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IMPROVED CAUCHY RADIUS FOR SCALAR

AND MATRIX POLYNOMIALS

A. MELMAN

(Communicated by Walter Van Assche)

Abstract. We improve the Cauchy radius of both scalar and matrix polyno-
mials, which is an upper bound on the moduli of the zeros and eigenvalues,
respectively, by using appropriate polynomial multipliers.

1. Introduction

A simple but classical result from 1829 due to Cauchy ([2], [5, Th.(27,1), p. 122
and Exercise 1, p. 126]) states that the zeros of a polynomial p(z) = anz

n +
an−1z

n−1 + · · · + a1z + a0, with complex coefficients and an �= 0, lie in |z| ≤ ρ[p],
where ρ[p] is the Cauchy radius of p, namely, the unique positive solution of

|an|zn − |an−1|zn−1 − · · · − |a1|z − |a0| = 0.

A smaller Cauchy radius was obtained much more recently in [8, Theorem 8.3.1]
by Rahman and Schmeisser, who showed that ρ[(anz

k − an−k)p(z)] ≤ ρ[p], where
k is the smallest positive integer such that an−k �= 0, i.e., a better bound can be
found by using a polynomial multiplier.

A generalization to matrix polynomials of Cauchy’s classical bound for scalar
polynomials was derived in [1], [4], and [6]. It states that all the eigenvalues of the
regular matrix polynomial P (z) = Anz

n+An−1z
n−1+ · · ·+A1z+A0, with complex

coefficient matrices and An nonsingular, lie in |z| ≤ ρ[P ], where, as in the scalar
case, ρ[P ] is called the Cauchy radius of P , which is the unique positive solution of

‖A−1
n ‖−1zn − ‖An−1‖zn−1 − · · · − ‖A1‖z − ‖A0‖ = 0

for any matrix norm. The eigenvalues of P are the complex numbers z for which
a nonzero complex vector v exists such that P (z)v = 0. If An is nonsingular, they
are the solutions of detP (z) = 0. A matrix polynomial P is regular if detP is not
identically zero. When P is linear and monic, i.e., P (z) = Iz+A0, one obtains the
standard eigenvalue problem.

In [7], the improved Cauchy radius from [8] was also generalized to matrix poly-
nomials. It was shown there that, under mild conditions on An and with k the
smallest positive integer such that An−k is not the null matrix, both

ρ
[(
Anz

k −An−k

)
P (z)

]
≤ ρ [P ] and ρ

[
P (z)

(
Anz

k −An−k

)]
≤ ρ [P ] .
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Other multipliers with these properties do not seem to exist in the literature,
and our purpose here is to derive different multipliers that also improve the Cauchy
radius for both scalar and matrix polynomials and that, in general, perform better
than the improvements from [7] and [8].

In Section 2 we present such polynomial multipliers first for matrix polynomials,
while we consider scalar polynomials as a special case in Section 3.

2. Improved Cauchy radius for matrix polynomials

The following theorem presents three matrix polynomials, obtained by multiply-
ing a given matrix polynomial P by another matrix polynomial, that have a smaller
Cauchy radius than that of P . Clearly, for any matrix polynomial T , a region in
the complex plane containing all the eigenvalues of TP or PT also contains those
of P .

Theorem 2.1. Let P (z) =
∑n

j=0Ajz
j be a regular matrix polynomial of degree n

that is at least a trinomial, with square complex matrices Aj (0 ≤ j ≤ n) and An

nonsingular, and let k and � be the smallest positive integers such that An−k and
An−k−� are not the null matrix. Define

Q
(L)
1 (z) =

(
Anz

k+� −An−kz
� −An−k−�

)
P (z),

Q
(L)
2 (z) =

(
Anz

2k −An−kz
k +A2

n−kA
−1
n

)
P (z),

and, when � = k,

Q
(L)
3 (z) =

(
Anz

2k −An−kz
k −An−2k +A2

n−kA
−1
n

)
P (z).

Furthermore, define

Q
(R)
1 (z) = P (z)

(
Anz

k+� −An−kz
� −An−k−�

)
,

Q
(R)
2 (z) = P (z)

(
Anz

2k −An−kz
k +A2

n−kA
−1
n

)
,

and, when � = k,

Q
(R)
3 (z) = P (z)

(
Anz

2k −An−kz
k −An−2k +A2

n−kA
−1
n

)
.

