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ABSTRACT. Let Y be a sublattice of a vector lattice X. We consider the
problem of identifying the smallest order closed sublattice of X containing Y.
It is known that the analogy with topological closure fails. Let Y? be the
order closure of Y consisting of all order limits of nets of elements from Y.
Then Y need not be order closed. We show that in many cases the smallest

—_—50
order closed sublattice containing Y is in fact the second order closure Yo
Moreover, if X is a o-order complete Banach lattice, then the condition that

Y? is order closed for every sublattice Y characterizes order continuity of the
norm of X. The present paper provides a general approach to a fundamental
result in financial economics concerning the spanning power of options written
on a financial asset.

1. INTRODUCTION

1.1. Motivations. Let £ be a finite set standing for the state space of a static
financial market at the terminal date. A financial asset in the market is represented
by a function f on €. The call (respectively, put) option written on an asset f with
strike price k € R can be represented as (f — k1) (respectively, (k1 — f)*). Here
1 denotes the constant one function on 2. In the seminal paper [23], Ross showed
that if the underlying asset separates states of the market at the terminal date,
then options on this asset generate complete markets; i.e., every contingent claim is
replicated by a portfolio of some call and put options on this asset. Mathematically
speaking, it means that, for any injective function f € R®,

R? = Span {(f — k1)*, (k1 — f)* : k e R}.

This notion that options complete markets, pioneered by Ross, is at the core of
modern financial economics ([4]) and has been under extensive exploration.

In particular, Ross’s result has been extended to financial markets with infinite
state spaces. Let (2, X, P) be a probability space. For an asset f € LP(X), 1 <p <
00, its option space is defined by

Oy :=Span {(f — k1), (k1 — f)* : k € R}.
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Through the work of Nachman [22], Galvani [9], and Galvani and Troitsky [10], it
is established that if f is of limited liability, i.e., f > 0 a.s., then

a

o7 nLr(®) =07 " = 17(6(f)), for 1< p < o0,
——o(L%,LY)

07" NL*(%) = 05 = L(o(f)).

Here O_fa's' is the collection of all random variables that are almost sure limits
of sequences in Oy, and o(f) is the o-algebra generated by f. Recently, these
results have been generalized in [16] to model spaces beyond LP, using the topology
o(X, X)), where X is order continuous dual of X. Specifically, let X be an ideal
(i.e., solid subspace) of L°(X) that contains the constant one function and admits
a strictly positive order continuous functional. Then for any limited liability asset
f € X4, it holds that

(%) 0" nX=0; = X(o(f)):

Here X (o(f)) is the set of all random variables in X that are o(f)-measurable
and is interpreted as the collection of all financial claims written on the asset f,
among which options are obviously the basic ones. Thus (%) asserts that every
claim written on the asset f is the a.s.-limit of a sequence of portfolios of options
on f. It deserves mentioning that these spanning properties of options played a
very useful role in the study of price extensions in [6,[1622].

A fundamental fact used to prove (%) is a beautiful theorem due to the economists
Brown and Ross ([6, Theorem (1)]), which asserts that, for any 0 < s < b in a
uniformly complete vector lattice X, Span{(s — kb)™, (kb — s)* : k € R} is the
smallest sublattice of X containing s,b. This implies in particular that the option
space Oy of any limited liability asset f is a sublattice (see Lemma [[ 1] below). A
close look at the proof of (%) reveals that the terms in (x) are precisely the smallest
order closed sublattice of X containing Oy. This motivates us to investigate the
smallest order closed sublattice containing a given sublattice. Our study provides
a general approach to the spanning power of options.

