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SMALLEST ORDER CLOSED SUBLATTICES
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(Communicated by Thomas Schlumprecht)

Abstract. Let Y be a sublattice of a vector lattice X. We consider the
problem of identifying the smallest order closed sublattice of X containing Y .
It is known that the analogy with topological closure fails. Let Y

o
be the

order closure of Y consisting of all order limits of nets of elements from Y .
Then Y

o
need not be order closed. We show that in many cases the smallest

order closed sublattice containing Y is in fact the second order closure Y
oo

.
Moreover, if X is a σ-order complete Banach lattice, then the condition that
Y

o
is order closed for every sublattice Y characterizes order continuity of the

norm of X. The present paper provides a general approach to a fundamental
result in financial economics concerning the spanning power of options written
on a financial asset.

1. Introduction

1.1. Motivations. Let Ω be a finite set standing for the state space of a static
financial market at the terminal date. A financial asset in the market is represented
by a function f on Ω. The call (respectively, put) option written on an asset f with
strike price k ∈ R can be represented as (f − k1)+ (respectively, (k1 − f)+). Here
1 denotes the constant one function on Ω. In the seminal paper [23], Ross showed
that if the underlying asset separates states of the market at the terminal date,
then options on this asset generate complete markets; i.e., every contingent claim is
replicated by a portfolio of some call and put options on this asset. Mathematically
speaking, it means that, for any injective function f ∈ RΩ,

RΩ = Span
{
(f − k1)+, (k1 − f)+ : k ∈ R

}
.

This notion that options complete markets, pioneered by Ross, is at the core of
modern financial economics ([4]) and has been under extensive exploration.

In particular, Ross’s result has been extended to financial markets with infinite
state spaces. Let (Ω,Σ,P) be a probability space. For an asset f ∈ Lp(Σ), 1 ≤ p ≤
∞, its option space is defined by

Of := Span
{
(f − k1)+, (k1 − f)+ : k ∈ R

}
.
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Through the work of Nachman [22], Galvani [9], and Galvani and Troitsky [10], it
is established that if f is of limited liability, i.e., f ≥ 0 a.s., then

Of
a.s. ∩ Lp(Σ) = Of

‖·‖p
= Lp(σ(f)), for 1 ≤ p < ∞,

Of
a.s. ∩ L∞(Σ) = Of

σ(L∞,L1)
= L∞(σ(f)).

Here Of
a.s.

is the collection of all random variables that are almost sure limits
of sequences in Of , and σ(f) is the σ-algebra generated by f . Recently, these
results have been generalized in [16] to model spaces beyond Lp, using the topology
σ(X,X∼

n ), where X∼
n is order continuous dual of X. Specifically, let X be an ideal

(i.e., solid subspace) of L0(Σ) that contains the constant one function and admits
a strictly positive order continuous functional. Then for any limited liability asset
f ∈ X+, it holds that

(∗) Of
a.s. ∩X = Of

σ(X,X∼
n )

= X(σ(f)).

Here X(σ(f)) is the set of all random variables in X that are σ(f)-measurable
and is interpreted as the collection of all financial claims written on the asset f ,
among which options are obviously the basic ones. Thus (∗) asserts that every
claim written on the asset f is the a.s.-limit of a sequence of portfolios of options
on f . It deserves mentioning that these spanning properties of options played a
very useful role in the study of price extensions in [6, 16, 22].

A fundamental fact used to prove (∗) is a beautiful theorem due to the economists
Brown and Ross ([6, Theorem (1)]), which asserts that, for any 0 ≤ s ≤ b in a
uniformly complete vector lattice X, Span{(s − kb)+, (kb − s)+ : k ∈ R} is the
smallest sublattice of X containing s, b. This implies in particular that the option
space Of of any limited liability asset f is a sublattice (see Lemma 1.1 below). A
close look at the proof of (∗) reveals that the terms in (∗) are precisely the smallest
order closed sublattice of X containing Of . This motivates us to investigate the
smallest order closed sublattice containing a given sublattice. Our study provides
a general approach to the spanning power of options.

The paper is structured as follows. In section 2, we prove that, in many Ba-
nach lattices, the smallest order closed sublattice containing a given sublattice Y
coincides with the uo-closure of Y as well as the second order closure of Y (The-
orem 2.2). It is also shown that if (and only if) the (first) order closure of any
sublattice Y in a σ-order complete Banach lattice X is order closed, then X is
order continuous (Theorem 2.7). On the other hand, Theorem 2.9 shows that for
a large class of Banach function spaces, the order closure of the option space Of

is already order closed for all f ≥ 0. In a similar vein, Theorem 2.13 shows that
the order closure of any regular sublattice of a vector lattice is order closed. These
results show that the behavior of the order closure of a sublattice can be quite sub-
tle. In section 3, we relate order closure to measurability, following the approach of
Luxemburg and de Pagter [19, 20]. Corollary 3.4 shows that options on a limited
liability asset often have the strong spanning power that every claim written on the
asset is the order limit of a sequence of portfolios of options.

