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(Communicated by Mirna Džamonja)

Abstract. We present a natural restriction of Hindman’s Finite Sums Theo-
rem that admits a simple combinatorial proof (one that does not also prove the
full Finite Sums Theorem) and low computability-theoretic and proof-theoretic
upper bounds, yet implies the existence of the Turing Jump, thus realizing the
only known lower bound for the full Finite Sums Theorem. This is the first
example of this kind. In fact we isolate a rich family of similar restrictions of
Hindman’s Theorem with analogous properties.

1. Introduction and motivation

The following question was asked by Hindman, Leader and Strauss in [12]:

Question 12. Is there a proof that whenever N is finitely colored
there is a sequence x1, x2, . . . such that all xi and all xi + xj (i �=
j) have the same color, that does not also prove the Finite Sums
Theorem?

The theorem referred to as the Finite Sums Theorem is the famous result of Hind-
man’s (the original proof is in [11]) stating that whenever N is finitely colored
there is a sequence x1, x2, . . . such that all finite non-empty sums of distinct el-
ements from the sequence have the same color. We will sometimes refer to this
statement as Hindman’s Theorem, or the full Hindman’s Theorem.

In this paper we present some results that are related to Question 12 above. We
isolate a rich family F of natural restrictions of the Finite Sums Theorem with the
following two properties:

(1) Each member of the family F admits a simple combinatorial proof that
does not establish Hindman’s Theorem, but

(2) Each member of a non-trivial sub-family of F is strong in the sense of
having the same computability-theoretic lower bounds that are known to
hold for Hindman’s Theorem.

The simplicity of the proof referred to in point (1) above is evident in the sense
that all members of F admit a proof consisting of a finite iteration of the Infinite
Ramsey’s Theorem and an application of some classical theorem from finite combi-
natorics. Yet, much more detailed information can be obtained by using the tools of
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Computability Theory and Reverse Mathematics, the areas where the lower bound
mentioned in point (2) above come from.

The strength of the Finite Sums Theorem is indeed a major open problem in
these areas (see [16], Question 9). A huge gap remains between the known lower
and upper bounds on the computability-theoretic and proof-theoretic strength of
Hindman’s Theorem [11]. Blass, Hirst and Simpson in [2] established the following
lower and upper bounds thirty years ago:

(1) There exists a computable coloring c : N → 2 such that any solution
to Hindman’s Theorem for c computes ∅′, the first Turing Jump of the
computable sets.

(2) For every computable coloring c : N → 2 there exists a solution to Hind-
man’s Theorem for coloring c computable from ∅(ω+1), the (ω+1)-th Turing
Jump of the computable sets.

By a “solution to Hindman’s Theorem for coloring c” we mean an infinite set H
such that all finite non-empty sums of elements from H have the same c-color. As
often is the case, the above computability-theoretic results have consequences in
Reverse Mathematics (see [13,22] for excellent introductions to the topic). Letting
HT denote the natural formalization of Hindman’s Finite Sums Theorem in the
language of arithmetic, the only known upper and lower bounds on the logical
strength of the full Finite Sums Theorem are the following (again from [2]):

ACA+
0 ≥ HT ≥ ACA0.

Recall that ACA0 is equivalent to RCA0+∀X∃Y (Y = X ′) and that ACA+
0 is equiv-

alent to RCA0+∀X∃Y (Y = X(ω)). Note that the ACA0-lower bound already holds
for Hindman’s Theorem restricted to colorings in 2 colors.

Recently there has been some interest in the computability-theoretic and proof-
theoretic strength of restrictions of Hindman’s Theorem (see [4, 6, 14]). While [14]
deals with a restriction on the sequence of finite sets in the Finite Unions formula-
tion of Hindman’s Theorem, both [6] and [4] deal with restrictions on the types of
sums that are guaranteed to be colored the same color.

Blass conjectured in [1] that the complexity of Hindman’s Theorem might grow
with the length of the sums for which homogeneity is guaranteed. Let us denote
by HT≤n

r the restriction of the Finite Sums Theorem to colorings with r colors and
sums of at most n terms. The conjecture discussed in [1] is then that the complexity

of HT≤n
r is growing with n.

The main result in [6] is that the above described ∅′ lower bound known to hold
for the full Hindman’s Theorem already applies to its restriction to 3 colors and to

sums of at most 3 terms (HT≤3
3 in the notation introduced above). Note, however,

that no upper bound other than the upper bound for the full Hindman’s Theorem
is known to hold for this restricted version, and the same is true for HT≤2

2 , the
restriction to sums of at most 2 terms! This is obviously related to Question 12
of [12] quoted above.