The paper is structured as follows. In section Pl we prove that, in many Ba-
nach lattices, the smallest order closed sublattice containing a given sublattice Y
coincides with the uo-closure of Y as well as the second order closure of Y (The-
orem [Z2)). Tt is also shown that if (and only if) the (first) order closure of any
sublattice Y in a o-order complete Banach lattice X is order closed, then X is
order continuous (Theorem [Z7). On the other hand, Theorem shows that for
a large class of Banach function spaces, the order closure of the option space Oy
is already order closed for all f > 0. In a similar vein, Theorem [Z.13] shows that
the order closure of any regular sublattice of a vector lattice is order closed. These
results show that the behavior of the order closure of a sublattice can be quite sub-
tle. In section Bl we relate order closure to measurability, following the approach of
Luxemburg and de Pagter [19,20]. Corollary [3.4] shows that options on a limited
liability asset often have the strong spanning power that every claim written on the
asset is the order limit of a sequence of portfolios of options.

a. o (X, X))

1.2. Notation and facts. We adopt [2,[3] as standard references on unexplained
terminology and facts on vector and Banach lattices. For general facts about uo-
convergence we refer the reader to [I3] and the references therein. A net (x4 )aer
in a vector lattice X is said to order converge to x € X, written as z, — x, if there



SMALLEST ORDER CLOSED SUBLATTICES AND OPTION SPANNING 707

exists another net (a,)yca in X satisfying a, | 0 and for any v € A there exists
ag € T such that |z, — 2| < a, for all & > ap; (z4) is said to unbounded order
converge (uo-converge for short) to z € X, written as o — , if |24 — 2| Ay =0
for any y € X;. It is well known that, for a sequence (f,,) in a function space X,
fn 2 0in X iff f,, %5 0 and there exists F € X such that |f,,| < F for all n > 1,
and f, <% 0in X iff f, =25 0. Recall that a Banach lattice is order continuous if
|lza|| = 0 whenever 2o, % 0. The order continuous dual X7 of a vector lattice X is
the collection of all linear functionals ¢ which are order continuous, i.e., ¢(z4) — 0
whenever x, = 0 in X. If X is a Banach lattice, X, is a band in X*. A Banach
function space over a probability space (£2, ¥, P) is an ideal of L°(X) with a complete
norm such that ||f]] < ||g|| whenever |f| < |g|. Every Banach function space has
a separating order continuous dual ([I, Theorem 5.25]) and has the countable sup
property; i.e., every set having a supremum admits a countable subset with the
same supremum ([2I, Lemma 2.6.1]).

Let X be a vector lattice. For any z,y € X, denote by L,, the smallest
sublattice containing x,y. Recall that Banach lattices and o-order complete vector
lattices are uniformly complete. Thus the following lemma applies to them.

Lemma 1.1. For any x,y > 0 in a uniformly complete vector lattice X,
Loy =Span{(z —ky)", (ky —2)* : k € R}.

Proof. Note that both sides remain the same when we replace y by « + y. Now
apply [6, Theorem (1)] with s =z and b =z + y. O

2. MAIN RESULTS

For a subset A of a vector lattice X, we define its order closure (abbreviated o-
closure) A’ to be the collection of all z € X such that z, = = in X for some net
(zo) in A. We say that A is order closed (abbreviated o-closed) in X if A = A°.
We similarly define uo-closure and uo-closedness of a given subset. Since lattice
operations are both order continuous and uo-continuous, it is easy to see that the
o- and uo-closures of a sublattice remain sublattices. However, the order closure of
a sublattice need not be order closed. This is the main subject of investigation in
this paper.

Lemma 2.1. Let Y be a sublattice of a vector lattice X and I be an ideal of X .
— — —_—° —
ThenY' cY cY’ c YU(X’I). Moreover,
(1) of Y is order closed, then it is the smallest order closed sublattice of X
. e 570 U0
containing Y, and Y =Y ;
(2) if Y is order closed, then it is the smallest order closed sublattice of X
— —_—°
containing Y, and Yy“ =Y’ ;
(3) if, in addition, I separates points of X, then Y’
sublattice containing Y .

(X,I) .
18 an order closed

Proof. Obviously, Y° C Y. Since I C X7, yo

. —o° —o(X,I) . uo .
particular, Y~ C Y . Let (yo) be a net in Y such that y, — z in X.