For any matrix norm ‖.‖, if ‖A−2
n ‖−1 = ‖An‖‖A−1

n ‖−1 and if AnAn−k = An−kAn

and AnAn−k−� = An−k−�An, then, for any admissible values of k and �, it follows

that ρ[Q
(L)
j ] ≤ ρ[P ] for j = 1, 2. If � = k, then ρ[Q

(L)
3 ] ≤ ρ[P ]. Analogous results

hold for Q
(R)
j (j = 1, 2, 3).

Proof. We prove the theorem for Q
(L)
j (j = 1, 2, 3); the proof for Q

(R)
j (j = 1, 2, 3)

is analogous. Let k and � be as in the statement of the theorem and, if it exists, let
s be the first positive integer such that An−k−�−s is not the null matrix (when P is
a trinomial, then no such s exists). We will make use of the following expression,
where m is any positive integer and M is any square complex matrix:(

Anz
k+m −An−kz

m −M
)
P (z)

= A2
nz

n+k+m +AnAn−k−�z
n−�+m −A2

n−kz
n−k+m −MAnz

n

+Anz
k+m

n−k−�−s∑
j=0

Ajz
j −An−kz

m
n−k−�∑
j=0

Ajz
j −M

n−k∑
j=0

Ajz
j .

(2.1)
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If P is a trinomial, then the summation in (2.1) with upper index limit n−k− �−s
is set equal to zero.

We begin with Q
(L)
1 , which is obtained by setting m = � and M = An−k−�

in (2.1):

(2.2)
(
Anz

k+� −An−kz
� −An−k−�

)
P (z) = Q

(L)
1 (z) = A2

nz
n+k+� + S(z),

where

(2.3) S(z) = −A2
n−kz

n−k+� +Anz
k+�

n−k−�−s∑
j=0

Ajz
j

−An−kz
�
n−k−�∑
j=0

Ajz
j −An−k−�

n−k∑
j=0

Ajz
j =

ν∑
j=0

Bjz
j ,

ν ≤ n−min{s, k − �} (when P is a trinomial, ν ≤ 2(n− k) = 2�, since in this case
k+ � = n so that k− � = 2k−n), and each matrix Bj is a sum of terms of the form
Aj or AiAj . If we define

Φ(z) =

ν∑
j=0

‖Bj‖zj ,

then the Cauchy radius of Q
(L)
1 is the unique positive solution of ‖A−2

n ‖−1zn+k+�−
Φ(z) = 0. We now set x = ρ[P ], i.e., x satisfies

(2.4) ‖A−1
n ‖−1xn − ‖An−k‖xn−k − ‖An−k−�‖xn−k−� −

n−k−�−s∑
j=0

‖Aj‖xj = 0.

Using (2.4) and the basic properties ‖A + B‖ ≤ ‖A‖+ ‖B‖ and ‖AB‖ ≤ ‖A‖‖B‖
of matrix norms, we have that

(2.5) Φ(x) ≤ ‖An−k‖2xn−k+� + ‖An‖xk+�
n−k−�−s∑

j=0

‖Aj‖xj

+ ‖An−k‖x�
n−k−�∑
j=0

‖Aj‖xj + ‖An−k−�‖
n−k∑
j=0

‖Aj‖xj

= ‖An−k‖2xn−k+� + ‖An‖xk+�
(
‖A−1

n ‖−1xn − ‖An−k‖xn−k − ‖An−k−�‖xn−k−�
)

+‖An−k‖x�
(
‖A−1

n ‖−1xn − ‖An−k‖xn−k
)
+ ‖An−k−�‖

(
‖A−1

n ‖−1xn
)

≤ ‖An‖‖A−1
n ‖−1xn+k+� = ‖A−2

n ‖−1xn+k+�.

We have used both the fact that ‖A−1
n ‖−1 ≤ ‖An‖ and our assumption that

‖A−2
n ‖−1 = ‖An‖‖A−1

n ‖−1. This means that ‖A−2
n ‖−1xn+k+� − Φ(x) ≥ 0 and,

therefore, that x must lie to the right of ρ[Q
(L)
1 ], i.e., ρ[Q

(L)
1 ] ≤ ρ[P ].

