η).

From this we see that μ(1) is absolutely continuous with respect to σ ⊗ μ
(1)
2 with

dμ(1)(ξ, η)

d(σ ⊗ μ
(1)
2 )

= 
(ξ, η), and it is straightforward to see that

∫
[−π,π)

log
dμ(1)(eiλ, eiθ)

d(σ ⊗ μ
(1)
2 )

dσ(eiλ) > −∞ for [μ
(1)
2 ]-a.e. eiθ,

as desired.
It remains to show that X

(2)
m,n is horizontally singular. We start by pointing out

that Nc can be written as the disjoint union Nc = Ec
a ∪ (Ea ∩ (T×Rc)). From this

observation, we can further decompose Z(2) as follows. For A ∈ B(T2), we define

Z(2)
s (A) = Z(A ∩Ec

a) = Z(A ∩Es),

since the support of the measure on Ec
a is contained entirely in Es and

Z(2)
a (A) = Z(A ∩ (Ea ∩ (T×Rc))).

From these definitions, we observe that

Z(2)(A) = Z(2)
a (A) + Z(2)

s (A).

From this observation, we define

X(2)
m,n(a) =

∫
[−π,π)

∫
[−π,π)

eimλ+inθ dZ(2)
a (eiλ, eiθ)

and

X(2)
m,n(s) =

∫
[−π,π)

∫
[−π,π)

eimλ+inθ dZ(2)
s (eiλ, eiθ)

and observe that
X(2)

m,n = X(2)
m,n(a) +X(2)

m,n(s).

It follows from Theorem 2 that bothX
(2)
m,n(a) and X

(2)
m,n(s) are horizontally singular.

Therefore, it follows that X
(2)
m,n is also horizontally singular. �

To end this section, we will state, without proofs, the analogous results in the
vertical direction. We do this for completeness and for the sake of reference.

Theorem 4. Let Xm,n, (m,n) ∈ Z2 be a harmonizable SαS field with 1 < α ≤ 2
and spectral measure μ. Then, the following are equivalent:

(1) Xm,n, (m,n) ∈ Z2 is vertically regular.
(2) μ is absolutely continuous with respect to μ1 ⊗ σ with density f satisfying∫

[−π,π)

log
(
f(eiλ, eiθ)

)
dσ(eiθ) > −∞ for [μ1]-a.e. e

iλ.

(3) μ is absolutely continuous with respect to μ1 ⊗ σ with density f(eiλ, eiθ) =∣∣ϕ(eiλ, eiθ)∣∣α, where ϕ is a λ-outer function in Hα
θ (T

2, μ1 ⊗ σ).
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Let μ = μa + μs be the Lebesgue decomposition of μ relative to μ1 ⊗ σ. Here,
μa is absolutely continuous with respect to μ1 ⊗ σ and μs is singular with respect

to μ1 ⊗ σ. We will use
dμa

d(μ1 ⊗ σ)
to denote the Radon-Nikodym derivative of μa

with respect to μ1 ⊗ σ.

Theorem 5. Let 0 < α ≤ 2; then

∫
[−π,π)

log
dμa(e

iλ, eiθ)

d(μ1 ⊗ σ)
dσ(eiθ) = −∞ for [μ1]-

a.e. eiλ, if and only if Xm,n, (m,n) ∈ Z
2 is vertically singular.

Theorem 6. Let 1 < α ≤ 2 and Xm,n, (m,n) ∈ Z2 be a harmonizable SαS field.
Then, there exists a unique decomposition

Xm,n = X̃(1)
m,n + X̃(2)

m,n,

where

(1) X̃
(1)
m,n and X̃

(2)
m,n are in L(X) for all (m,n) ∈ Z

2.

(2) U1X̃
(j)
m,n = X̃

(j)
m+1,n and U2X̃

(j)
m,n = X̃

(j)
m,n+1 for j = 1, 2 and for all (m,n) ∈

Z2.
(3) X̃

(1)
m,n and X̃

(2)
m,n are independent.

(4) X̃
(1)
m,n is vertically regular and X̃

(2)
m,n is vertically singular.