By considering the positive and negative parts, respectively, we may assume that
(Yo) C Y4 and z > 0. For each fixed 3, it follows from |ya Ayg—2Ays| < |ya—2|Ays

is order closed in X. In
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that yo Ays = ys Az in X, and consequently, ys Az € Y°. By |y5 Ne —z| <
lys — x| Az, it follows that yg Az = x in X, and therefore, z € Y . This proves

that Y ¢ Y . Ttems (1) and (2) are now clear. Suppose that I separates points
of X. By [2, Theorem 3.50], the topological dual of X under |o|(X,I) is precisely

I, and thus by Mazur’s Theorem,
(%) YU(XJ) _ 7IU|(XJ).

o (X,I)

This implies that Y is a sublattice of X by [2, Theorem 3.46]. O

Remark that [I3] Proposition 3.15], which asserts that a sublattice is o-closed iff
it is uo-closed, immediately follows from Lemma 2.1

Theorem 2.2. Let X be a Banach lattice, Y be a sublattice of X, and I be an
ideal of XN sepamtmg points of X. Suppose that X has the countable sup property.

Then Y =Y° =y %D
i X containing Y.

, and all of them are the smallest order closed sublattice

Proof. In view of Lemma [2.1] and (x), it suffices to show that ylIEn -y
Recall that the order completion, X%, of X is also a Banach lattice having the
countable sup property. Note also that each member in I extends uniquely to an
order continuous functional on X? ([2, Theorem 1.65]) and that the collection of
those extended functionals is an ideal of (X %) separating points of X°. Moreover,
a net in X is uo-null in X iff it is uo-null in X‘s (cf. [13) Theorem 3.2]). Thus, by
passing to X°, one may assume that X is order complete.

Recall that if 0 < ¢ € X7, its null ideal and carrier are defined, respectively, by

Ny={z € X :¢(jz])=0} and C,=NJ.
Claim 1. Every sequence (z,) in X is contained in Cy for some ¢ € I..

Indeed, for each ¢ € I, let P, be the band projection onto Cy. For each n,
(Pyxp)e is an upwards directed net, bounded above by z,,. Since, for any ¢ € I,
Y(n —supyer, Porn) < (zn — Ppan) = 0 and I separates points of X, it follows
that z, = supge; . Pyxz,. As X has the countable sup property, there exists a

n

sequence (¢, ) in Iy such that @, = sup,, Pyn xn. Let ¢ =3 M%

Then 0 < ¢ € I. Since Pyn xy € C¢:;, C Cy for all m,n, and Cy is a band, we see
that x,, € Cy for all n. Thus the claim is proved.

Claim 2. If (x,) is an order bounded sequence in Cy for some 0 < ¢ € X and
S d(|zn]) < 0o, then (z,) order converges to 0.

Set u = infy sup,,>, [z,[. Since ¢ is order continuous, ¢(u) < >, 5, ¢(|zn|) for
all k. Hence, ¢(u) = 0. Also, u € Cy, since Cy is a band. It follows that u = 0.
Therefore, (x,) order converges to 0, and the claim is proved.

Suppose that 0 < z € ?‘U‘(X’I). By Claim 1, choose ¢ € I such that z € Cj.
Given any n € N, choose 1/1 € I such that ||¢ — 9| < and choose y, € Y1

such that ¥ (|y, — z|) < Then

1
27 [|zf[+1°

2n

2
Hyn — 2| Az) <o = Dllllz]l + ¢llyn —2l) < 57
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It follows by Claim 2 that (|y,, — | A x) order converges to 0. Now choose ¢’ € T,
such that z,y, € Cy for all n. Since (|y, — x| A ) order converges to 0 and ¢’ is
order continuous, we may assume that ¢'(|y, — z| Ax) < QL for all n. As above,
for each n, there exists z, € Y} so that ¢/(|z, — 2| Ayn) < 5. For any w € X,

¢I(|Zn ANy —z| ANw) < ¢/(|2n ANYn =T A Ynl) + ¢/(|x A Yn — x|)
3
< ¢/(|Zn —z[ Ayn) + qﬁ’(z Alyn —z]) < 5=

n

2
for all n. By Claim 2, (|zn A yn — 2| A w) order converges to 0. This proves that
(zn A Yn) uo-converges to x. Therefore, x € Y. O

Clearly, Theorem applies to Banach function spaces over probability spaces.

Remark 2.3.

(1) Our proof yields that under the assumptions of Theorem ifzeY",
then there exists a sequence in Y uo-converging to z.

(2) The conclusion of Theorem 2.2 still holds if X is merely a vector lattice but
I contains a strictly positive order continuous functional ¢ on X.

Remark 2.4.