When P is a trinomial, the second term in the right-hand side of (2.5) is absent,
and the result follows analogously.

For Q
(L)
2 the proof is similar and we will omit unnecessary details. Here we set

m = k and M = −A2
n−kA

−1
n in (2.1) to obtain

(2.6)
(
Anz

2k −An−kz
k +A2

n−kA
−1
n

)
P (z) = Q

(L)
2 (z) = A2

nz
n+2k + S(z),
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where

(2.7) S(z) = AnAn−k−�z
n−�+k +Anz

2k
n−k−�−s∑

j=0

Ajz
j

−An−kz
k
n−k−�∑
j=0

Ajz
j +A2

n−kA
−1
n

n−k∑
j=0

Ajz
j =

ν∑
j=0

Bjz
j ,

and ν = n −min{k, � − k} (when P is a trinomial, ν = n −min{k, n − 2k}). The

Cauchy radius of Q
(L)
2 is the unique positive solution of ‖A−2

n ‖−1zn+2k −Φ(z) = 0,
where Φ(z) =

∑ν
j=0 ‖Bj‖zj . With x = ρ[P ] and (2.4), we have

Φ(x) ≤ ‖An‖‖An−k−�‖xn−�+k + ‖An‖x2k
n−k−�−s∑

j=0

‖Aj‖xj

+‖An−k‖xk
n−k−�∑
j=0

‖Aj‖xj + ‖An−k‖2‖A−1
n ‖

n−k∑
j=0

‖Aj‖xj

= ‖An‖‖An−k−�‖xn−�+k

+‖An‖x2k
(
‖A−1

n ‖−1xn − ‖An−k‖xn−k − ‖An−k−�‖xn−k−�
)

+‖An−k‖xk
(
‖A−1

n ‖−1xn − ‖An−k‖xn−k
)
+ ‖An−k‖2‖A−1

n ‖
(
‖A−1

n ‖−1xn
)

≤ ‖An‖‖A−1
n ‖−1xn+2k = ‖A−2

n ‖−1xn+2k.

Therefore, ‖A−2
n ‖−1xn+2k − Φ(x) ≥ 0, implying that the Cauchy radius of Q

(L)
2 is

smaller than that of P . When P is a trinomial, the same result follows analogously
as before.

For Q
(L)
3 , with � = k, we set m = k = � and M = An−2k − A2

n−kA
−1
n in (2.1),

which gives

(2.8)
(
Anz

2k −An−kz
k − An−2k +A2

n−kA
−1
n

)
P (z) = Q

(L)
3 (z) = A2

nz
n+2k +S(z),

where

(2.9) S(z) = Anz
2k

n−2k−s∑
j=0

Ajz
j −An−kz

k
n−2k∑
j=0

Ajz
j

−
(
An−2k −A2

n−kA
−1
n

) n−k∑
j=0

Ajz
j =

ν∑
j=0

Bjz
j ,

and ν ≤ n −min{k, s} ≤ n − 1 (ν ≤ n − k ≤ n − 1 when P is a trinomial). With

Φ(z) =
∑ν

j=0 ‖Bj‖zj , the Cauchy radius of Q
(L)
3 is the unique positive solution

of ‖A−2
n ‖−1 zn+2k − Φ(z) = 0. Setting x = ρ[P ], which satisfies equation (2.4),
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we have

Φ(x) ≤ ‖An‖x2k
n−2k−s∑

j=0

‖Aj‖xj + ‖An−k‖xk
n−2k∑
j=0

‖Aj‖xj

+‖An−2k −A2
n−kA

−1
n ‖

n−k∑
j=0

‖Aj‖xj

= ‖An‖x2k
(
‖A−1

n ‖−1xn − ‖An−k‖xn−k − ‖An−2k‖xn−2k
)

+‖An−k‖xk
(
‖A−1

n ‖−1xn − ‖An−k‖xn−k
)

+‖An−2k −A2
n−kA

−1
n ‖

(
‖A−1

n ‖−1xn
)