On the other hand, the variants studied by Hirst in [14] (called Hilbert’s Theo-
rem) and by the author in [4] (called the Adjacent Hindman’s Theorem) do admit
simple proofs, but are very weak and provably fall short of hitting the known lower
bounds for the full Hindman’s Theorem (they are provable, respectively, from the
Infinite Pigeonhole Principle and from Ramsey’s Theorem for pairs).
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By contrast, the family of natural restriction of the Finite Sums Theorems intro-
duced in the present paper has members that are “weak” in the sense of admitting
easy proofs yet “strong” with respect to computability-theoretic and proof-theoretic
lower bounds. In terms of Computability Theory and Reverse Mathematics, the
properties of our family of restrictions of the Finite Sums Theorem are summarized
as follows: All members of the family have upper bounds in the Arithmetical Hi-
erarchy for computable instances and proofs in ACA0. Yet many members of this
family imply the existence of the Turing Jump. In terms of Reverse Mathematics,
they imply ACA0.

The principles for which we establish a “strong” (i.e., ACA0) lower bound all
feature an extra condition on the solution set, i.e., that the solution set H ⊆ N is
apart in the following sense: for any x < y in H, the greatest exponent in the base
2 representation of x is strictly smaller than the smallest exponent in the base 2
representation of y. This condition plays a central role in Hindman’s original proof
of the Finite Sums Theorem [11] as well as in the lower bound proof by Blass, Hirst
and Simpson [2]. It should be stressed that assuming that the solution set is apart
does not alter the Finite Sums Theorem. In fact, an apart solution can be easily
(and computably) extracted from any solution to the theorem (this was proved by
Hindman in [10]). Thus, the Hindman-type principles with apartness imposed on
the solution set, as are those that we introduce and study in this paper, are genuine
restrictions of the Finite Sums Theorem, as opposed to mere variants of the latter.
This is not the case for other witnesses of the “weak yet strong” phenomenon which
can be concocted relatively easily. Consider, for example, the following principle:
For each c : N → 2, there is an infinite set H all of whose elements are powers
of 2, such that all non-empty n-term sums of elements from H have the same
color. This principle is easily shown to be equivalent to Ramsey’s Theorem for
coloring n-tuples in 2 colors, and so has the same properties as the“weak yet strong”
principles studied in our paper. Yet it does not qualify as a genuine restriction of the
Finite Sums Theorem: requiring that the solution contains only powers of 2 simply
gives, in that case, a false statement. Accordingly, we believe that the witnesses
of the “weak yet strong” phenomenon studied in the present paper are much more
significant in the perspective of understanding the combinatorics of the Finite Sums
Theorem and of answering the many open problems concerning its strength and the
strength of its natural restrictions.

2. A family of restrictions of the Finite Sums Theorem

The present section is organized as follows. We first formulate, in section 2.1,
a particular restriction of the Finite Sums Theorem, called the Hindman-Brauer
Theorem, and prove it by a simple finite iteration of the Infinite Ramsey’s Theorem
plus finitary combinatorial tools (Theorem 2). The argument is indeed general
and in section 2.2 we describe the family of statements that can be proved by
exactly the same proof. This proof does not establish the full version of the Finite
Sums Theorem. It can be argued that the proof is conceptually simpler than the
known proofs of the latter if the knowledge of the Infinite Ramsey’s Theorem and
of some classical results from finite combinatorics (e.g., Schur’s Theorem, Van der
Waerden’s Theorem, etc.) is presupposed. In the last subsection (section 2.3) we
extract computability-theoretic and proof-theoretic upper bounds for each member
of the family. The upper bounds obtained are significantly below the only known
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bounds for the full Finite Sums Theorem, thus giving a precise measure of the
simplicity of the underlying proof.

2.1. An example: the Hindman-Brauer Theorem. We start with a particular
example. We will use the following theorem, due to Alfred Brauer [3], which is a
joint strengthening of Van Der Waerden’s [23] and Schur’s [20] theorems.

Theorem 1 (Brauer’s Theorem, [3]). For all r, �, s ≥ 1 there exists n = n(r, �, s)
such that if g : [1, n] → r, then there exists a, b > 0 such that {a, a+ b, a + 2b, . . . ,
a+ (�− 1)b} ∪ {sb} ⊆ [1, n] is monochromatic.