—o(X,I
(1) Theorem implies in particular that Yy may be independent of I
when Y is a sublattice. This suggests that topological properties may im-
prove significantly when order structures are involved.

(2) View £ as the dual space of £!. For a subset A in £, denote by Y its

w*-sequential closure and by Z(nH)

n > 1. Note that A° = Z(l) for any subset A in ¢£°°. Indeed, if a, o, x,
then (ay) is bounded in > and converges to z coordinatewise, so that

)

the w*-sequential closure of Z(n) for

an 2 2 in €. Conversely, if a net in A order converges z, then by passing
to a tail, we may assume that it is bounded. Clearly, we can extract a
sequence out of it which converges to x coordinatewise and thus in w* by
the Lebesgue Dominated Convergence Theorem. This observation, together
with Theorem ] (applied with I = (¢>°)7 = (), implies that

_w*

v? oy

for any sublattice Y of £°°. This is in sharp contrast to Ostrovskii’s Theorem
(cf. [I7, Theorem 2.34]), which implies that £>° has a subspace W such that

(1) — =7(2) Tw"
whewP e oW
Again, it suggests that order structures improve topological properties.
Problem 2.5. Is Y’ order closed for every sublattice of a vector lattice X7

If we consider Y instead of Y’ in Problem 5] then it turns out that an
affirmative answer to the problem characterizes order continuity of X. We begin
with a lemma.

Lemma 2.6. There exist u,v > 0 in £°° such that Lu,vo #* Lu,vuo.
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Proof. Regard £ as £*°(N x N), and write every element = € {*°(N x N) as z =
(Tmn)m.n>1, where &, € R for all m,n > 1. Choose strictly increasing sequences
(Cmn)22q, m € N, and (¢p,)20_; such that

(1) (emn)S2; converges to ¢, for all m,

(2) 0 < cm < Cmyrn <1 forall m,n.
Let u = (Umn) € £ and v = (Vpp) € £°°, where Uy, = % and Uy, 41 = 1,
VUm1 = 72 and Uy, pq1 = Cpp for all myn > 1.

For any k,j € N, if ¢4; < @ < & < ¢ 41 and ¢ < f < ' < ¢gt1,1, then a

direct calculation shows that if we write 2% = (24 ) for the element

(v=Bu)t —(w=Fu" (v—ou —(v-au’

55 a—a |
then
kafd =1, kel =0if2<n <j+1, and 2% = 0if m # k.
Let ¢/ = i:l kz*i. Then y’ € Ly, and (y7) converges coordinatewise to the

element e € £°°(N x N) given by e,,, = 1if n = 1 and 0 otherwise. Thus e € mno

We now show that e & mo. Otherwise, we can find an order, hence norm,
bounded sequence (z(N)) in Ly, such that limpy 27(n1\7/1) = e;,p for any m,n > 1. For
any m > 2, we can choose N large enough such that

0 _ @)

1|<§, so that z,, >2

Observe that lim,, zfnj\;) = mz,(n]\? since this holds for u and v and thus for every
vector in L, ,. Thus, [[2(V)|o > 2. By arbitrariness of m, this contradicts the

boundedness of (V). Therefore, e ¢ Lu,vo7 so that Lu)vo % Luﬂ,uo. O

Recall that a sublattice Y of a vector lattice X is said to be regular if any net
in Y that decreases to 0 in Y also decreases to 0 in X.

Theorem 2.7. Let X be a o-order complete Banach lattice. The following are
equivalent.
(1) X is order continuous.

2 U(X for every sublattice Y of X.
3) Y is order closed for every sublattice Y of X.

4) Y’ = Y for every sublattice Y of X.
5 Lx Lgy o (XX for all z,y € X,
6 ngo is order closed for all z,y € X,.