≤ ‖An‖‖A−1
n ‖−1xn+2k

+
(
‖An−2k −A2

n−kA
−1
n ‖‖A−1

n ‖−1 − ‖An‖‖An−2k‖ − ‖An−k‖2
)
xn

≤ ‖An‖‖A−1
n ‖−1xn+2k

+
(
‖An−2k‖‖A−1

n ‖−1 + ‖An−k‖2‖A−1
n ‖‖A−1

n ‖−1

−‖An‖‖An−2k‖ − ‖An−k‖2
)
xn

≤ ‖An‖‖A−1
n ‖−1xn+2k +

(
‖An−2k‖‖A−1

n ‖−1 − ‖An‖‖An−2k‖
)
xn

≤ ‖An‖‖A−1
n ‖−1xn+2k = ‖A−2

n ‖−1xn+2k.

We have obtained that ‖A−2
n ‖−1xn+2k − Φ(x) ≥ 0, with an analogous result when

P is a trinomial, which means that the Cauchy radius of Q
(L)
3 is smaller than that

of P . This completes the proof. �

Remarks.

• The matrix A2
n−kA

−1
n in the definitions of Q

(L)
j and Q

(R)
j for j = 2, 3 could

be replaced by A−1
n A2

n−k since positive and negative powers (if they exist)
of commuting matrices also commute.

• If An−2k = A2
n−kA

−1
n , then ρ[Q

(L)
3 ] and ρ[Q

(R)
3 ] are both equal to the

improved Cauchy radius of Theorem 8.3.1 in [8].
• The conditions AnAn−k = An−kAn, AnAn−k−� = An−k−�An, and ‖A−2

n ‖−1

= ‖An‖‖A−1
n ‖−1 may appear restrictive, but they are always satisfied if

An = I and ‖I‖ = 1. The former can be achieved by multiplying P by
A−1

n , which needs to be computed anyway to obtain the Cauchy radius.
• In general, the multipliers of P are different from the ones obtained by
repeatedly using Theorem 2.2 in [7], as their degrees can easily be seen to
be different.

The more zero coefficients a polynomial has, all else being the same, the smaller

its Cauchy radius will be. Although the matrix polynomials Q
(L)
j for j = 1, 2, 3

may have additional zero coefficients (null matrices), the ones that we have some
control over are the leading zeros immediately following the highest coefficient.
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The following lemma allows us to compare their number, thereby indicating which
multiplier might be preferable for given values of k and �.

Lemma 2.2. Let P , Q
(L)
j and Q

(R)
j (j = 1, 2, 3) be as in Theorem 2.1. Then, with

the same notation as before, the following holds:

• When � < k, the leading powers of z in Q
(L)
1 are n+ k + � and ν ≤ n− 1,

whereas for Q
(L)
2 they are n+ 2k and n+ k − � ≥ n+ 1.

• When � > k, the leading powers of z in Q
(L)
1 are n+k+� and n+�−k ≥ n+1,

whereas for Q
(L)
2 they are n+ 2k and ν ≤ n− 1.

• When � = k, the leading powers of z in Q
(L)
1 and Q

(L)
2 are n + 2k and n,

whereas for Q
(L)
3 they are n+ 2k and ν ≤ n− 1.

• All of the above results also hold true for Q
(R)
j (j = 1, 2, 3).

Proof. From (2.2) and (2.3) we have that, when � < k, then the leading powers

of Q
(L)
1 are n + k + � and ν ≤ n −min{k − �, s} ≤ n − 1 (as before, when P is a

trinomial, we obtain that ν ≤ 2(n − k) = 2� ≤ n − 1). Here, n, k, �, s, and ν are
as before. When � > k, then those powers become n+ k+ � and n+ �− k ≥ n+ 1,
and when � = k, they are n+ 2k and n.

Similarly, we observe from (2.6) and (2.7) that, when � < k, the leading powers

of Q
(L)
2 are n + 2k and n + k − � ≥ n + 1, whereas for � > k, they are n + 2k and

ν = n −min{k, � − k} ≤ n − 1. When � = k, those powers become n + 2k and n,

as for Q
(L)
1 .