4. Strong regularity

We say that Xm,n, (m,n) ∈ Z2 is strongly regular if it is both horizontally and
vertically regular. We note that if we let L(X : (m,n)) denote the closure in prob-
ability of the linear span of {Xk,l : k ≤ m, l ≤ n} and let L(X : −∞) =

⋂
m,n L(X :

(m,n)), then Xm,n, (m,n) ∈ Z2 is strongly regular if and only if L(X : −∞) = {0}.
It will be advantageous to redefine this concept in Lα(T2, μ), using the isomor-
phism that takes Xm,n to eimλ+inθ. Under this isomorphism, it is straightforward

to see that Xm,n, (m,n) ∈ Z2 is strongly regular if and only if M
(α)
−∞ = {0},

where M
(α)
−∞ =

⋂
m,n M

(α)
m,n and M

(α)
m,n is equal to the span closure in Lα(T2, μ) of

{eikλ+ilθ : k ≤ m, l ≤ n}.
In the theorems and proofs that follow, we will use the notation introduced in

section 3. In addition, we will write either Hα(T2) or Hα(T2, σ2) for [Q]σ2 , where
Q = {(m,n) : m,n ≥ 0}. Finally, a function f in Hα(T2) is called strongly outer if
[f ]Q,σ2 = Hα(T2).

Theorem 7. Let Xm,n, (m,n) ∈ Z2 be a harmonizable SαS field with 1 < α ≤ 2
and spectral measure μ. Then, the following are equivalent:

(1) Xm,n, (m,n) ∈ Z
2 is strongly regular with [Aλ]μ ∩ [Aθ]μ = [Aλ ∩ Aθ]μ.

(2) μ is absolutely continuous with respect to σ2 with density f(eiλ, eiθ) =∣∣ϕ(eiλ, eiθ)∣∣α, where ϕ is a strongly outer function in Hα(T2).

(3) Xm,n, (m,n) ∈ Z2 has a moving average representation

Xm,n =
∑

(k,l)∈N2

ak,lVm−k,n−l,

where the random field Vm,n, (m,n) ∈ Z2 is jointly stationary with Xm,n,
(m,n) ∈ Z

2, satisfies L(X : (m,n)) = L(V : (m,n)), and is a harmonizable
SαS field with spectral measure σ2 and thus consists of mutually orthogonal
random variables with norm one.
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One will observe in the proof that the ak,l’s are the Fourier coefficients of the
strongly outer function ϕ. We also point out that the condition [Aλ]μ ∩ [Aθ]μ =
[Aλ ∩ Aθ]μ given in (1) is an extra condition used to handle the shortcomings of
outer functions in the bi-disc. This additional condition is a natural analog of the
strong commuting condition used in the theory of weakly stationary random fields
(see [7] or [10]).

Proof. (1) ⇒ (2): Suppose that Xm,n, (m,n) ∈ Z2 is strongly regular with [Aλ]μ ∩
[Aθ]μ = [Aλ ∩ Aθ]μ. By definition, Xm,n, (m,n) ∈ Z2 is both horizontally and
vertically regular. Hence, we may employ Theorem 1 and Theorem 4. It follows
from these theorems that μ is absolutely continuous with respect to σ ⊗ μ2 with

density
dμ

d(σ ⊗ μ2)
=

∣∣ϕ1(e
iλ, eiθ)

∣∣α, where ϕ1 is a θ-outer function inHα
λ (T

2, σ⊗μ2)

and that μ is absolutely continuous with respect to μ1⊗σ with density
dμ

d(μ1 ⊗ σ)
=∣∣ϕ2(e

iλ, eiθ)
∣∣α, where ϕ2 is a λ-outer function in Hα

θ (T
2, μ1 ⊗ σ). It follows from

these observations that μ1 and μ2 are absolutely continuous with respect to σ. This

in turn tells us that μ is absolutely continuous with respect to σ2 and
dμ

dσ2
may be

written in either of the two following forms:

dμ

dσ2
=

dμ

d(σ ⊗ μ2)
· d(σ ⊗ μ2)

dσ2
=

dμ

d(σ ⊗ μ2)
· dμ2

dσ

or
dμ

dσ2
=

dμ

d(μ1 ⊗ σ)
· d(μ1 ⊗ σ)

dσ2
=

dμ

d(μ1 ⊗ σ)
· dμ1

dσ
.

It follows from Theorem 1 of [1] that
dμ2

dσ
=

∣∣g2(eiθ)∣∣α, where g2 is an outer function

in Hα(Tθ) and that
dμ1

dσ
=

∣∣g1(eiλ)∣∣α, where g1 is an outer function in Hα(Tλ). It

now follows from these additional observations that
dμ

dσ2
=

∣∣ψ1(e
iλ, eiθ)

∣∣α, where
ψ1 is a θ-outer function in Hα

λ (T
2, σ2) and

dμ

dσ2
=

∣∣ψ2(e
iλ, eiθ)

∣∣α, where ψ2 is a

λ-outer function in Hα
θ (T

2, σ2). Now, define q =
ψ1

ψ2
. Then, we have that q is

unimodular; that is, |q| = 1 [σ2]-a.e. So, we may write qψ2 = ψ1. We will start
by showing that ψ2 is in e−imλHα