Let B : N3 → N denote the witnessing function for Brauer’s Theorem. For
n = 2t1 + · · · + 2tk with t1 < · · · < tk let λ(n) = t1 and μ(n) = tk. The following
Apartness Condition is crucial in what follows.

Definition 1 (Apartness Condition). We say that a set X ⊆ N satisfies the Apart-
ness Condition (or is apart) if for all x, x′ ∈ X, if x < x′, then μ(x) < λ(x′).

Note that the Apartness Condition is inherited by subsets. For a Hindman-
type principle P, let “P with apartness” denote the corresponding version in which
the solution set is required to satisfy the Apartness Condition. Hindman showed
how apartness can be ensured (Lemma 2.2 in [11]) by a simple counting argument
(Lemma 2.2 in [10]) under the assumption that we have a solution to the Finite
Sums Theorem. In our terminology, we have that HT is equivalent to HT with
apartness over RCA0. This fact is a key ingredient in the lower bound proof by
Blass, Hirst, and Simpson [2]. The Apartness Condition will also play a key role in
our lower bound proofs in section 3.

Let us fix some notation. If a is a positive integer and X is a set we denote by
FS=a(X) (resp. FS≤a(X)) the set of sums of exactly (resp. at most) a distinct
elements from X. More generally, if A and X are sets we denote by FSA(X)
the set of all sums of j-many distinct terms from X, for all j ∈ A. Thus, e.g.,
FS{1,2,3}(X) is another name for FS≤3(X). By FS(X) we denote FSN(X), the
set of all non-empty finite sums of distinct elements of X. By RTn

r we denote the
Infinite Ramsey’s Theorem for r-colorings of n-tuples.

We now state and prove our first example of a weak yet strong principle.

Theorem 2 (Hindman-Brauer Theorem with apartness). For all c : N → 2
there exists an infinite and apart set H ⊆ N such that for some a, b > 0 the
set FS{a,a+b,a+2b}∪{b}(H) is monochromatic.

Proof. Let c : N → 2 be given. Let k = B(2, 3, 1). Consider the following construc-
tion.

Let H0 be an infinite (computable) set satisfying the Apartness Condition, e.g.,
{2t : t ∈ N}.

Let H1 ⊆ H0 be an infinite homogeneous set for c, witnessing RT1
2 relative to

H0.
Let f2 : [N]2 → 2 be defined as f(x, y) = c(x + y). Let H2 ⊆ H1 be an infinite

homogeneous set for f2, witnessing RT2
2 relative to H1.

Let f3 : [N]2 → 2 be defined as f(x, y, z) = c(x + y + z). Let H3 ⊆ H2 be an

infinite homogeneous set for f3, witnessing RT3
2 relative to H2.

We continue in this fashion for k steps. This determines a finite sequence of
infinite sets H0, H1, . . . , Hk such that

H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hk.
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Each Hi satisfies the Apartness Condition. Furthermore, for each i ∈ [1, k] we
have that FS=i(Hj) is monochromatic under c for all j ∈ [i, k]. Also, FS=i(Hk) is
monochromatic for each i ∈ [1, k]. Let ci be the color of FS=i(Hk) under c.

The construction can be seen as defining a coloring C : [1, k] → 2, setting
C(i) = ci. Since k = B(2, 3, 1), by Brauer’s Theorem there exists a, b > 0 in [1, k]
such that {a, a+ b, a+ 2b} ∪ {b} ⊆ [1, k] is monochromatic for C. Let i < 2 be the
color. Then FS{a,a+b,a+2b}∪{b}(Hk) is monochromatic of color i for the original
coloring c. �

Note that nothing in the above construction is special about 2 colors and 3-
term arithmetic progressions. A comment is in order: it is informally clear that
the above proof does not establish the full Finite Sums Theorem. The proof is
arguably conceptually simpler than any known proof establishing Hindman’s The-
orem: it consists of a straightforward finite iteration of the infinite Ramsey’s The-
orem with an application of a theorem from finite combinatorics on top. Below
we will measure the simplicity of the proof in terms of Computability Theory and
Reverse Mathematics.

2.2. A family of restrictions of the Finite Sums Theorem admitting simple
proofs. The proof of Theorem 2 is easily adapted to arbitrary values r for number
of colors and � for the length of the arithmetic progression. More importantly one
can substitute Brauer’s Theorem by virtually any theorem about finite colorings of
numbers from the literature (Schur’s Theorem [20], Van der Waerden’s Theorem
[23], Folkman’s Theorem [9, 18], just to name a few), yielding a rich family of
Hindman-type theorems.