2 Y
B) Y
(4)
()
(6)
(7)

7 L7y —ny forallx,yeX_,_.

Proof. Suppose that () holds. Then every order convergent net is norm conver-
gent. Note also that every norm convergent sequence admits a subsequence order
converging to the same limit (cf. [I4, Lemma 3.11]). Therefore, the order closure of
any set coincides with its norm closure. Moreover, o(X, X”) is now just the weak
topology, and thus the o(X, X,)-closure coincides with the weak closure. Hence,
@) holds by Mazur’s Theorem. The implication [2)=-() is immediate because the
(X, X,)-closure of any set is order closed. The implication @B)=) follows from
Lemma 2Tl Similarly, we obtain (I)= @)= @)=-(T). Obviously, {@) implies (7).
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It remains to be shown that (@)=-(1). Suppose that X is not order continuous.
Then X has a lattice isomorphic copy of ¢>°. The proof of [2 Theorem 4.51]
shows that the copy of £*° can be chosen to be regular in X. For a subset W of
£ C X, denote its order closures in ¢*° and in X by W01 and WO2, respectively.

Similarly for the respective uo-closures. By Lemma 2.6, there are u,v > 0 in (>
—uol

and an element e € /> such that e € Y \Y , where Y = L, ,. We claim that

e e Yuoz\Y Since £ is regular in X, every uo-null net in Eoo is uo-null in X by

u02

[13, Theorem 3.2], implying that e € vl ¢ IfeeV” , then there exists a
net (y,) in Y such that y, 2 ein X. By passing to a tail, we may assume that (Ya)
is order, and thus norm, bounded in X. Then it is norm, and thus order, bounded
in /. By [13, Corollary 2.12], we obtain that y, — e in ¢*°, contradicting our

choice of e & Y. This proves (0)=-(). O

The next main result (Theorem [Z9)) is a “localized” version of Theorem 27 Tt

also yields information on the order closures of option spaces in many instances.
Recall first that the order continuous part, X, of a Banach lattice X is the collec-
tion of all vectors z in X such that every disjoint sequence in [0, |z|] is norm null.
It is the largest norm closed ideal of X which is order continuous in its own right.
For a Banach function space X defined on a probability space (Q, %, P), it is well
known and easily seen that 1 € X® iff X contains the constant functions and
©) Jim 14 =0,
Lemma 2.8. Let X be a Banach function space over (,%,P) such that 1 € X
and f € X,. Let g € X4 be a bounded function that is the a.s.-limit of a sequence in
Oy. For any e > 0, there exist h*,h? € X, and a set A € ¥ such that P(Q\A) < e,
supp h! C A, supph? CO\A4, [[(g — h')1alls <&, [[F?|| < & and h' + h? € Oy.

Proof. Assume that 0 < g < 1. Let £ > 0 be given. By (o), there exists § € (0,¢)
such that ||14]| < & whenever A € ¥ and P(A) < 4. Since g is the a.s.-limit of a
sequence in O¢, by Egoroff’s Theorem, there exist h € Oy and A € ¥ such that

(g —h)1allo < € and P(Q\A) < 6.

Since Oy is a sublattice containing 1, by replacing h with ™ A 1, we may assume
that 0 < h < 1. Set h' = hily and h? = hlg\ 4. Obviously, we have P(Q\A) < ¢,
supph' C A, supph? C Q\A, [(¢9 — h')1allec < € and k' + h? € Op. Also,
|h?| < 1o\ 4 and hence [[h?|| < [[1g\ 4l < € since P(Q2\A) < 6. O

Theorem 2.9. Let X be a o-order complete Banach lattice, and let 0 < x € X°.
Then Lm,yo 1s order closed for every y > 0. In particular, if X is a Banach function
space over (0,2, P) such that 1 € X, then O_fo 1s order closed for every f > 0.

Proof. We first prove the special case. Suppose 1 € X ¢ In v1ew of Theorem [Z.2]
it suffices to prove Of = Of “o or, equwalently, Of - Of , since the reverse
inclusion is clear. Take any g € Of . Without loss of generality, assume g > 0.
By Remark Z3|()), ¢ is the a.s.-limit of a sequence in Of. For each n € N, let
gn = g Anl. Clearly, each g, is a bounded function in X, and is the a.s.-limit of a
sequence in Oy. By Lemma 28 we find k), h2 € X, and a set A, € ¥ such that
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P(Q\A4,) < 5, supphl, C A,,

1
(1) supp hi C NA,, |l(gn — h’}l):ﬂ'An”OO < on’?
[h2]|x < 5= and h, = h), + h% € Oy. Let B, = {g < n} N (N,_, An). Then by
(1),
1
(2) (g = k)15, lloo < l1(gn = Pn)Ta,lloo = [1(gn = hu)la, lloo < o5

Since B,, 1 and P(B,,) — 1, it follows from (2) that h,, ~>+ g. Since supp h., C A,,
we have 0 < h;, < g+ 1 € X by (1). Since h:= ), h2 converges in X, it follows
that 0 < h, < g+ 1+ h € X for all n, so that (h,) is order bounded in X.
Therefore, h,, = g and g € O_fo. This proves the special case.