1.2. Notation and facts. We adopt [2, 3] as standard references on unexplained
terminology and facts on vector and Banach lattices. For general facts about uo-
convergence we refer the reader to [13] and the references therein. A net (xα)α∈Γ

in a vector lattice X is said to order converge to x ∈ X, written as xα
o−→ x, if there
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exists another net (aγ)γ∈Λ in X satisfying aγ ↓ 0 and for any γ ∈ Λ there exists
α0 ∈ Γ such that |xα − x| ≤ aγ for all α ≥ α0; (xα) is said to unbounded order

converge (uo-converge for short) to x ∈ X, written as xα
uo−→ x, if |xα − x| ∧ y

o−→ 0
for any y ∈ X+. It is well known that, for a sequence (fn) in a function space X,

fn
o−→ 0 in X iff fn

a.s.−−→ 0 and there exists F ∈ X such that |fn| ≤ F for all n ≥ 1,

and fn
uo−→ 0 in X iff fn

a.s.−−→ 0. Recall that a Banach lattice is order continuous if

‖xα‖ → 0 whenever xα
o−→ 0. The order continuous dual X∼

n of a vector lattice X is
the collection of all linear functionals φ which are order continuous, i.e., φ(xα) → 0

whenever xα
o−→ 0 in X. If X is a Banach lattice, X∼

n is a band in X∗. A Banach
function space over a probability space (Ω,Σ,P) is an ideal of L0(Σ) with a complete
norm such that ‖f‖ ≤ ‖g‖ whenever |f | ≤ |g|. Every Banach function space has
a separating order continuous dual ([1, Theorem 5.25]) and has the countable sup
property ; i.e., every set having a supremum admits a countable subset with the
same supremum ([21, Lemma 2.6.1]).

Let X be a vector lattice. For any x, y ∈ X+, denote by Lx,y the smallest
sublattice containing x, y. Recall that Banach lattices and σ-order complete vector
lattices are uniformly complete. Thus the following lemma applies to them.

Lemma 1.1. For any x, y ≥ 0 in a uniformly complete vector lattice X,

Lx,y = Span
{
(x− ky)+, (ky − x)+ : k ∈ R

}
.

Proof. Note that both sides remain the same when we replace y by x + y. Now
apply [6, Theorem (1)] with s = x and b = x+ y. �

2. Main results

For a subset A of a vector lattice X, we define its order closure (abbreviated o-

closure) A
o
to be the collection of all x ∈ X such that xα

o−→ x in X for some net

(xα) in A. We say that A is order closed (abbreviated o-closed) in X if A = A
o
.

We similarly define uo-closure and uo-closedness of a given subset. Since lattice
operations are both order continuous and uo-continuous, it is easy to see that the
o- and uo-closures of a sublattice remain sublattices. However, the order closure of
a sublattice need not be order closed. This is the main subject of investigation in
this paper.

Lemma 2.1. Let Y be a sublattice of a vector lattice X and I be an ideal of X∼
n .

Then Y
o ⊂ Y

uo ⊂ Y
oo ⊂ Y

σ(X,I)
. Moreover,

(1) if Y
o
is order closed, then it is the smallest order closed sublattice of X

containing Y , and Y
o
= Y

uo
;

(2) if Y
uo

is order closed, then it is the smallest order closed sublattice of X

containing Y , and Y
uo

= Y
oo

;

(3) if, in addition, I separates points of X, then Y
σ(X,I)

is an order closed
sublattice containing Y .

Proof. Obviously, Y
o ⊆ Y

uo
. Since I ⊆ X∼

n , Y
σ(X,I)

is order closed in X. In

particular, Y
oo ⊆ Y

σ(X,I)
. Let (yα) be a net in Y such that yα

uo−→ x in X.
By considering the positive and negative parts, respectively, we may assume that
(yα) ⊂ Y+ and x ≥ 0. For each fixed β, it follows from |yα∧yβ−x∧yβ| ≤ |yα−x|∧yβ
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that yα ∧ yβ
o−→ yβ ∧ x in X, and consequently, yβ ∧ x ∈ Y

o
. By |yβ ∧ x − x| ≤

|yβ − x| ∧ x, it follows that yβ ∧ x
o−→ x in X, and therefore, x ∈ Y

oo

. This proves

that Y
uo ⊂ Y

oo

. Items (1) and (2) are now clear. Suppose that I separates points
of X. By [2, Theorem 3.50], the topological dual of X under |σ|(X, I) is precisely
I, and thus by Mazur’s Theorem,

(∗) Y
σ(X,I)

= Y
|σ|(X,I)

.