λ (T
2, σ2) for some m ≥ 0. To this end, suppose

that ψ̂2(m,n) �= 0 for some m < 0 and n ∈ Z. Now, since ψ1 is in Hα
λ (T

2, σ2) and
qψ2 = ψ1, it follows that q̂(k, l) = 0 for all k ≤ −m and for all n ∈ Z. Hence,

if for every m ∈ Z, there exists a k < m such that ψ̂2(k, n) �= 0 for some n ∈ Z,
then, we would have q = 0, thus giving a contradiction. Therefore, there exists an

m ≥ 0 such that ψ̂2(k, n) = 0 for all k < −m and for all n ∈ Z. It follows that
ψ2 is in e−imλHα

λ (T
2, σ2) and q is in eimλHα

λ (T
2, σ2) for some m ≥ 0. Now, since

ψ2 is also in Hα
θ (T

2, σ2), we have that ψ2 is in e−imλHα
λ (T

2, σ2) ∩Hα
θ (T

2, σ2). It
follows that ψ2 = e−imλϕ for some ϕ in Hα(T2, σ2). Since ψ2 is λ-outer, it follows
that ϕ is also λ-outer. Also, since q is in eimλHα

λ (T
2, σ2), q = eimλq∗, where q∗ is a

unimodular function in Hα
λ (T

2, σ2). Therefore, the equation qψ2 = ψ1 can now be
written as q∗ϕ = ψ1. Since ψ1 is θ-outer, it follows that q∗θ is a constant of modulus
one for [σ]-a.e. eiθ. These observations then imply that ϕ must also be θ-outer.
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Now, since |ϕ| = |ψ1|, we have that
dμ

dσ2
=

∣∣ϕ(eiλ, eiθ)∣∣α. Finally, the fact that ϕ

is both λ-outer and θ-outer and that [Aλ]μ ∩ [Aθ]μ = [Aλ ∩ Aθ]μ, it follows from
Theorem 3.8 of [3] that ϕ is a strongly outer function in Hα(T2, σ2).

(2) ⇒ (3): Suppose μ is absolutely continuous with respect to σ2 with density

f(eiλ, eiθ) =
∣∣ϕ(eiλ, eiθ)∣∣α, where ϕ is a strongly outer function in Hα(T2). Now,

let U1 : Lα(T2, f dσ2) → L(X) be defined by

U1(g) =

∫
[−π,π)

∫
[−π,π)

g(eiλ, eiθ) dZ(eiλ, eiθ).

This is a linear isometry that is onto. Also, let U2 : Lα(T2, f dσ2) → Lα(T2, σ2) be
defined by U2(g) = gϕ. This is a linear isometry and is also onto since ϕ is strongly
outer. Then, U = U2U

−1
1 : L(X) → Lα(T2, σ2) and U(Xm,n) = U2U

−1
1 (Xm,n) =

U2(e
−i(mλ+nθ)) = e−i(mλ+nθ)ϕ(eiλ, eiθ). Let Vm,n = U−1(e−i(mλ+nθ)) and the fact

that ϕ is strongly outer gives us that L(X : (m,n)) = L(V : (m,n)), (m,n) ∈ Z
2.

Now, since ϕ ∈ Hα(T2), it has a Fourier series

ϕ(eiλ, eiθ) =
∑

(k,l)∈N2

ak,le
ikλ+ilθ,

which converges in Lα(T2, σ2). Therefore,

Xm,n = U−1(e−i(mλ+nθ)ϕ(eiλ, eiθ)) = U−1

⎛
⎝e−i(mλ+nθ)

∑
(k,l)∈N2

ak,le
ikλ+ilθ

⎞
⎠

= U−1

⎛
⎝ ∑

(k,l)∈N2

ak,le
−i((m−k)λ+(n−l)θ)

⎞
⎠ =

∑
(k,l)∈N2

ak,lVm−k,n−l in L(X).

