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ON THE VOLUME OF LOCALLY CONFORMALLY FLAT

4-DIMENSIONAL CLOSED HYPERSURFACE

QING CUI AND LINLIN SUN

(Communicated by Lei Ni)

Abstract. Let M be a 5-dimensional Riemannian manifold with SecM ∈
[0, 1] and Σ be a locally conformally flat closed hypersurface in M with mean

curvature function H. We prove that there exists ε0 > 0 such that∫
Σ
(1 +H2)2 ≥ 4π2

3
χ(Σ),(1)

provided |H| ≤ ε0, where χ(Σ) is the Euler number of Σ. In particular, if

Σ is a locally conformally flat minimal hypersphere in M , then V ol(Σ) ≥
8π2/3, which partially answers a question proposed by Mazet and Rosenberg.

Moreover, we show that if M is (some special but large class) rotationally

symmetric, then the inequality (1) holds for all H.

1. Introduction

Let M be a 2-sphere with a smooth Riemannian metric such that the curvature

is between 0 and 1. It is known (see [5] or [8]) that the length of an embedded

closed geodesic in M is at least 2π, which is the length of the standard circle in the

Euclidean plane. When M is a Riemannian 3-manifold with sectional curvature

between 0 and 1, one can easily apply the Gauss equation and the Gauss-Bonnet

theorem to obtain that an embedded minimal sphere Σ in M has area at least 4π,

that is,

4π =

∫
Σ

SecΣ =

∫
Σ

R1212 =

∫
Σ

(
R1212 −

1

2
|A|2

)
≤

∫
Σ

R1212 ≤ V ol (Σ) ,

where R and R denote the curvature tensors of Σ and M , and A denotes the second

fundamental form of Σ in M .

In [6], Mazet and Rosenberg study the equality case and get a rigidity theorem

for M . The authors also put forward two very interesting questions: one of them

is, if M is an (n+1)-Riemannian manifold with SecM ∈ [0, 1], does an embedded

minimal hypersphere (i.e., minimal hypersurface diffeomorphic to the standard Eu-

clidean n-sphere S
n) have volume at least the volume of Sn? In 1974, Hoffman
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and Spruck [4] studied the isoperimetric inequality and showed that if M is a sim-

ply connected Riemannian (n+ 1)-manifold with SecM ∈ [1/4, 1], then any closed

minimal hypersurface has at least the volume of Sn. Therefore, if the answer to

Mazet and Rosenberg’s question is true, it can be seen as a generalization (with

topological restriction) of Hoffman and Spruck’s result. We would like to point out

that if SecM ∈ [0, 1], the topological restriction on Σ is necessary. Actually, given

ε > 0, let Σ be a flat n-torus with V ol(Σ) ≤ ε (which can be done by passing

a dilation). Then Σ is a totally geodesic closed hypersurface embedded in Σ × R

whose sectional curvature is 0.

Note that in the case of n = 2, every surface admits isothermal coordinates

and therefore is locally conformally flat. It seems natural to add the condition

“locally conformally flat” on the hypersurface in the high dimensional case. In this

paper, we focus our attention on the case of n = 4, pose the assumption that Σ is

locally conformally flat, and partially answer the question proposed by Mazet and

Rosenberg. Actually, we get a more general result as follows.

Theorem 1.1. Let M be a 5-dimensional Riemannian manifold with SecM ∈ [0, 1],

and Σ be an embedded locally conformally flat closed hypersurface in M with mean

curvature function H. Then we have∫
Σ

(
(1 +H2)2 + |H|f(|H|)

)
≥ 4π2

3
χ(Σ) ,(2)

where f is a nonnegative function defined in Section 2, and χ(Σ) is the Euler

number of Σ.

Moreover, there exists ε0 > 0 such that if |H| ≤ ε0, we obtain∫
Σ

(
1 +H2

)2 ≥ 4π2

3
χ(Σ).(3)

The equality holds if and only if the mean curvature H is constant, and Σ is totally

umbilic and isometric to S
4
(

1
1+H2

)
.

As an immediate corollary of Theorem 1.1, the following result partially answers

the question proposed by Mazet and Rosenberg.