This implies that Y
σ(X,I)

is a sublattice of X by [2, Theorem 3.46]. �

Remark that [13, Proposition 3.15], which asserts that a sublattice is o-closed iff
it is uo-closed, immediately follows from Lemma 2.1.

Theorem 2.2. Let X be a Banach lattice, Y be a sublattice of X, and I be an
ideal of X∼

n separating points of X. Suppose that X has the countable sup property.

Then Y
uo

= Y
oo

= Y
σ(X,I)

, and all of them are the smallest order closed sublattice
in X containing Y .

Proof. In view of Lemma 2.1 and (∗), it suffices to show that Y
|σ|(X,I) ⊂ Y

uo
.

Recall that the order completion, Xδ, of X is also a Banach lattice having the
countable sup property. Note also that each member in I extends uniquely to an
order continuous functional on Xδ ([2, Theorem 1.65]) and that the collection of
those extended functionals is an ideal of (Xδ)∼n separating points of Xδ. Moreover,
a net in X is uo-null in X iff it is uo-null in Xδ (cf. [13, Theorem 3.2]). Thus, by
passing to Xδ, one may assume that X is order complete.

Recall that if 0 ≤ φ ∈ X∼
n , its null ideal and carrier are defined, respectively, by

Nφ = {x ∈ X : φ(|x|) = 0} and Cφ = Nd
φ .

Claim 1. Every sequence (xn) in X+ is contained in Cφ for some φ ∈ I+.

Indeed, for each φ ∈ I+, let Pφ be the band projection onto Cφ. For each n,
(Pφxn)φ is an upwards directed net, bounded above by xn. Since, for any ψ ∈ I+,
ψ(xn − supφ∈I+ Pφxn) ≤ ψ(xn − Pψxn) = 0 and I separates points of X, it follows
that xn = supφ∈I+ Pφxn. As X has the countable sup property, there exists a

sequence (φn
m)m in I+ such that xn = supm Pφn

m
xn. Let φ =

∑
m,n

φn
m

2m+n‖φn
m‖+1 .

Then 0 ≤ φ ∈ I. Since Pφn
m
xn ∈ Cφn

m
⊆ Cφ for all m,n, and Cφ is a band, we see

that xn ∈ Cφ for all n. Thus the claim is proved.

Claim 2. If (xn) is an order bounded sequence in Cφ for some 0 ≤ φ ∈ X∼
n and∑

φ(|xn|) < ∞, then (xn) order converges to 0.

Set u = infk supn≥k |xn|. Since φ is order continuous, φ(u) ≤
∑

n≥k φ(|xn|) for
all k. Hence, φ(u) = 0. Also, u ∈ Cφ, since Cφ is a band. It follows that u = 0.
Therefore, (xn) order converges to 0, and the claim is proved.

Suppose that 0 ≤ x ∈ Y
|σ|(X,I)

. By Claim 1, choose φ ∈ I+ such that x ∈ Cφ.
Given any n ∈ N, choose ψ ∈ I+ such that ‖φ−ψ‖ < 1

2n‖x‖+1 , and choose yn ∈ Y+

such that ψ(|yn − x|) < 1
2n . Then

φ(|yn − x| ∧ x) ≤ ‖φ− ψ‖‖x‖+ ψ(|yn − x|) ≤ 2

2n
.
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It follows by Claim 2 that (|yn − x| ∧ x) order converges to 0. Now choose φ′ ∈ I+
such that x, yn ∈ Cφ′ for all n. Since (|yn − x| ∧ x) order converges to 0 and φ′ is
order continuous, we may assume that φ′(|yn − x| ∧ x) ≤ 1

2n for all n. As above,

for each n, there exists zn ∈ Y+ so that φ′(|zn − x| ∧ yn) ≤ 2
2n . For any w ∈ X+,

φ′(|zn ∧ yn − x| ∧ w) ≤ φ′(|zn ∧ yn − x ∧ yn|) + φ′(|x ∧ yn − x|)

≤ φ′(|zn − x| ∧ yn) + φ′(x ∧ |yn − x|) ≤ 3

2n

for all n. By Claim 2, (|zn ∧ yn − x| ∧ w) order converges to 0. This proves that

(zn ∧ yn) uo-converges to x. Therefore, x ∈ Y
uo
. �

Clearly, Theorem 2.2 applies to Banach function spaces over probability spaces.

Remark 2.3.

(1) Our proof yields that under the assumptions of Theorem 2.2 if x ∈ Y
uo
,

then there exists a sequence in Y uo-converging to x.
(2) The conclusion of Theorem 2.2 still holds if X is merely a vector lattice but

I contains a strictly positive order continuous functional φ on X.

Remark 2.4.

(1) Theorem 2.2 implies in particular that Y
σ(X,I)

may be independent of I
when Y is a sublattice. This suggests that topological properties may im-
prove significantly when order structures are involved.