In view of our isomorphism U , we have that

E exp

⎧⎨
⎩iRe

⎛
⎝t

N∑
j=1

zjVtj ,lj

⎞
⎠
⎫⎬
⎭

= exp

⎧⎨
⎩−|t|α

∫
[π,π)

∫
[π,π)

∣∣∣∣∣∣
N∑
j=1

zje
−i(tjλ+ljθ)

∣∣∣∣∣∣
α

dσ2(eiλ, eiθ)

⎫⎬
⎭ ,

where t, zj ∈ C, and tj , lj ∈ Z, for j = 1, · · · , N . Thus, Vn, n ∈ Z is harmonizable
SαS with spectral measure σ2 and thus

[Vm,n, Vk,l]α =

∫
[−π,π)

∫
[−π,π)

e−i(mλ+nθ)ei(kλ+lθ) dσ2(eiλ) = δ(m,n),(k,l),

and so the Vm,n’s are mutually orthogonal with ‖Vm,n‖α = [Vm,n, Vm,n]
1/α
α = 1, for

all (m,n) ∈ Z2. The joint stationarity of Xm,n, (m,n) ∈ Z2 and Vm,n, (m,n) ∈ Z2

can be seen from the fact that Xm,n = U−1(e−i(mλ+nθ)ϕ(eiλ, eiθ)) and Vm,n =

U−1(e−i(mλ+nθ)).

(3) ⇒ (1): Suppose that Xm,n =
∑

(k,l)∈N2

ak,lVm−k,n−l, with all the conditions

of (3) holding. Since L(X : (m,n)) = L(V : (m,n)), (m,n) ∈ Z
2, it follows that

L(X : −∞) = L(V : −∞). We will show that L(V : −∞) = {0}. Let Y ∈
L(V : −∞). Then, let U : L(V ) → Lα(T2, σ2) be the isomorphism that sends Vm,n
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to e−i(mλ+nθ). Therefore, Y can be represented by some f in Lα(T2, σ2); that is,

Y =

∫
[−π,π)

∫
[−π,π)

f(eiλ, eiθ) dZV (e
iλ, eiθ). Since Y ∈ L(V : −∞), by definition,

Y ∈ L(V : (m,n)) for all (m,n) ∈ Z2. It follows that

f ∈ span{e−i(kλ+lθ) : k ≤ m, l ≤ n}
for all (m,n) ∈ Z2. Since Fourier coefficients are unique, it follows that f = 0.
Therefore, Y = 0. So, L(V : −∞) = {0} and hence L(X : −∞) = {0}. So,
Xm,n, (m,n) ∈ Z2 is strongly regular, as desired. Next, note that [Aλ]μ ∩ [Aθ]μ =
[Aλ ∩ Aθ]μ is equivalent to L1(X : 0) ∩ L2(X : 0) = L(X : (0, 0)). Now, since
L(X : (m,n)) = L(V : (m,n)) for all (m,n) ∈ Z2, it follows that L1(X : m) =
L1(V : m) for all m ∈ Z and L2(X : n) = L2(V : n) for all n ∈ Z. Since,
the spectral measure for the random field Vm,n, (m,n) ∈ Z2 is σ2, it follows that
[Aλ]σ2 ∩ [Aθ]σ2 = [Aλ ∩Aθ]σ2 is equivalent to L1(V : 0)∩L2(V : 0) = L(V : (0, 0)).
It is well known and straightforward to see that [Aλ]σ2 ∩ [Aθ]σ2 = [Aλ ∩ Aθ]σ2 .
Therefore, [Aλ]μ ∩ [Aθ]μ = [Aλ ∩Aθ]μ, as desired. �

In sharp contrast with the Gaussian case, α = 2, where the Vm,n’s in Theorem
7 are independent, for the non-Gaussian case, 0 < α < 2, the Vm,n’s are not
independent random variables. We state this observation as a proposition. The
proof follows exactly as in [1], and is included for completeness.

Proposition 1. No (non-trivial) harmonizable non-Gaussian SαS field Xm,n,
(m,n) ∈ Z2 with 0 < α < 2 is the moving average of an independent SαS field
Vm,n, (m,n) ∈ Z2 with L(X) = L(V ).

Proof. Suppose on the contrary that the Vm,n’s are independent. Since Vm,n ∈
L(X), (m,n) ∈ Z2, Vm,n is represented by some fm,n ∈ Lα(T2, μ), (m,n) ∈ Z2.
Now, as observed above, the mutual independence of the Vm,n’s implies that the
fm,n’s have mutually disjoint supports. We will use Em,n to denote the support of
fm,n, (m,n) ∈ Z2. By the correspondence between L(X) and Lα(T2, μ) and the
moving average representation, it follows that

e−(imλ+inθ) =
∑

(k,l)∈N2

ak,lfm−k,n−l(e
iλ, eiθ) in Lα(T2, μ).

Since Xm,n, (m,n) ∈ Z2 is non-trivial, some fm,n, say fm0,n0
, is not identically

zero. Then, for all k, l ≥ 0,

e−i((k+m0)λ+(l+n0)θ) = ak,lfm0,n0
(eiλ, eiθ) [μ]-a.e. on Em0,n0

.