For the general case, assume 0 < x € X% and y > 0. Let B and I be the band
and norm closed ideal generated by x, respectively. Since I C X%, I is an order
continuous Banach lattice. Thus we can regard I as an ideal over some probability
space (£, ¥, P) with z corresponding to 1 ([I8, Theorem 1.b.14]). Clearly, L°() is
the universal completion of I, and since I is order dense in B, we can view B as an
order dense sublattice of L°(X) ([3, Theorem 23.21]). Using order denseness of B
in L(X), o-order completeness of B and the countable sup property of L°(X), it
is straightforward to verify that B is order complete and thus is an ideal of L°(%)
([BL Theorem 2.2]). Therefore, B is a Banach function space over (§,%,P) and
1=2x¢€ B .,

Suppose now that z € mo . Without loss of generality, assume z > 0. Let
P be the band projection from X onto B. Since P is a lattice homomorphism,
P(Lm,y) = Lpy py = Lay,py = L1,py = Opy. Moreover, since P is order continuous,
it follows that

! ’

’

70 o 0
pPze P(L,,) =0p," =0p,,
where o’ indicates that the order closure is taken in B, and the last equality follows
from the previous case. Note that B has the countable sup property, so that we
can find a positive sequence (w,,) in Op, such that w, 2 Pz in B. We may write
w, = Pu,, where 0 < u,, € L, ,. Clearly, (Pu,,) is order bounded, say, Pu, < a
for all n > 1 and some a € X ;. Then it follows from
|P(un, Anzx) — Pz| < |Pu, — Pz| + |Puy, — P(un A nz)|
=|Pu,, — Pz| + |Pu, — (Puy) A (nz)| = |Pu, — Pz| + (Pu, — nx)™"
<|Pu,, — Pz|+ (a — nx)™"

that

P(un Anz) % Pzin X.
Note that I — P is also a lattice homomorphism and (I — P)x = 0. Therefore,
(I — P)u € Span(I — P)y for any u € L, ,. It follows that (I — P)z € Span(I — P)y
as well, say, (I — P)z = A( — P)y. Now put 2z, = up, Anz+ Ay —y Anz) € Ly ,.
Since y A nx 1y, Pz, = Pz. Clearly, (I — P)z, = A\(I — P)y = (I — P)z. Hence,
Zn — 7z in X, so that z € Lx’yo. This proves that LI,yO is order closed. O

Orlicz spaces have been used in mathematical finance and economics as a general
framework of model spaces; see, e.g., [BLI7LIT,T215]. We state Theorem 2.9]in this
setting. We refer to [8, Chapter 2] for definitions of Orlicz functions and spaces.
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Corollary 2.10. The order closure of the option space Oy is order closed for every
f >0 in an Orlicz space L® over a probability space.

Proof. 1f ® is finite-valued, then it is well known that 1 € (L®)%, so that Theo-
rem 2.9 applies. If ® is not finite-valued, then L®* = L*. If a sequence (g,) in
O} converges a.s. to some g, then O; 3 (g, A M1) V (=M1) % g in L*°, where
M = |glsc- O

Example 2.11. There exists a Banach function space X for which O_fo is not order
closed for some f > 0. Indeed, take any Banach function space X’ which is not
order continuous. Then by Theorem 2.7, we can find z,y > 0 such that mo is
not order closed. Replacing y with  + y, we may assume that 0 < z < y. By
restricting to suppy, we may assume y > 0 a.s. Then X := {5 : f € X'} with the

- O

norm || L]y := x+ 18 a Banach function space such that 1,z/y € X, and O,
y Yy /y

is not order closed in X.

Our next result says that Y” is o-closed when Y is regular. The following lemma
is well known and was also observed in [19].