Theorem 1.2. Let M be a 5-dimensional Riemannian manifold with SecM ∈ [0, 1],

and Σ be an embedded locally conformally flat minimal hypersphere in M . Then

V ol(Σ) ≥ 8π2

3
= V ol

(
S
4
)
.

The equality holds if and only if Σ is totally geodesic and isometric to S
4.

This paper is organized as follows. In Section 2, we list some notation and known

formulas and give the proof of Theorem 1.1. In Section 3, we deal with a special

case when M is rotationally symmetric and get the lower bound volume for all H;

see Theorem 3.2.

2. Preliminaries and proof of Theorem 1.1

Let (M, ḡ) be an (n + 1) dimensional Riemannian manifold, and (Σ, g) be a

hypersurface isometrically immersed in M . If there is no ambiguity, 〈· , ·〉 will
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denote both ḡ and g. Let ∇ and ∇ be the Levi-Civita connection induced by

metric ḡ and g respectively. Let R be the curvature tensor on Σ defined by, for all

X,Y, Z,W ∈ X(TΣ),

R(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉,

where R(X,Y ) = −∇X∇Y +∇Y ∇X +∇[X,Y ]. Also let R be the curvature tensor

on M which is defined similarly.

Let e1, · · · , en be a local orthonormal frame on Σ. For all 1 ≤ i, j, k, l ≤ n, write

Rijkl = R(ei, ej , ek, el), Rijkl = R(ei, ej , ek, el).

The sectional curvature will be

SecM (ei ∧ ej) = Rijij , SecM (ei ∧ ej) = Rijij .

Let A be the second fundamental form of Σ in M , and hij = 〈A(ei), ej〉 be the

coefficients of A. Then the Gauss equation can be written as

Rijkl = Rijkl + hikhjl − hilhjk.

We also denote by S
n the standard unit n sphere in (n+1) Euclidean space and

by S
n(r) the round n-sphere with radius r. Now we will prove Theorem 1.1.

Proof of Theorem 1.1. The Gauss-Bonnet-Chern formula for a closed 4-manifold Σ

is (see [2] or [3])

4π2χ (Σ) =

∫
Σ

(
S2

12
− |Ric|2

4
+

|W |2
8

)
,(4)

where χ(Σ) is the Euler characteristic of Σ, S is the scalar curvature, Ric is the

Ricci tensor and W is the Weyl tensor. It is well known that when the dimension is

greater than 3, locally conformally flatness is equivalent to Weyl tensor vanishing.

Therefore, to prove the first part of the theorem, it is sufficient to prove, pointwisely,

Claim.

Q :=
S2

12
− |Ric|2

4
≤ 3(1 +H2)2 + 3|H|f(|H|).

Next we will consider our problem at one point p ∈ Σ (in the calculations, we omit

the letter “p” for simplicity). Throughout this proof, i, j, k, l will range from 1 to 4

if there is no special explanation.

Firstly, by the Gauss equation, we obtain

S2 =

⎛
⎝∑

i,j

Rijij

⎞
⎠

2

=

⎛
⎝∑

i,j

Rijij + 16H2 − |A|2
⎞
⎠

2

=
(
σ + 12H2 − |Å|2

)2

(5)

= σ2 + 144H4 + |Å|4 + 24σH2 − 2σ|Å|2 − 24H2|Å|2,

where

σ :=
∑
i,j

Rijij and Å := A−HI;

i.e., Å is the traceless part of A.
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For simplicity, let e1, e2, e3, e4 be the principal directions at the point p, and

λ1, λ2, λ3, λ4 be the corresponding principal curvatures, so we have

|Ric|2 =
∑
i,j

(∑
k

Rikjk

)2

=
∑
i,j

(∑
k

Rikjk + 4δijλiH − δijλiλj

)2

.

For simplifying |Ric|2, we need to introduce some notation as follows:

aij :=
∑
k

Rikjk, åij :=
∑
k

Rikjk −
σ

4
δij .