(2) View �∞ as the dual space of �1. For a subset A in �∞, denote by A
(1)

its

w∗-sequential closure and by A
(n+1)

the w∗-sequential closure of A
(n)

for

n ≥ 1. Note that A
o
= A

(1)
for any subset A in �∞. Indeed, if an

w∗
−−→ x,

then (an) is bounded in �∞ and converges to x coordinatewise, so that

an
o−→ x in �∞. Conversely, if a net in A order converges x, then by passing

to a tail, we may assume that it is bounded. Clearly, we can extract a
sequence out of it which converges to x coordinatewise and thus in w∗ by
the Lebesgue Dominated Convergence Theorem. This observation, together
with Theorem 2 (applied with I = (�∞)∼n = �1), implies that

Y
(2)

= Y
w∗

for any sublattice Y of �∞. This is in sharp contrast to Ostrovskii’s Theorem
(cf. [17, Theorem 2.34]), which implies that �∞ has a subspace W such that

W
(1)

� W
(2)

� · · · � W
w∗

.

Again, it suggests that order structures improve topological properties.

Problem 2.5. Is Y
uo

order closed for every sublattice of a vector lattice X?

If we consider Y
o
instead of Y

uo
in Problem 2.5, then it turns out that an

affirmative answer to the problem characterizes order continuity of X. We begin
with a lemma.

Lemma 2.6. There exist u, v > 0 in �∞ such that Lu,v
o �= Lu,v

uo
.
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Proof. Regard �∞ as �∞(N × N), and write every element x ∈ �∞(N × N) as x =
(xmn)m,n≥1, where xmn ∈ R for all m,n ≥ 1. Choose strictly increasing sequences
(cmn)

∞
n=1, m ∈ N, and (cm)∞m=1 such that

(1) (cmn)
∞
n=1 converges to cm for all m,

(2) 0 < cm < cm+1,n < 1 for all m,n.

Let u = (umn) ∈ �∞ and v = (vmn) ∈ �∞, where um1 = 1
m and um,n+1 = 1,

vm1 = cm
m and vm,n+1 = cmn for all m,n ≥ 1.

For any k, j ∈ N, if ckj < α < α′ < ck,j+1 and ck < β < β′ < ck+1,1, then a
direct calculation shows that if we write xkj = (xkj

mn) for the element

(v − βu)+ − (v − β′u)+

β − β′ − (v − αu)+ − (v − α′u)+

α− α′ ,

then

kxkj
k1 = 1, kxkj

kn = 0 if 2 ≤ n ≤ j + 1, and xkj
mn = 0 if m �= k.

Let yj =
∑j

k=1 kx
kj . Then yj ∈ Lu,v, and (yj) converges coordinatewise to the

element e ∈ �∞(N×N) given by emn = 1 if n = 1 and 0 otherwise. Thus e ∈ Lu,v
uo
.

We now show that e �∈ Lu,v
o
. Otherwise, we can find an order, hence norm,

bounded sequence (z(N)) in Lu,v such that limN z
(N)
mn = emn for any m,n ≥ 1. For

any m ≥ 2, we can choose N large enough such that

|z(N)
m1 − 1| < 1

2
, so that z

(N)
m1 >

1

2
.

Observe that limn z
(N)
mn = mz

(N)
m1 since this holds for u and v and thus for every

vector in Lu,v. Thus, ‖z(N)‖∞ ≥ m
2 . By arbitrariness of m, this contradicts the

boundedness of (z(N)). Therefore, e �∈ Lu,v
o
, so that Lu,v

o �= Lu,v
uo
. �

Recall that a sublattice Y of a vector lattice X is said to be regular if any net
in Y that decreases to 0 in Y also decreases to 0 in X.

Theorem 2.7. Let X be a σ-order complete Banach lattice. The following are
equivalent.

(1) X is order continuous.

(2) Y
o
= Y

σ(X,X∼
n )

for every sublattice Y of X.

(3) Y
o
is order closed for every sublattice Y of X.

(4) Y
o
= Y

uo
for every sublattice Y of X.

(5) Lx,y
o
= Lx,y

σ(X,X∼
n )

for all x, y ∈ X+.

(6) Lx,y
o
is order closed for all x, y ∈ X+.

(7) Lx,y
o
= Lx,y

uo
for all x, y ∈ X+.