When � = k, equations (2.8) and (2.9) show that the highest powers of Q
(L)
3 are

n+ 2k and ν ≤ n−min{k, s} ≤ n− 1 (when P is a trinomial, ν ≤ n− k ≤ n− 1).

The proof for Q
(R)
j (j = 1, 2, 3) is analogous. �

The number of leading zero coefficients is now easily determined with Lemma 2.2

from the leading powers of Q
(L)
j for j = 1, 2, 3. They can be found on the left

in Table 1 for the worst case (i.e., smallest number of zeros), namely, when ν = n−1,

where ν is as in Lemma 2.2, while the degrees of Q
(L)
j for j = 1, 2, 3 can be found

on the right.

Table 1. Number of zero coefficients (left) and degrees of Q
(L)
j

for j = 1, 2, 3 (right).

Q
(L)
1 Q

(L)
2 Q

(L)
3

� < k k + � k + �− 1 -

� > k 2k − 1 2k -

� = k 2k − 1 2k − 1 2k

Q
(L)
1 Q

(L)
2 Q

(L)
3

� < k n+ k + � n+ 2k -

� > k n+ k + � n+ 2k -

� = k n+ 2k n+ 2k n+ 2k

Table 1 shows that, when � < k, Q
(L)
1 has a higher number of leading zero

coefficients than Q
(L)
2 , while its degree is lower. When � > k, the same conclusion

holds with Q
(L)
1 and Q

(L)
2 trading places, and when � = k, then Q

(L)
3 has more such

zero coefficients than both Q
(L)
1 and Q

(L)
2 , while they all have the same degree.
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Analogous results are obtained for Q
(R)
j for j = 1, 2, 3. We thus arrive at the

following choice to improve the Cauchy radius of P :

Q(L)(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Anz

k+� −An−kz
� −An−k−�

)
P (z) if � < k,

(
Anz

2k −An−kz
k +A2

n−kA
−1
n

)
P (z) if � > k,

(
Anz

2k −An−kz
k −An−2k +A2

n−kA
−1
n

)
P (z) if � = k,

(2.10)

and we choose Q(R) analogously.

Remarks.

• Theorem 2.1 can be applied recursively to improve the Cauchy radius fur-
ther. One could also alternate between (L) and (R) versions, although, in
general, there does not seem to be a large difference between the two.

• The improved Cauchy radii require additional matrix multiplications, while
a real scalar polynomial equation of a degree higher than that of P needs to
be solved. The latter can be dealt with very efficiently so that, as the matrix
size increases, the cost tends to be dominated by the matrix multiplications.
It therefore depends on the application if this additional computational cost
is justified.

• The choice of Q(L) or Q(R), which was based on the number of leading zeros,
is not guaranteed to produce better results than other choices, although the
numerical examples below seem to indicate that it performs well.

• It is, in general, difficult to predict which norm provides the best result, but
in many applications the size of the matrix coefficients limits that choice
to the 1-norm or the ∞-norm.

We illustrate the usefulness of Theorem 2.1 and our choice of Q(L), defined
by (2.10), and compare it to Theorem 2.2 from [7] (the generalization to matrix
polynomials of Theorem 8.3.1 in [8]) at the hand of the following two examples. In
the first, we generate random matrix polynomials, whereas the second one is taken
from the engineering literature.

Example 1. Here we generated 1000 matrix polynomials with complex elements,
whose real and complex parts are uniformly randomly distributed on the interval
[−10, 10]. We then premultiplied each matrix polynomial by the inverse of its
leading coefficient to make its leading coefficient the identity matrix. We examined
four cases with n = 20 and 25×25 coefficients: k = 3, � = 5, k = 5, � = 3, k = � = 5,
and k = � = 1, and one case with n = 4, 250 × 250 coefficients, and k = � = 1.
Tables 2 and 3 list the averages of the ratios of the Cauchy radii to the modulus
of the largest eigenvalue, i.e., the closer this number is to 1, the better it is. This
was done for the Cauchy radius of the given matrix polynomial with the 1-norm
and five consecutive applications of Theorem 2.1, labeled as level 1-5, using Q(L)

defined by (2.10) for each application. In each column, the numbers on the left
are the ratios obtained by Theorem 2.1, while the ones on the right are the ratios
from Theorem 2.2 in [7]. Clearly, significant improvements can be obtained from
Theorem 2.1. Moreover, the advantage of having another multiplier in addition to
the one from [7] is that it can sometimes accelerate an otherwise slowly progressing
recursion.
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Table 2. Comparison of Cauchy radii for Example 1.