Note that σ is the trace of (aij) and (̊aij) is the traceless part of (aij). Using this

notation, we get

|Ric|2 =
∑
i,j

(aij + 4δijλiH − δijλiλj)
2(6)

=
∑
i,j

a2ij + 16H2|A|2 +
∑
i

λ4
i

+ 8H
∑
i

λiaii − 2
∑
i

(
λ2
i aii

)
− 8H

∑
i

λ3
i

=
σ2

4
+ |̊a|2 + 16H2|Å|2 + 64H4 +

∑
i

λ4
i

− 2
∑
i

(
λ2
i − 4Hλi

)
aii − 8H

∑
i

λ3
i ,

where |̊a|2 =
∑

i,j å
2
ij . Next we set μi = λi −H which is the eigenvalue of Å. Then

by a direct computation, we have∑
i

λ4
i =

∑
i

μ4
i + 12H4 − 6H2|A|2 + 4H

∑
i

λ3
i(7)

=
∑
i

μ4
i − 12H4 − 6H2|Å|2 + 4H

∑
i

λ3
i

and ∑
i

λ3
i =

∑
i

μ3
i + 4H3 + 3H|Å|2.(8)

Combining (5), (6), (7) and (8) we obtain

Q =
1

12

(
σ2

4
+ 6σH2 + 36H4 + |Å|4 − 3

∑
i

μ4
i + 6

∑
i

μ2
i

(
aii −

σ

3

)
(9)

−12H
∑
i

μiaii − 18H2|Å|2 + 12H
∑
i

μ3
i − 3|̊a|2

)
.

We will divide our proof of the Claim into two main cases. We will see that

locally conformally flatness will play a key role in the estimate of Q.

(i) At the point p, |Å|2(p) ≤ 12 + 24H2(p).

By the Gauss equation,

S = σ + 12H2 − |Å|2,
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where σ is defined in (5). Since 0 ≤ σ ≤ 12, on the one hand,

S = σ + 12H2 − |Å|2 ≤ 12 + 12H2.

On the other hand,

S = σ + 12H2 − |Å|2 ≥ 12H2 − (12 + 24H2) = −12(H2 + 1).

The above two inequalities yield S2 ≤ 144(1 +H2)2. Therefore,

Q =
S2

12
− |Ric|2

4
=

S2

48
− |E|2

4
≤ S2

48
≤ 3(H2 + 1)2,

where E is the traceless part of the Ricci tensor, namely the Einstein tensor.

(ii) At the point p, |Å|2(p) ≥ 12 + 24H2(p).

The proof of this case is more difficult than of case (i). To prove the Claim, we

need to estimate Q by using the equality (9).

First note that for a fixed i, the term aii − σ
3 is bounded above by 1. We take

i = 1 for example:

a11 −
σ

3
=

∑
k

R1k1k − σ

3
=

∑
k

R1k1k −
1

3

∑
i,j

Rijij(10)

=
1

3

(
R1212 + R1313 +R1414

)
− 2

3

(
R2323 +R2424 +R3434

)
≤ 1

where we have used the curvature condition that 0 ≤ Rijij ≤ 1 for all i 	= j.

By a direct computation, we have

∑
i

μ4
i =

3∑
i=1

μ4
i +

(
3∑

i=1

μi

)4

(11)

=
1

2

⎛
⎝ 3∑

i=1

μ2
i +

(
3∑

i=1

μi

)2
⎞
⎠

2

+ 4μ1μ2μ3

(
3∑

i=1

μi

)

=
1

2
|Å|4 − 4

∏
i

μi :=
1

2
|Å|4 − 4K,

where K =
∏

i μi is the Gauss-Kronecker curvature of Å.

Observing that
∑

i μi = 0, we get

− 12H
∑
i

μiaii − 3|̊a|2(12)

= −12H
∑
i

μi̊aii − 3|̊a|2

= −3
∑
i

(̊
a2ii − 4Hμi̊aii + 4H2μ2

i

)
+ 12H2|Å|2 − 3

∑
i �=j

å2ij

≤ 12H2|Å|2.
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Combining (9), (10), (11), (12) and the fact that 0 ≤ σ ≤ 12, we have

Q ≤3
(
1 +H2

)2
(13)

+
1

12

(
−1

2
|Å|4 + 12H

∑
i

μ3
i + 6(1−H2)|Å|2 + 12K

)
.