Proof. Suppose that (1) holds. Then every order convergent net is norm conver-
gent. Note also that every norm convergent sequence admits a subsequence order
converging to the same limit (cf. [14, Lemma 3.11]). Therefore, the order closure of
any set coincides with its norm closure. Moreover, σ(X,X∼

n ) is now just the weak
topology, and thus the σ(X,X∼

n )-closure coincides with the weak closure. Hence,
(2) holds by Mazur’s Theorem. The implication (2)⇒(3) is immediate because the
σ(X,X∼

n )-closure of any set is order closed. The implication (3)⇒(4) follows from
Lemma 2.1. Similarly, we obtain (1)⇒(5)⇒(6)⇒(7). Obviously, (4) implies (7).
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It remains to be shown that (7)⇒(1). Suppose that X is not order continuous.
Then X has a lattice isomorphic copy of �∞. The proof of [2, Theorem 4.51]
shows that the copy of �∞ can be chosen to be regular in X. For a subset W of

�∞ ⊆ X, denote its order closures in �∞ and in X by W
o1

and W
o2
, respectively.

Similarly for the respective uo-closures. By Lemma 2.6, there are u, v > 0 in �∞

and an element e ∈ �∞ such that e ∈ Y
uo1\Y o1

, where Y = Lu,v. We claim that

e ∈ Y
uo2\Y o2

. Since �∞ is regular in X, every uo-null net in �∞ is uo-null in X by

[13, Theorem 3.2], implying that e ∈ Y
uo1 ⊂ Y

uo2
. If e ∈ Y

o2
, then there exists a

net (yα) in Y such that yα
o−→ e in X. By passing to a tail, we may assume that (yα)

is order, and thus norm, bounded in X. Then it is norm, and thus order, bounded

in �∞. By [13, Corollary 2.12], we obtain that yα
o−→ e in �∞, contradicting our

choice of e �∈ Y
o1
. This proves (7)⇒(1). �

The next main result (Theorem 2.9) is a “localized” version of Theorem 2.7. It
also yields information on the order closures of option spaces in many instances.
Recall first that the order continuous part, Xa, of a Banach lattice X is the collec-
tion of all vectors x in X such that every disjoint sequence in [0, |x|] is norm null.
It is the largest norm closed ideal of X which is order continuous in its own right.
For a Banach function space X defined on a probability space (Ω,Σ,P), it is well
known and easily seen that 1 ∈ Xa iff X contains the constant functions and

(�) lim
P(A)→0

‖1A‖ = 0.

Lemma 2.8. Let X be a Banach function space over (Ω,Σ,P) such that 1 ∈ Xa

and f ∈ X+. Let g ∈ X+ be a bounded function that is the a.s.-limit of a sequence in
Of . For any ε > 0, there exist h1, h2 ∈ X+ and a set A ∈ Σ such that P(Ω\A) < ε,
supph1 ⊆ A, supp h2 ⊆ Ω\A, ‖(g − h1)1A‖∞ < ε, ‖h2‖ < ε and h1 + h2 ∈ Of .

Proof. Assume that 0 ≤ g ≤ 1. Let ε > 0 be given. By (�), there exists δ ∈ (0, ε)
such that ‖1A‖ < ε whenever A ∈ Σ and P(A) < δ. Since g is the a.s.-limit of a
sequence in Of , by Egoroff’s Theorem, there exist h ∈ Of and A ∈ Σ such that

‖(g − h)1A‖∞ < ε and P(Ω\A) < δ.

Since Of is a sublattice containing 1, by replacing h with h+ ∧ 1, we may assume
that 0 ≤ h ≤ 1. Set h1 = h1A and h2 = h1Ω\A. Obviously, we have P(Ω\A) < ε,

supph1 ⊆ A, supp h2 ⊆ Ω\A, ‖(g − h1)1A‖∞ < ε and h1 + h2 ∈ Of . Also,
|h2| ≤ 1Ω\A and hence ‖h2‖ ≤ ‖1Ω\A‖ < ε since P(Ω\A) < δ. �

Theorem 2.9. Let X be a σ-order complete Banach lattice, and let 0 < x ∈ Xa.
Then Lx,y

o
is order closed for every y ≥ 0. In particular, if X is a Banach function

space over (Ω,Σ,P) such that 1 ∈ Xa, then Of
o
is order closed for every f ≥ 0.

Proof. We first prove the special case. Suppose 1 ∈ Xa. In view of Theorem 2.2,
it suffices to prove Of

o
= Of

uo
or, equivalently, Of

uo ⊂ Of
o
, since the reverse

inclusion is clear. Take any g ∈ Of
uo
. Without loss of generality, assume g ≥ 0.

By Remark 2.3(1), g is the a.s.-limit of a sequence in Of . For each n ∈ N, let
gn = g ∧n1. Clearly, each gn is a bounded function in X+ and is the a.s.-limit of a
sequence in Of . By Lemma 2.8, we find h1

n, h
2
n ∈ X+ and a set An ∈ Σ such that
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P(Ω\An) ≤ 1
2n , supp h

1
n ⊆ An,

(1) supp h2
n ⊆ Ω\An, ‖(gn − h1

n)1An
‖∞ <

1

2n
,

‖h2
n‖X < 1

2n and hn = h1
n + h2

n ∈ Of . Let Bn = {g ≤ n} ∩ (
⋂∞

m=n Am). Then by
(1),

(2) ‖(g − hn)1Bn
‖∞ ≤ ‖(gn − hn)1An

‖∞ = ‖(gn − h1
n)1An

‖∞ ≤ 1

2n
.