Level n = 20, m = 25 n = 20, m = 25 n = 20, m = 25
k = 3, � = 5 k = 5, � = 3 k = � = 5

Cauchy 1.991 1.482 1.492
1 1.257 | 1.404 1.236 | 1.264 1.165 | 1.231
2 1.135 | 1.198 1.155 | 1.235 1.151 | 1.145
3 1.127 | 1.190 1.145 | 1.217 1.146 | 1.358
4 1.123 | 1.186 1.117 | 1.152 1.093 | 1.130
5 1.118 | 1.184 1.070 | 1.145 1.087 | 1.126

Table 3. Comparison of Cauchy radii for Example 1.

Level n = 20, m = 25 n = 4, m = 250
k = � = 1 k = � = 1

Cauchy 8.442 33.963
1 2.003 | 2.880 3.154 | 5.725
2 1.419 | 1.770 1.763 | 2.419
3 1.237 | 1.681 1.361 | 2.350
4 1.195 | 1.366 1.326 | 1.574
5 1.194 | 1.328 1.326 | 1.543

Example 2. This example is taken from [3], where a structural dynamics model
representing a reinforced concrete machine foundation is formulated as a sparse
quadratic 3627 × 3627 eigenvalue problem with k = � = 1. Of the many bounds
on the eigenvalues that were examined in [4] for the 1-norm and ∞-norm for this
problem (the 2-norm is too costly here), the Cauchy radius was among the best.
Theorem 2.2 in [7] improves those bounds significantly, but Theorem 2.1 improves
them even more. Table 4 shows the actual Cauchy radius and its improvements from
five successive applications of Theorem 2.2 in [7] and Theorem 2.1 for the 1-norm
on the left and the ∞-norm on the right. In each column, the numbers on the
left are obtained from Theorem 2.1, while those on the right are from Theorem 2.2
in [7]. Here too, we have used Q(L) defined in (2.10). The modulus of the largest
eigenvalue is 2.120× 104, and in the table all bounds were divided by 104.

Table 4. Comparison of Cauchy radii for Example 2 with the
1-norm (left) and the ∞-norm (right).

Cauchy 3.532
Level 1 2.762 | 3.349
Level 2 2.427 | 2.737
Level 3 2.413 | 2.722
Level 4 2.272 | 2.425
Level 5 2.271 | 2.419

Cauchy 3.173
Level 1 2.658 | 3.064
Level 2 2.380 | 2.652
Level 3 2.363 | 2.598
Level 4 2.260 | 2.380
Level 5 2.260 | 2.374



IMPROVED CAUCHY RADIUS FOR SCALAR AND MATRIX POLYNOMIALS 621

3. Improved Cauchy radius for scalar polynomials

Since scalar polynomials are 1 × 1 matrix polynomials, Theorem 2.1 can be
applied to them as a special case. Moreover, because of their scalar nature, the
theorem can be slightly refined, as stated in the following theorem.

Theorem 3.1. Let p(z) =
∑n

j=0 ajz
j be a polynomial of degree n with complex

coefficients that is at least a trinomial, and let k and � be the smallest positive
integers such that an−k and an−k−� are not zero. Define

q1(z) =
(
anz

k+� − an−kz
� − an−k−�

)
p(z),

q2(z) =

(
anz

2k − an−kz
k +

a2n−k

an

)
p(z),

and, when � = k,

q3(z) =

(
anz

2k − an−kz
k − an−2k +

a2n−k

an

)
p(z).

Then the following holds:
(1) For any admissible values of k and �, ρ[qj ] ≤ ρ[p] for j = 1, 2, and if � = k,

then ρ[q3] ≤ ρ[p].
(2) If all the coefficients of p are nonzero, then the inequalities in part (1) are

strict, unless p has a zero of modulus ρ[p].