Lemma 2.12. Let X be an order complete vector lattice and Y be a sublattice of
X. Then Y is order closed in X if and only if for any subset A of Y., its supremum
in X, whenever existing, belongs to Y.

Theorem 2.13. Let X be a vector lattice and Y be a regular sublattice of X. Then

Y = 70, and both are order closed. Moreover, if 0 < x € 70, then there exists a
net (Yo) in Yy such that yo T in X.

Proof. First assume that X and Y are both order complete. For any 0 < z € 70,
take (3, ) in Y, such that y, — = in X. We may assume that (y,) is order bounded
in X;. Then = = sup,, infg>q ys, where the inf and sup are taken in X. Note that
the infimum of (yg)g>a exists in ¥ by order completeness of ¥ and equals the
infimum of (yg)s>q in X, by regularity of Y. Put z, = infg>, ys. Then

(o) (za) C Yy, supzy = 2,

where the supremum is taken in X. Now pick any subset A of (?O)Jr which has a
supremum z in X. For any a € A, we can find, by (o), a set A, in Y, such that
sup A, = a in X. It is clear that sup(J,. 4 Aa = = in X. Adding finite suprema to
Uaea Aa, we obtain a net in Y, which increases to = in X, whence z € Y°. This
proves that Y is order closed in X by Lemma

In general, by [I3, Theorem 2.10], the order completion Y° of Y is a regular
sublattice of the order completion X? of X. Therefore, by the preceding case, the

order closure Y3 of Y in X? is an order closed sublattice in X°. We claim that
Ynx=Y"

For any z € Y*, there exists a net (yo) in Y such that y, = = in X. By [13|

Corollary 2.9], we have y, - z in X°, and therefore, = € V5. Tt follows that

Y cY' nX. Conversely, pick = € Y3’ N X. Without loss of generality, assume
x > 0. By (o), we can find a subset A C (Y%), such that 2 = sup A in X°.
By order denseness of Y in Y, for each a € A, we can find A, C Y, such that
a =sup A, in Y9, and therefore, in X, by regularity of Y? in X°. It follows that
Uaea Aa is a subset of Yy and its supremum equals z in X % and therefore, in X.
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Adding finite suprema into | A, yields a net in Y which increases to z in X,

acA
hence, z € Y°. This proves the claim. Flnally, let (yo) be a net in Y and z € X

such that yo = 2 in X. Then (ya) cys by the claim, and by y, = « in X°, i

follows from order closedness of Y  that z € Y5 . Therefore, x € Y’ , by the clann
again. This proves that Y? is order closed. |

3. MEASURABILITY

In [1920], Luxemburg and de Pagter related order closed sublattices to measur-
ability in vector lattices. Using their result, we can provide another approach to
obtain smallest order closed sublattices. We first recall some definitions from [I9].
Let X be an order complete vector lattice with a weak unit v > 0. The set C,,
collects all components of u, i.e., all € X such that (v —x) Az = 0. A subset &
of Cy is called a complete Boolean subalgebra of C, if 0 € F, u —a € F for any
a € %, and sup % € Z for any subset € of .%. For such .%, a vector x € X is said
to be measurable with respect to F if Piyy_g)+u = sup,, > (n(Au— x)T)Au e .ZF for
all A € R. Denote by Lo(.%) the collection of all elements in X that are measurable
with respect to .%. For a subset A of X, denote by o(A) the intersection of all com-
plete Boolean subalgebras of C,, with respect to which each a € A is measurable;
clearly, it is the smallest such complete Boolean subalgebra of C,,.

Example 3.1. Given a probability space (€2, %, P), for a o-subalgebra <7 of ¥, put
F ={lp : F € &/}. Then a simple application of the countable sup property of
Lo(X) yields that .Z is a complete Boolean subalgebra of Cy in Lo (X). Conversely, if
Z is a complete Boolean subalgebra of Cy in Lo(X), then & := {F € ¥ : 1p € F#}
is a o-subalgebra of X.

Theorem 3.2 ([19]). Let X be an order complete vector lattice with a weak unit
u > 0 and F be a complete Boolean subalgebra of C,. Then Lo(%) is an order
closed sublattice of X.