Since Bn ↑ and P(Bn) → 1, it follows from (2) that hn
a.s.−−→ g. Since supph1

n ⊆ An,
we have 0 ≤ h1

n ≤ g + 1 ∈ X by (1). Since h :=
∑

n h2
n converges in X, it follows

that 0 ≤ hn ≤ g + 1 + h ∈ X for all n, so that (hn) is order bounded in X.

Therefore, hn
o→ g and g ∈ Of

o
. This proves the special case.

For the general case, assume 0 < x ∈ Xa and y > 0. Let B and I be the band
and norm closed ideal generated by x, respectively. Since I ⊂ Xa, I is an order
continuous Banach lattice. Thus we can regard I as an ideal over some probability
space (Ω,Σ,P) with x corresponding to 1 ([18, Theorem 1.b.14]). Clearly, L0(Σ) is
the universal completion of I, and since I is order dense in B, we can view B as an
order dense sublattice of L0(Σ) ([3, Theorem 23.21]). Using order denseness of B
in L0(Σ), σ-order completeness of B and the countable sup property of L0(Σ), it
is straightforward to verify that B is order complete and thus is an ideal of L0(Σ)
([3, Theorem 2.2]). Therefore, B is a Banach function space over (Ω,Σ,P) and
1 = x ∈ Ba.

Suppose now that z ∈ Lx,y
oo

. Without loss of generality, assume z ≥ 0. Let
P be the band projection from X onto B. Since P is a lattice homomorphism,
P (Lx,y) = LPx,Py = Lx,Py = L1,Py = OPy. Moreover, since P is order continuous,
it follows that

Pz ∈ P (Lx,y)
o′

o′

= OPy
o′

o′

= OPy
o′

,

where o′ indicates that the order closure is taken in B, and the last equality follows
from the previous case. Note that B has the countable sup property, so that we

can find a positive sequence (wn) in OPy such that wn
o−→ Pz in B. We may write

wn = Pun, where 0 ≤ un ∈ Lx,y. Clearly, (Pun) is order bounded, say, Pun ≤ a
for all n ≥ 1 and some a ∈ X+. Then it follows from

|P (un ∧ nx)− Pz| ≤ |Pun − Pz|+ |Pun − P (un ∧ nx)|
=|Pun − Pz|+ |Pun − (Pun) ∧ (nx)| = |Pun − Pz|+ (Pun − nx)+

≤|Pun − Pz|+ (a− nx)+

that
P (un ∧ nx)

o−→ Pz in X.

Note that I − P is also a lattice homomorphism and (I − P )x = 0. Therefore,
(I−P )u ∈ Span(I −P )y for any u ∈ Lx,y. It follows that (I −P )z ∈ Span(I−P )y
as well, say, (I − P )z = λ(I − P )y. Now put zn = un ∧ nx+ λ(y − y ∧ nx) ∈ Lx,y.

Since y ∧ nx ↑ y, Pzn
o−→ Pz. Clearly, (I − P )zn = λ(I − P )y = (I − P )z. Hence,

zn
o−→ z in X, so that z ∈ Lx,y

o
. This proves that Lx,y

o
is order closed. �

Orlicz spaces have been used in mathematical finance and economics as a general
framework of model spaces; see, e.g., [5, 7,11,12,15]. We state Theorem 2.9 in this
setting. We refer to [8, Chapter 2] for definitions of Orlicz functions and spaces.
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Corollary 2.10. The order closure of the option space Of is order closed for every
f ≥ 0 in an Orlicz space LΦ over a probability space.

Proof. If Φ is finite-valued, then it is well known that 1 ∈ (LΦ)a, so that Theo-
rem 2.9 applies. If Φ is not finite-valued, then LΦ = L∞. If a sequence (gn) in

Of converges a.s. to some g, then Of � (gn ∧ M1) ∨ (−M1)
o−→ g in L∞, where

M = ‖g‖∞. �

Example 2.11. There exists a Banach function space X for which Of
o
is not order

closed for some f ≥ 0. Indeed, take any Banach function space X ′ which is not
order continuous. Then by Theorem 2.7, we can find x, y > 0 such that Lx,y

o
is

not order closed. Replacing y with x + y, we may assume that 0 < x < y. By
restricting to supp y, we may assume y > 0 a.s. Then X := { f

y : f ∈ X ′} with the

norm ‖ f
y ‖X := ‖f‖X′ is a Banach function space such that 1, x/y ∈ X, and Ox/y

o

is not order closed in X.