The general form of the restrictions of the Finite Sums Theorem obtained by the
proof of Theorem 2 is the following:

For all c : N → r there exists an infinite H ⊆ N and there exists a
finite A, satisfying some specific conditions, such that FSA(H) is
monochromatic.

For each set A ⊆ N and positive integer r > 0, we let HTA
r denote such a statement.

As indicated above, HTA
r with apartness then indicates the corresponding version in

which the solution set is required to be apart. We describe the family by presenting
a list of some of its typical members, grouped by sub-families. The general pattern
will be clear enough.

Schur Family: For each positive integer r let HT{a,b,a+b}
r denote the following

statement.

Whenever N is colored in r colors there is an infinite set X =
{x1, x2, . . . } and positive integers a, b such that all elements of
FS{a,b,a+b}({x1, x2, . . . }) have the same color.

Van der Waerden Family: For each pair of positive integers r, � let

HT{a,b,a+b,...,a+(�−1)b}
r denote the following statement.

Whenever N is colored in r colors there is an infinite set X =
{x1, x2, . . . } and positive integers a, b such that all elements of
FS{a,a+b,a+2b,...,a+(�−1)b}({x1, x2, . . . }) have the same color.

Brauer Family: For each pair of positive integers r, �, let HT{a,b,a+b,...,a+(�−1)b}∪{b}
r

denote the following statement.
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Whenever N is colored in r colors there is an infinite set X =
{x1, x2, . . . } and positive integers a, b such that all elements of
FS{a,a+b,a+2b,...,a+(�−1)b}∪{b}({x1, x2, . . . }) have the same color.

Folkman Family: For each pair of positive integers r, �, let HTFS({i1,...,i�})
r denote

the following statement.

Whenever N is colored in r colors there is an infinite set X =
{x1, x2, . . . } and positive integers i1, . . . , i� such that all elements
of FSFS({i1,...,i�})({x1, x2, . . . }) have the same color.

It is clear that the family can be extended at leisure by considering different
combinatorial principles about finite colorings of N.

2.3. Computability-theoretic and proof-theoretic upper bounds. The ob-
servable simplicity of the proof of Theorem 2 can be measured by extracting from
it computability-theoretic and proof-theoretic upper bounds. From the finite iter-
ation argument given above one can glean upper bounds that are much below the
known upper bounds for the full Finite Sums Theorem.

To assess the Computability and Reverse Mathematics corollaries, it may be
convenient to reformulate the general argument of Theorem 2 as follows (again, we
give the details only for the case of the Hindman-Brauer Theorem):

Second proof of Theorem 2. Let n be a positive integer. Given c : N → 2 let
gn : [N]n → 2n be defined as follows:

gn(x1, . . . , xn) = 〈c(x1), c(x1 + x2), . . . , c(x1 + · · ·+ xn)〉.

Fix an infinite and apart set H0 of positive integers. By RTn
2n relativized to H0

we get an infinite apart set H ⊆ H0 monochromatic for gn. Let the color be
σ = (c1, . . . , cn), a binary sequence of length n. Then, for each i ∈ [1, n], gn
restricted to FS=i(H) is monochromatic of color ci. The sequence σ is a coloring
of n in 2 colors. If n = B(2, 3, 1), then, by the finite Brauer’s Theorem, there exists
a, b > 0 such that {a, a+ b, a+ 2b} ∪ {b} ⊆ [1, n] and

ca = cb = ca+b = ca+2b.

Then FS{a,a+b,a+2b,b}(H) is monochromatic for c of color ca. �

The above argument shows that RT
B(2,3,1)

2B(2,3,1) implies HT
{a,a+b,a+2b}∪{b}
2 with apart-

ness. The difference from the previously given argument is that we have used only
one instance of Ramsey’s Theorem, albeit for a larger number of colors.

We can then quote the following classical result of Jockusch about upper bounds
on the computability-theoretic content of Ramsey’s Theorem (see [15]).

Theorem 3 (Jockusch, [15]). Every computable f : [N]n → r has an infinite
homogeneous set H such that H ′ ≤T ∅(n).

Then we have the following proposition as an immediate corollary, where ≤T

denotes Turing reducibility.