Proof. The first part of the theorem follows immediately from Theorem 2.1 as a
special case because complex numbers are 1 × 1 complex matrices. The second
part requires some elaboration. To avoid tedious repetition, we present a detailed
proof only for q1, and sketch the proof for q2 and q3. Throughout, if the index of a
quantity is inadmissible, then that quantity is set equal to zero.

We now assume that all the coefficients of p are nonzero, so that k = � = 1, and
we begin with q1. The expression corresponding to S(z), defined by (2.3) in the
proof of Theorem 2.1, is given by

S(z) = −a2n−1z
n + anz

2
n−3∑
j=1

ajz
j − an−1z

n−2∑
j=0

ajz
j − an−2

n−1∑
j=0

ajz
j

= −a2n−1z
n +

n−1∑
j=2

anaj−2z
j −

n−1∑
j=1

an−1aj−1z
j −

n−1∑
j=0

an−2ajz
j

= −a2n−1z
n +

n−1∑
j=2

(anaj−2 − an−1aj−1 − an−2aj) z
j

− (an−1a0 + an−2a1) z − an−2a0,

while the expression corresponding to Φ becomes

Φ(z) = |an−1|2zn +

n−1∑
j=2

|anaj−2 − an−1aj−1 − an−2aj | zj

+ |an−1a0 + an−2a1| z + |an−2a0|.
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For x = ρ[p], the inequality corresponding to (2.5) is

(3.1) Φ(x) ≤ |an−1|2xn +

n−1∑
j=2

(|anaj−2|+ |an−1aj−1|+ |an−2aj |)xj

+ (|an−1a0|+ |an−2a1|) x+ |an−2a0|.

The inequality in (3.1) is strict, unless
(3.2)
|anaj−2−an−1aj−1−an−2aj | = |anaj−2|+ |an−1aj−1|+ |an−2aj | (j = 2, . . . , n−1)

and

(3.3) |an−1a0 + an−2a1| = |an−1a0|+ |an−2a1|.

We now define ϕj = arg aj and use ϕ ∼= ψ to indicate that ϕ and ψ only differ by
an integer multiple of 2π, so that eiϕ = eiψ. If (3.2) and (3.3) hold, then we have
from (3.2) for j = 2, . . . , n− 1, that

ϕn + ϕj−2
∼= ϕn−1 + ϕj−1 + π , or ϕj−2

∼= ϕj−1 + ϕn−1 − ϕn + π,(3.4)

and

ϕn−1 + ϕj−1
∼= ϕn−2 + ϕj ,(3.5)

while from (3.3) we have

(3.6) ϕn−1 + ϕ0
∼= ϕn−2 + ϕ1.

Combining (3.4) with the substitution j=j−1 in (3.5), we obtain for j=3, . . . , n−1
that

ϕj−2
∼= ϕj−1 + ϕn−1 − ϕn + π ∼= ϕj−1 + ϕn−2 − ϕn−1,

which implies that

(3.7) ϕn−2
∼= 2ϕn−1 − ϕn + π.

Substituting this in (3.6) shows that (3.6) is covered by (3.4). The expression
in (3.4) is equivalent to

(3.8) ϕj−1
∼= ϕj + ϕn−1 − ϕn + π (j = 1, . . . , n− 2),

and we have obtained from (3.7) that (3.8) also holds for j = n − 1. From here
on, the proof follows that of Theorem 8.3.1.in [8]. As in that proof, the equations
in (3.8), used recursively for j = n− 1, . . . , 1, yield

ϕn−j
∼= ϕn−1 + (j − 1)Δ (j = 1, . . . , n),

where Δ = ϕn−1 − ϕn + π, which is equivalent to

(3.9) ϕj
∼= (n− j)Δ + ϕn − π (j = 0, . . . , n− 1).
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Using (3.9), we now show that, under these conditions, xeiΔ, where x = ρ[p], is a
zero of p:

n∑
j=0

aj(xe
iΔ)j =

n−1∑
j=0

|aj |eiϕjxjeijΔ + |an|eiϕnxneinΔ

= ei(ϕn+nΔ)

⎛
⎝n−1∑

j=0

|aj |ei(ϕj−(n−j)Δ−ϕn)xj + |an|xn

⎞
⎠

= ei(ϕn+nΔ)