Next we will take the Weyl tensor into consideration. The Weyl tensor defined

in a coordinate chart is given by (see e.g. [1], p. 117)

Wijkl =Rijkl −
1

2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)(14)

+
S

6
(gjlgik − gjkgil) ,

where Rij =
∑

k Rikjk is the Ricci tensor. Therefore, when i 	= j, we have

Wijij =Rijij −
1

2
(Rii +Rjj) +

S

6
.

Now we fix i = 1 and j = 2 for example and get

S

6
−W1212

=
1

2
(R11 +R22)−R1212

=
1

2
(R1313 +R1414 +R2323 +R2424)

=
1

2
(R1212 +R1313 +R1414 +R2323 +R2424 +R3434)−

1

2
(R1212 +R3434)

=
S

4
− 1

2
(R1212 +R3434) .

As a consequence, for {i, j, k, l} = {1, 2, 3, 4}, we obtain

S

6
= Rijij +Rklkl − 2Wijij(15)

=Rijij +Rklkl − 2Wijij + λiλj + λkλl

=Rijij +Rklkl − 2Wijij + 2H2

+ (λi −H)(λj −H) + (λk −H)(λl −H)

=Rijij +Rklkl − 2Wijij + 2H2 + μiμj + μkμl.

Note that the above formula has no summation on i, j, k, l.

In what follows, without loss of generality, we assume, at the point p, that

μ1 ≥ μ2 ≥ μ3 ≥ μ4.

Next we will split our proof of case (ii) into three parts according to the values of

K (defined in (11)) and μi.

(a) K(p) ≥ 0, μ1 ≥ μ2 ≥ 0 ≥ μ3 ≥ μ4.

Let i = 1 and j = 2 in (15), and since locally conformally flatness implies

W ≡ 0, we get

S

6
= Rijij +Rklkl + 2H2 + μ1μ2 + μ3μ4 ≥ 2H2.
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Consequently, S ≥ 12H2 ≥ −12(1 +H2). The remaining proof of this part

is similar to case (i).

(b) K(p) < 0 and μ1 ≥ μ2 ≥ μ3 > 0 > μ4.

In this part, a direct computation gives

∑
i

μ3
i =

3∑
i=1

μi −
(

3∑
i=1

μi

)3

≤ 0.(16)

Without loss of generality, we assume that H(p) ≥ 0 (otherwise the term

“12H
∑

i λ
3
i ” in (13) will be nonnegative. This case can be dealt with a

similar method as the next part (c)). Therefore, combining (13), (16) and

the assumption K ≤ 0, we obtain

Q ≤ 3
(
1 +H2

)2 − 1

24
|Å|2

(
|Å|2 − 12(1−H2)

)
.(17)

Note that in case (ii)

|Å|2 ≥ 12 + 24H2 ≥ 12(1−H2).

Thus the second term in the right hand side of (17) is nonpositive, and

consequently we have Q ≤ 3(1 +H2)2.

(c) K(p) < 0 and μ1 > 0 > μ2 ≥ μ3 ≥ μ4.

In this part, inequality (13) is not enough for our estimate, and we will go

back to equality (9) and estimate term by term.

Firstly,
∑

i μ
3
i ≥ 0, and we will use the following inequality (see [9, Lemma

1]):

∑
i

μ3 ≤ 1√
3
|Å|3.(18)



766 QING CUI AND LINLIN SUN

Secondly, for the term 6
∑

i μ
2
i

(
aii − σ

3

)
, under the assumption of this part,

we will use a more accurate (than (10)) estimate as follows:

3
∑
i

μ2
i

(
aii −

σ

3

)
(19)