It follows that ak,l �= 0 for all k, l ≥ 0. Now, putting k, l = 0 and then k, l = 1,

we get a1,1 = e−i(λ+θ)a0,0 [μ]-a.e. on Em0,n0
and since μ(Em0,n0

) > 0, we get a
contradiction. �

We now want to obtain conditions on μ to get a four-fold Wold-type decompo-
sition. Let

dμ(eiλ, eiθ) = f(eiλ, eiθ) dσ2(eiλ, eiθ) + dμs(eiλ, eiθ)

be the Lebesgue decomposition of μ with respect to σ2 and let Δs be the support
of μs and Δa = (Δs)c. Then, we get

(3) Xm,n = Xa
m,n +Xs

m,n,
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where

Xa
m,n =

∫ ∫
Δa

eimλ+inθ dZ(eiλ, eiθ),

and

Xs
m,n =

∫ ∫
Δs

eimλ+inθ dZ(eiλ, eiθ).

Because their representing functions have disjoint support, Xa
m,n and Xs

m,n are
independent stationary random fields. Our next theorem gives a decomposition of
Xs

m,n, (m,n) ∈ Z
2.

Theorem 8. The random field Xs
m,n, (m,n) ∈ Z2 admits the following unique

decomposition

Xs
m,n = Xr,s

m,n +Xs,r
m,n +Xs,s

m,n,

where

(1) Xr,s
m,n, X

s,r
m,n, and Xs,s

m,n are independent random fields.
(2) Xr,s

m,n is horizontally regular and vertically singular.
(3) Xs,r

m,n is horizontally singular and vertically regular.
(4) Xs,s

m,n is horizontally singular and vertically singular.

Proof. Using Theorem 3, we get that

Xs
m,n = Xs,(1)

m,n +Xs,(2)
m,n ,

where X
s,(1)
m,n and X

s,(2)
m,n are independent random fields with X

s,(1)
m,n horizontally

regular and X
s,(2)
m,n horizontally singular. Now, using Theorem 6, we get

Xs,(1)
m,n = Xs,(1,1)

m,n +Xs,(1,2)
m,n ,

and

Xs,(2)
m,n = Xs,(2,1)

m,n +Xs,(2,2)
m,n ,

where X
s,(1,1)
m,n and X

s,(1,2)
m,n are independent random fields, X

s,(1,1)
m,n is vertically

regular and X
s,(1,2)
m,n is vertically singular; and X

s,(2,1)
m,n and X

s,(2,2)
m,n are independent

random fields, X
s,(2,1)
m,n is vertically regular and X

s,(2,2)
m,n is vertically singular. Next,

we observe that the support for the representing functions for X
s,(1,1)
m,n , X

s,(1,2)
m,n ,

X
s,(2,1)
m,n , and X

s,(2,2)
m,n are disjoint. Therefore, they are all independent and X

s,(1,1)
m,n

and X
s,(1,2)
m,n are also horizontally regular and X

s,(2,1)
m,n and X

s,(2,2)
m,n are horizontally

singular. We finally observe that X
s,(1,1)
m,n must equal zero. For otherwise, since

we have shown that it is strongly regular, and the proof of Theorem 7 guarantees
that its spectral measure would be absolutely continuous with respect to σ2, we

would get a contradiction. Now, if we set Xr,s
m,n = X

s,(1,2)
m,n , Xs,r

m,n = X
s,(2,1)
m,n , and

Xs,s
m,n = X

s,(2,2)
m,n , we get our desired decomposition. �

Combining this result with Theorem 7 gives us the following four-fold Wold-type
decomposition.

Theorem 9. Let Xm,n, (m,n) ∈ Z2 be a harmonizable SαS field with 1 < α ≤ 2
and spectral measure μ. If dμ(eiλ, eiθ) = |ϕ(eiλ, eiθ)|α dσ2(eiλ, eiθ) + dμs(eiλ, eiθ)
is the Lebesgue decomposition of μ with respect to σ2 and ϕ is a strongly outer
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function in Hα(T2), then the random field Xm,n, (m,n) ∈ Z2 admits the following
unique decomposition:

Xm,n = Xr,r
m,n +Xr,s

m,n +Xs,r
m,n +Xs,s

m,n,

where

(1) Xr,r
m,n, X

r,s
m,n, X

s,r
m,n, and Xs,s

m,n are independent random fields.
(2) Xr,r

m,n is horizontally regular and vertically regular.
(3) Xr,s

m,n is horizontally regular and vertically singular.
(4) Xs,r

m,n is horizontally singular and vertically regular.
(5) Xs,s

m,n is horizontally singular and vertically singular.
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