⎛
⎝n−1∑

j=0

e−iπ|aj |xj + |an|xn

⎞
⎠ = 0,

since e−iπ = −1, so that xeiΔ is indeed a zero of p.
For q2, we obtain for S(z), defined in (2.7),

S(z) = anan−2z
n + anz

2
n−3∑
j=1

ajz
j − an−1z

n−2∑
j=0

ajz
j +

a2n−1

an

n−1∑
j=0

ajz
j

= anan−2z
n +

n−1∑
j=2

anaj−2z
j −

n−1∑
j=1

an−1aj−1z
j +

n−1∑
j=0

a2n−1aj

an
zj

= anan−2z
n +

n−1∑
j=2

(
anaj−2 − an−1aj−1 +

a2n−1aj

an

)
zj

+

(
−an−1a0 +

a2n−1a1

an

)
z +

a2n−1a0

an
,

and for q3, we obtain, as in (2.9),

S(z) = anz
2
n−3∑
j=1

ajz
j − an−1z

n−2∑
j=0

ajz
j −

(
an−2 −

a2n−1

an

) n−1∑
j=0

ajz
j

=

n−1∑
j=2

anaj−2z
j −

n−1∑
j=1

an−1aj−1z
j −

n−1∑
j=0

(
an−2 −

a2n−1

an

)
ajz

j

=
n−1∑
j=2

(
anaj−2 − an−1aj−1 − an−2aj +

a2n−1aj

an

)
zj

+

(
−an−1a0 − an−2a1 +

a2n−1a1

an

)
z +

(
−an−2 +

a2n−1

an

)
a0.

Analogously to the proof for q1, we now obtain the same equations (3.9) for both
q2 and q3, from which the proof follows for these polynomials as well. �
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Here too, and for the same reasons as in the matrix case, we make the following
choice to improve the Cauchy radius of p:

q(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
anz

k+� − an−kz
� − an−k−�

)
p(z) if � < k,

(
anz

2k − an−kz
k + a2n−ka

−1
n

)
p(z) if � > k,

(
anz

2k − an−kz
k − an−2k +

a2n−k

an

)
p(z) if � = k.
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Oeuvres Complètes, Série 2, Tome 9, 86–161. Gauthiers-Villars et fils, Paris, 1891.

[3] A. Feriani, F. Perotti, and V. Simoncini, Iterative system solvers for the frequency analysis of
linear mechanical systems, Comput. Methods Appl. Mech, Eng., 19 (2000), 1719–1739.

[4] Nicholas J. Higham and Françoise Tisseur, Bounds for eigenvalues of matrix polynomials,
Linear Algebra Appl. 358 (2003), 5–22, DOI 10.1016/S0024-3795(01)00316-0. Special issue on
accurate solution of eigenvalue problems (Hagen, 2000). MR1942721

[5] Morris Marden, Geometry of polynomials, Second edition. Mathematical Surveys, No. 3, Amer-
ican Mathematical Society, Providence, R.I., 1966. MR0225972

[6] A. Melman, Generalization and variations of Pellet’s theorem for matrix polynomials, Linear
Algebra Appl. 439 (2013), no. 5, 1550–1567, DOI 10.1016/j.laa.2013.05.003. MR3067822

[7] A. Melman, Bounds for eigenvalues of matrix polynomials with applications to scalar polyno-
mials, Linear Algebra Appl. 504 (2016), 190–203, DOI 10.1016/j.laa.2016.04.005. MR3502534

[8] Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Soci-
ety Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford,
2002. MR1954841

Department of Applied Mathematics, School of Engineering, Santa Clara Univer-

sity, Santa Clara, California 95053

E-mail address: amelman@scu.edu

http://www.ams.org/mathscinet-getitem?mr=3144796
http://www.ams.org/mathscinet-getitem?mr=1942721
http://www.ams.org/mathscinet-getitem?mr=0225972
http://www.ams.org/mathscinet-getitem?mr=3067822
http://www.ams.org/mathscinet-getitem?mr=3502534
http://www.ams.org/mathscinet-getitem?mr=1954841

	1. Introduction
	2. Improved Cauchy radius for matrix polynomials
	3. Improved Cauchy radius for scalar polynomials
	Acknowledgement
	References