=μ2
1

(
R1212 +R1313 +R1414 − 2

(
R2323 +R2424 +R3434

))
+ μ2

2

(
R2121 +R2323 +R2424 − 2

(
R1313 +R1414 +R3434

))
+ μ2

3

(
R3131 +R3232 +R3434 − 2

(
R1212 +R1414 +R2424

))
+ μ2

4

(
R4141 +R4242 +R4343 − 2

(
R1212 +R1313 +R2323

))
=(μ2

1 + μ2
2 − 2(μ2

3 + μ2
4))R1212 + (μ2

1 + μ2
3 − 2(μ2

2 + μ2
4))R1313

+ (μ2
1 + μ2

4 − 2(μ2
2 + μ2

3))R1414 + (μ2
2 + μ2

3 − 2(μ2
1 + μ2

4))R2323

+ (μ2
2 + μ2

4 − 2(μ2
1 + μ2

3))R2424 + (μ2
3 + μ2

4 − 2(μ2
1 + μ2

2))R3434

≤(μ2
1 + μ2

2 − 2(μ2
3 + μ2

4))R1212 + (μ2
1 + μ2

3 − 2(μ2
2 + μ2

4))R1313

+ (μ2
1 + μ2

4 − 2(μ2
2 + μ2

3))R1414

=(−2μ1μ2 − (μ3 − μ4)
2)R1212 + (−2μ1μ3 − (μ2 − μ4)

2)R1313

+ (−2μ1μ4 − (μ2 − μ3)
2)R1414

≤− 2μ1(μ2 + μ3 + μ4) = 2μ2
1 ≤ 3

2
|Å|2,

where we have used the facts that

μ1 > 0 > μ2 ≥ μ3 ≥ μ4,
∑
i

μi = 0,

and the inequality

|Å|2 =
∑
i

μ2
i ≥ μ2

1 +
(μ2 + μ3 + μ4)

2

3
=

4

3
μ2
1.

Combining (9), (11), (12), (18), (19) and the fact that 0 ≤ σ ≤ 12, we

obtain

Q ≤3
(
1 +H2

)2
(20)

+
1

12

(
−1

2
|Å|4 + 4

√
3|H||Å|3 + 3(1− 2H2)|Å|2

)

:=3
(
1 +H2

)2
+ F (|Å|),

where

F (|Å|) = 1

12

(
−1

2
|Å|4 + 4

√
3|H||Å|3 + 3(1− 2H2)|Å|2

)
(21)

=
1

12

(
−1

2
(|Å|4 − 6|Å|2) + |H|(4

√
3|Å|3 − 6|H||Å|2)

)
.

It is easy to see that F (x) attains its maximum at x0 = 3
√
3|H|+

√
3 + 21H2

and decreases when x ≥ x0.
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Keep in mind that this part is one of the three parts of case (ii), which

assumes that

|Å|2 ≥ 12 + 24H2.

Therefore, if x0 ≤
√
12 + 24H2, we have

F (|Å|) ≤ F (
√
12 + 24H2)(22)

= −(12H2 + 6)(2H2 + 1) + |H|
(√

3

3
x3 − 1

2
|H|x2

)∣∣∣∣∣
x=

√
12+24H2

≤ |H|f1(|H|),

where

f1(|H|) =
(√

3

3
x3 − 1

2
|H|x2

)∣∣∣∣∣
x=

√
12+24H2

≥ 0.

If x0 ≥
√
12 + 24H2, we obtain

F (|Å|) ≤ F (x0)(23)

=
1

12

(
−1

2
(x4 − 6x2)|x=x0

+ |H|(4
√
3x3 − 6|H|x2)|x=x0

)

≤ 1

12

(
−1

2
(x4 − 6x2)|x=√

12+24H2

)
+ |H|f2(|H|)

≤ −(12H2 + 6)(2H2 + 1) + |H|f2(|H|)
≤ |H|f2(|H|),

where

f2(|H|) =
(√

3

3
x3 − 1

2
|H|x2

)∣∣∣∣∣
x=x0

≥ 0.

Combining (20), (21), (22) and (23), we get

Q ≤ 3(1 +H2)2 + 3|H|f(|H|),(24)

where f(|H|) is a function of |H| defined by

(25) 3f(|H|) :=

⎧⎨
⎩

f1(|H|), x0 ≤
√
12 + 24H2,

f2(|H|), x0 ≥
√
12 + 24H2.

To sum up the above two cases, we have proved the Claim, and inequality (2)

follows immediately.

Next we will show that if |H| is small, inequality (3) holds. Checking all the

cases in the proof of the Claim, we find inequality (3) holds except for the case

(ii)(c). Thus, it is enough to show that if |H| is small, inequality (3) holds in the

case (ii)(c). By (20), it is sufficient to show that F (|Å|) ≤ 0 when |H| is small.