Our next result says that Y
o
is o-closed when Y is regular. The following lemma

is well known and was also observed in [19].

Lemma 2.12. Let X be an order complete vector lattice and Y be a sublattice of
X. Then Y is order closed in X if and only if for any subset A of Y+, its supremum
in X, whenever existing, belongs to Y .

Theorem 2.13. Let X be a vector lattice and Y be a regular sublattice of X. Then
Y

uo
= Y

o
, and both are order closed. Moreover, if 0 < x ∈ Y

o
, then there exists a

net (yα) in Y+ such that yα ↑ x in X.

Proof. First assume that X and Y are both order complete. For any 0 ≤ x ∈ Y
o
,

take (yα) in Y+ such that yα
o−→ x in X. We may assume that (yα) is order bounded

in X+. Then x = supα infβ≥α yβ , where the inf and sup are taken in X. Note that
the infimum of (yβ)β≥α exists in Y by order completeness of Y and equals the
infimum of (yβ)β≥α in X, by regularity of Y . Put zα = infβ≥α yβ . Then

(◦) (zα) ⊂ Y+, sup zα = x,

where the supremum is taken in X. Now pick any subset A of (Y
o
)+ which has a

supremum x in X. For any a ∈ A, we can find, by (◦), a set Aa in Y+ such that
supAa = a in X. It is clear that sup

⋃
a∈A Aa = x in X. Adding finite suprema to

⋃
a∈A Aa, we obtain a net in Y+ which increases to x in X, whence x ∈ Y

o
. This

proves that Y
o
is order closed in X by Lemma 2.12.

In general, by [13, Theorem 2.10], the order completion Y δ of Y is a regular
sublattice of the order completion Xδ of X. Therefore, by the preceding case, the

order closure Y δ
o
of Y δ in Xδ is an order closed sublattice in Xδ. We claim that

Y δ
o
∩X = Y

o
.

For any x ∈ Y
o
, there exists a net (yα) in Y such that yα

o−→ x in X. By [13,

Corollary 2.9], we have yα
o−→ x in Xδ, and therefore, x ∈ Y δ

o
. It follows that

Y
o ⊂ Y δ

o
∩X. Conversely, pick x ∈ Y δ

o
∩X. Without loss of generality, assume

x ≥ 0. By (◦), we can find a subset A ⊂ (Y δ)+ such that x = supA in Xδ.
By order denseness of Y in Y δ, for each a ∈ A, we can find Aa ⊂ Y+ such that
a = supAa in Y δ, and therefore, in Xδ, by regularity of Y δ in Xδ. It follows that⋃

a∈A Aa is a subset of Y+ and its supremum equals x in Xδ, and therefore, in X.
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Adding finite suprema into
⋃

a∈A Aa yields a net in Y+ which increases to x in X,

hence, x ∈ Y
o
. This proves the claim. Finally, let (yα) be a net in Y

o
and x ∈ X

such that yα
o−→ x in X. Then (yα) ⊂ Y δ

o
by the claim, and by yα

o−→ x in Xδ, it

follows from order closedness of Y δ
o
that x ∈ Y δ

o
. Therefore, x ∈ Y

o
, by the claim

again. This proves that Y
o
is order closed. �

3. Measurability

In [19,20], Luxemburg and de Pagter related order closed sublattices to measur-
ability in vector lattices. Using their result, we can provide another approach to
obtain smallest order closed sublattices. We first recall some definitions from [19].
Let X be an order complete vector lattice with a weak unit u > 0. The set Cu

collects all components of u, i.e., all x ∈ X such that (u− x) ∧ x = 0. A subset F
of Cu is called a complete Boolean subalgebra of Cu if 0 ∈ F , u − a ∈ F for any
a ∈ F , and supC ∈ F for any subset C of F . For such F , a vector x ∈ X is said
to be measurable with respect to F if P(λu−x)+u = supn≥1(n(λu−x)+)∧u ∈ F for
all λ ∈ R. Denote by L0(F ) the collection of all elements in X that are measurable
with respect to F . For a subset A of X, denote by σ(A) the intersection of all com-
plete Boolean subalgebras of Cu with respect to which each a ∈ A is measurable;
clearly, it is the smallest such complete Boolean subalgebra of Cu.

Example 3.1. Given a probability space (Ω,Σ,P), for a σ-subalgebra A of Σ, put
F = {1F : F ∈ A }. Then a simple application of the countable sup property of
L0(Σ) yields that F is a complete Boolean subalgebra of C1 in L0(Σ). Conversely, if
F is a complete Boolean subalgebra of C1 in L0(Σ), then A := {F ∈ Σ : 1F ∈ F}
is a σ-subalgebra of Σ.