The next proposition is a more precise version of Theorem

Proposition 3.3. Let X be an order complete vector lattice with a weak unit uw > 0
and A be a subset of X. Then Lo(c(A)) is the smallest order closed sublattice
containing A and u.

Proof. Tt is clear that u € 0(A) C Lo(c(A)). Since each a € A is measurable with
respect to o(A), it is also immediate that A C Lg(c(A4)). Now let Y be an order
closed sublattice of X containing A and u. Put % =Y N C,. We first claim that
Z is a complete Boolean subalgebra of C\,. Indeed, it is clear that .# C Cy, 0 € .Z,
and ifv € .Z, thenu—v € F. Now if € C .%, then the supremum of %" in X belongs
to Y by Lemma 212 By [2| Theorem 1.49], the supremum of % in X also belongs
to Cy, and therefore, to .%. This proves the claim. Next, we show that o(A) C F#
or, equivalently, that each a € A is measurable with respect to .%#. Indeed, for any
a € A, any A € R and any n > 1, we have n(Au — a)™ Au € Y. Therefore, their
supremum in X, over all n € N, also belongs to Y by Lemma Note that this
supremum is simply P(y,—q)+u; we thus obtain that P,_q+u € Y NCy, = F.
This proves that a is measurable with respect to .%, as desired. Finally, for any
x € Lo(c(A)), by [19, Proposition 2.6] there exists a sequence (z,) in Span(c(A4))
such that 2, = z in X. Since 0(4) C .F C Y, we have x,, € Y for each n. Tt
follows from order closedness of ¥ that « € Y. Hence, Lo(c(A)) C Y. O
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A combination of Proposition B3land Theorem 2.2 (cf. also Remark [23]) immedi-
ately gives (%) in the Introduction. In fact, using Proposition B3] and Theorem 2.9
we obtain the following strong spanning power of options.

Corollary 3.4. Let X be a Banach function space over a probability space such
that 1 € X®, and let f € Xy. Then X (o(f)) = O;°.

The following is immediate by Proposition B3] and Theorem 2131

Corollary 3.5. Let X be an order complete vector lattice with a weak unit u > 0
andY be a regular sublattice of X containing u. Then x € Lo(o(Y)) iff there exists
a net (yo) in'Y such that y, = = in X. If, in addition, x > 0, then (y,) can be
chosen positive and increasing.

For a complete Boolean subalgebra .% of C,,, it is easily seen that Span(.%) is a
regular sublattice in X and o(Span(.%#)) = .%. Thus, Corollary B.5lcan be viewed as
a generalization of [I9, Proposition 2.6], which is essentially Freudenthal’s Spectral
Theorem.

The following is also immediate by Proposition B3l and extends [16] Lemma 2.2].

Corollary 3.6. Let X be an order complete vector lattice with a weak unit u > 0
and Y be a sublattice of X containing u. Then Y is order closed if and only if
Y = Lo(o(Y)).

Example 3.7. Let Y be an order closed sublattice in a Banach function space X
over (€2, %, P). Then there exist u € Y and a o-subalgebra G of ¥ such that

Y ={g€ X :g=uh, his G-measurable}.

Indeed, it is known that X has a weak unit e. By the countable sup property of X,
one can take a sequence (g,) in Y such that sup,,(gn A€) = supyey, (9 Ae) in X.

Then Eiv 2”,”3# 1 u for some u € X. Clearly, u € Y;, and P(supp ¢\ suppu) =0
for any g € Y. Thus by passing to the support of u, one may assume that  is a weak
unit of X. By Corollary B.6l we have Y = Lo(c(Y)), where o(Y) is the complete
Boolean subalgebra generated by Y in C,. Every member in C,, has the form 1 su
for some set A € ¥. Collecting all such A together for the members in o(Y") forms
a o-subalgebra of ¥, which we denote by G. Now for each 0 < g € Ly(o(Y)), by
[19, Proposition 2.6], there exists a sequence (g,,) in Span o(Y’) such that 0 < g, 1 ¢
in X. Of course, g, = h,u where h,, is a simple function on G, and 0 < h,, T. Let
h = lim, h,,. Then h is measurable with respect to G, and g = wh. The reverse
inclusion can be proved similarly.
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