Observe that F (|Å|) can be decomposed as

F (|Å|) = −|Å|2
24

(
|Å| − η1

)(
|Å| − η2

)
,(26)
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where η1 = 4
√
3|H| −

√
6 + 36H2, η2 = 4

√
3|H| +

√
6 + 36H2. Remember that in

case (ii), |Å| ≥
√
12 + 24H2. It is easy to see that if |H| is small, say |H| ≤ ε0 for

some constant ε0, then

|Å| ≥
√
12 + 24H2 ≥ η2 > η1,

which implies F (|Å|) ≤ 0.

Checking the above arguments step by step, we find the equality holds in (3) if

and only if

σ =
∑
i,j

Rijij = 12, Å ≡ 0,

which implies that Σ is totally umbilic and

Rijij = 1, for all i 	= j.

Therefore, by the Gauss equation, we get, for all i 	= j,

Rijij = Rijij + λiλj = 1 + (μi +H)(μj +H) = 1 +H2,(27)

which means the sectional curvature of Σ at one point p is the same for all tangent

planes π ∈ TpΣ. By Schur’s lemma, SecΣ is constant. Hence, by (27), H is constant

and SecΣ ≡ 1 +H2. Therefore, Σ is isometric to S
4( 1

1+H2 ). �

Remark. The condition “|H| ≤ ε0” is just a technical condition. The constant ε0

can be taken to be

√
368

√
3−598
46 . But this is not the best number. Actually, after a

long calculation similar to (19), we can get a better estimate than (12) and finally

improve ε0. We believe the condition “|H| ≤ ε0” is not necessary for inequality

(3). Actually, in the next section, we study a special case when M is rotationally

symmetric and show that inequality (3) holds for all H.

3. A special case

In this section, we will deal with a special case, the ambient manifold is rota-

tionally symmetric, i.e., M = R×ϕ S
n with the metric

g = dt2 + ϕ2(t)ds2n,(28)

where ϕ(t) is a smooth positive function, and ds2n is the standard metric of Sn.

Denote by ∂t the unit vector in the R direction, and assume X,Y are two vectors

tangent to S
n. Then the curvature tensor is given by (see [7, Section 4.2.3])

R(X ∧ ∂t) = − ϕ̈

ϕ
X ∧ ∂t, R(X ∧ Y ) =

1− ϕ̇2

ϕ2
X ∧ Y.(29)

For simplicity we write

κ1 := − ϕ̈

ϕ
, κ2 :=

1− ϕ̇2

ϕ2
.(30)

Let Σ be a hypersurface in M , T be the tangential (with Σ) part of ∂t, e1, · · · , en
be the local orthonormal frame on Σ. Write Ti = g(T, ei). Decomposing each ei
into two parts,

ei = e′i + g(ei, ∂t) = e′i + Ti,(31)
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where e′i is tangent to S
n. A direct computation, by using (29), (31) and the

multilinearity of the curvature tensor, gives

Rijkl = κ2(δikδjl − δilδjk) + (κ1 − κ2) (TiTkδjl + TjTlδik − TiTlδjk − TjTkδil) .

(32)

Therefore, for i 	= j, we have

Rijij = Rijij + λiλj = κ2 + (κ1 − κ2)
(
T 2
i + T 2

j

)
+ λiλj .(33)

We need the following lemma, which was first proved by Cartan (we appreciate

Professor Marcos Dajczer pointing this fact out to us). For completeness, we give

a direct proof here.

Lemma 3.1. Let M be an (n + 1) (n ≥ 4) dimensional rotationally symmetric

Riemannian manifold with metric (28), and let Σ be a hypersurface in M . Then Σ

is locally conformally flat if and only if at each point p ∈ Σ there are at most two

distinct principal curvatures, one of them having multiplicity n− 1.