Theorem 3.2 ([19]). Let X be an order complete vector lattice with a weak unit
u > 0 and F be a complete Boolean subalgebra of Cu. Then L0(F ) is an order
closed sublattice of X.

The next proposition is a more precise version of Theorem 3.2.

Proposition 3.3. Let X be an order complete vector lattice with a weak unit u > 0
and A be a subset of X. Then L0(σ(A)) is the smallest order closed sublattice
containing A and u.

Proof. It is clear that u ∈ σ(A) ⊂ L0(σ(A)). Since each a ∈ A is measurable with
respect to σ(A), it is also immediate that A ⊂ L0(σ(A)). Now let Y be an order
closed sublattice of X containing A and u. Put F = Y ∩ Cu. We first claim that
F is a complete Boolean subalgebra of Cu. Indeed, it is clear that F ⊂ Cu, 0 ∈ F ,
and if v ∈ F , then u−v ∈ F . Now if C ⊂ F , then the supremum of C inX belongs
to Y by Lemma 2.12. By [2, Theorem 1.49], the supremum of C in X also belongs
to Cu, and therefore, to F . This proves the claim. Next, we show that σ(A) ⊂ F
or, equivalently, that each a ∈ A is measurable with respect to F . Indeed, for any
a ∈ A, any λ ∈ R and any n ≥ 1, we have n(λu − a)+ ∧ u ∈ Y . Therefore, their
supremum in X, over all n ∈ N, also belongs to Y by Lemma 2.12. Note that this
supremum is simply P(λu−a)+u; we thus obtain that P(λu−a)+u ∈ Y ∩ Cu = F .
This proves that a is measurable with respect to F , as desired. Finally, for any
x ∈ L0(σ(A)), by [19, Proposition 2.6] there exists a sequence (xn) in Span(σ(A))

such that xn
o−→ x in X. Since σ(A) ⊂ F ⊂ Y , we have xn ∈ Y for each n. It

follows from order closedness of Y that x ∈ Y . Hence, L0(σ(A)) ⊂ Y . �
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A combination of Proposition 3.3 and Theorem 2.2 (cf. also Remark 2.3) immedi-
ately gives (∗) in the Introduction. In fact, using Proposition 3.3 and Theorem 2.9,
we obtain the following strong spanning power of options.

Corollary 3.4. Let X be a Banach function space over a probability space such
that 1 ∈ Xa, and let f ∈ X+. Then X(σ(f)) = Of

o
.

The following is immediate by Proposition 3.3 and Theorem 2.13.

Corollary 3.5. Let X be an order complete vector lattice with a weak unit u > 0
and Y be a regular sublattice of X containing u. Then x ∈ L0(σ(Y )) iff there exists

a net (yα) in Y such that yα
o−→ x in X. If, in addition, x > 0, then (yα) can be

chosen positive and increasing.

For a complete Boolean subalgebra F of Cu, it is easily seen that Span(F ) is a
regular sublattice inX and σ(Span(F )) = F . Thus, Corollary 3.5 can be viewed as
a generalization of [19, Proposition 2.6], which is essentially Freudenthal’s Spectral
Theorem.

The following is also immediate by Proposition 3.3 and extends [16, Lemma 2.2].

Corollary 3.6. Let X be an order complete vector lattice with a weak unit u > 0
and Y be a sublattice of X containing u. Then Y is order closed if and only if
Y = L0(σ(Y )).

Example 3.7. Let Y be an order closed sublattice in a Banach function space X
over (Ω,Σ,P). Then there exist u ∈ Y+ and a σ-subalgebra G of Σ such that

Y = {g ∈ X : g = uh, h is G-measurable}.
Indeed, it is known that X has a weak unit e. By the countable sup property of X,
one can take a sequence (gn) in Y+ such that supn(gn ∧ e) = supg∈Y+

(g ∧ e) in X.

Then
∑N

1
gn

2n‖gn‖+1 ↑ u for some u ∈ X. Clearly, u ∈ Y+, and P(supp g\ supp u) = 0

for any g ∈ Y . Thus by passing to the support of u, one may assume that u is a weak
unit of X. By Corollary 3.6, we have Y = L0(σ(Y )), where σ(Y ) is the complete
Boolean subalgebra generated by Y in Cu. Every member in Cu has the form 1Au
for some set A ∈ Σ. Collecting all such A together for the members in σ(Y ) forms
a σ-subalgebra of Σ, which we denote by G. Now for each 0 ≤ g ∈ L0(σ(Y )), by
[19, Proposition 2.6], there exists a sequence (gn) in Spanσ(Y ) such that 0 ≤ gn ↑ g
in X. Of course, gn = hnu where hn is a simple function on G, and 0 ≤ hn ↑. Let
h = limn hn. Then h is measurable with respect to G, and g = uh. The reverse
inclusion can be proved similarly.
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