Proof. We will adopt the notation in Section 2. In this proof, i, j, k, l will range

from 1 to n. By using the Weyl tensor formula ([1, p. 117]), we have

Wijij =Rijij −
1

n− 2
(Rii +Rjj) +

S

(n− 1)(n− 2)
(34)

=κ2 + (κ1 − κ2)
(
T 2
i + T 2

j

)
+ λiλj

− 1

n− 2

∑
k �=i

(
κ2 + (κ1 − κ2)

(
T 2
i + T 2

k

)
+ λiλk

)

− 1

n− 2

∑
k �=j

(
κ2 + (κ1 − κ2)

(
T 2
j + T 2

k

)
+ λjλk

)

+

∑
k �=l

(
κ2 + (κ1 − κ2)

(
T 2
k + T 2

l

))
+ n2H2 − |A|2

(n− 1)(n− 2)

=λiλj −
1

n− 2

⎛
⎝∑

k �=i

λiλk +
∑
k �=j

λjλk

⎞
⎠+

n2H2 − |A|2
(n− 1)(n− 2)

.

Using the relations

λk = μk +H, |A|2 = |Å|2 + nH2,

we substitute μk for λk in the above equality and obtain

Wijij =
(μi + μj)

2 + (n− 4)μiμj

n− 2
− |Å|2

(n− 1)(n− 2)
.

Therefore, Σ is

locally conformally flat ⇐⇒ W ≡ 0

(at each point) ⇐⇒ (μi + μj)
2 + (n− 4)μiμj =

|Å|2
(n− 1)

, ∀i 	= j

(
∑
i

μi = 0, |Å|2 =
∑
i

μ2
i ) ⇐⇒ μi = μj or μi = −(n− 1)μj , ∀i 	= j.
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Thus {μ1, · · · , μn} = {μ,−(n− 1)μ}, and μ has multiplicity n− 1. Consequently,

{λ1, · · · , λn} = {μ+H,−(n− 1)μ+H},
and μ+H has multiplicity n− 1. �

With the aid of the above lemma, we can prove the following theorem.

Theorem 3.2. Let M be a rotationally symmetric Riemannian 5-manifold with

0 ≤ κ1 ≤ κ2 ≤ 1 (κ1 and κ2 are defined in (30)), and let Σ be a locally conformally

flat closed hypersurface embedded in M with mean curvature H. Then∫
Σ

(1 +H2)2 ≥ 4π2

3
χ(Σ).

The equality holds if and only if H is constant, and Σ is totally umbilic and isometric

to S
4
(

1
1+H2

)
.

Proof. We will adopt the same notation as in the proof of Theorem 1.1. By Lemma

3.1, we have |μ1| = 3|μi|, i = 2, 3, 4. Therefore,∑
i

μ4
i =

7

12
|Å|4.

Direct computations by using (32) yield

σ = 12κ2 + 6(κ1 − κ2)|T |2,
aii = 3κ2 + (κ1 − κ2)(2T

2
i + |T |2),

|̊a|2 = 3(κ1 − κ2)
2|T |4.

Inserting the above equalities into (9), we obtain

Q =3(κ2 +H2)2 +
1

12

(
−3

4
|Å|4 + 12H

∑
i

μ3
i − 6(κ2 + 3H2)|Å|2

)
(35)

+
(κ1 − κ2)

2

((
6 + |Å|2 + 4H2

)
|T |2 + 2

∑
i

T 2
i (μi −H)2

)

≤3(κ2 +H2)2 +
1

12

(
−3

4
|Å|4 + 12H

∑
i

μ3
i − 6(κ2 + 3H2)|Å|2

)

≤3(κ2 +H2)2 +
1

12

(
−3

4
|Å|4 + 4

√
3|H| |Å|3 − 6(κ2 + 3H2)|Å|2

)
≤3(κ2 +H2)2 ≤ 3(1 +H2)2.

The remainder of the proof is similar to the proof of Theorem 1.1. �
Remark. The assumption “0 ≤ κ1 ≤ κ2 ≤ 1” is reasonable for many manifolds. For

example:

• if we take ϕ(t) = sin(t), then M = S
5 and κ1 = κ2 ≡ 1;

• if we take ϕ(t) ≡ 1, then M = S
4 × R and 0 ≡ κ1 < κ2 ≡ 1.
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[2] André Avez, Applications de la formule de Gauss-Bonnet-Chern aux variétés à quatre dimen-
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