Proposition 1. Every computable c : N → 2 has an infinite and apart set H such
that for some a, b > 0 the set FS{a,b,a+b,a+2b}(H) is monochromatic and such that
H ′ ≤T ∅(B(2,3,1)).
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Analogously we get arithmetical upper bounds for the other theorems admitting
a similar proof, some of which are apparently quite strong (e.g., the one derived
from Folkman’s Theorem described above). This should be contrasted with the
fact that there are no similar upper bounds on the computability-theoretic content
of Hindman’s Theorem, not even when restricted to sums of at most two terms!
Again, for the latter two theorems, the only upper bound for general computable
solutions is ∅(ω+1). Even if the optimality of the bounds is not our main concern
here, we note in passing that using Theorem 12.1 of [5] in place of Theorem 3 we
can improve Proposition 1 to H ′′.

We now comment on Reverse Mathematics implications. The argument de-
scribed above is formalizable in ACA0 (note that Brauer’s Theorem, as well as the
other finite combinatorial theorems quoted above, is provable in RCA0). We then
get, for every standard k ∈ N, that

RCA0 � RT
B(2,k,1)

2k
→ HT

{a,a+b,...,a+(k−1)b}∪{b}
2 with apartness.

Thus we have the following proposition.

Proposition 2. For each standard k ∈ N:

ACA0 � HT
{a,a+b,a+2b,...,a+(k−1)b}∪{b}
2 with apartness.

Again, this should be contrasted with the ACA+
0 upper bound that is known to

hold for the full Finite Sums Theorem, as well as for its restriction to sums of at
most two terms.

Obviously, similar proof-theoretic upper bounds hold for many other members
of the family by the same argument, as long as the underlying finite combinatorial
principle does not itself require strong axioms. Note that Schur’s Theorem, Van der
Waerden’s Theorem, Brauer’s Theorem and Folkman’s Theorem are all provable in
RCA0.

1

3. A lower bound on the Hindman-Brauer Theorem

Let K denote the (computably enumerable but not computable) Halting Set or,
equivalently, the first Turing Jump ∅′. We show that there exists a computable
coloring c : N → 2 such that K is computable from any apart solution H of

HT
{a,a+b,a+2b,b}
2 for the instance c, i.e., from any infinite and apart H such that for

some a, b > 0, the set FS{a,a+b,a+2b,b}(H) is monochromatic.
We adapt the beautiful proof of the lower bound for the full Hindman’s Theorem

by Blass, Hirst and Simpson (Theorem 2.2 in [2]). Gaps and short gaps of numbers
are defined as in [2]. We recall the definitions for convenience. Fix an enumeration
of the computably enumerable set K and denote by K[k] the set enumerated in k
steps of computation by this algorithm. If n = 2t1 + · · · + 2tk with t1 < · · · < tk
we refer to pairs (ti, ti+1) as the gaps of n. A gap (a, b) of n is short in n if there
exists x ≤ a such that x ∈ K but x /∈ K[b]. A gap (a, b) of n is very short in n if

1Provability in RCA0 of these theorems is folklore or can be gleaned from inspection of the
classical proofs. Schur’s Theorem can be proved from the finite Ramsey’s Theorem (see, e.g., [17],
Theorem 2.2). Provability of Van der Waerden’s Theorem in RCA0 follows from a formalization
of Shelah’s proof [21] (see [7]). Brauer’s Theorem follows easily from Van der Waerden’s Theorem
(see, e.g., Theorem 2.4 of [17] or Lemma 4.1 of [19]). Folkman’s Theorem can also be obtained
from Van der Waerden’s Theorem; see Theorem 4.3’ in [19], and see [8] for a Reverse Mathematics
analysis.
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there exists x ≤ a such that x ∈ K[μ(n)] but x /∈ K[b]. A gap of n that is short in
n is called a short gap of n. Let SG(n) denote the cardinality of the set of short
gaps of n. A gap of n that is very short in n is called a very short gap of n. Let
V SG(n) denote the cardinality of the set of very short gaps of n. Notice that given
n one can effectively compute V SG(n) but not SG(n).

Theorem 4. There exists a computable coloring c : N → 2 such that if H ⊆ N
is an apart solution to the Hindman-Brauer Theorem for instance c, then K is
computable from H.

Proof. Consider the following computable coloring of N in 2 colors:

c(n) = V SG(n) mod 2.

Let H ⊆ N and a, b > 0 be such that H is infinite, satisfies the Apartness
Condition, and is such that all sums of length a, b, a+ b, a+2b of elements from H
have the same color under c.

Claim 1. For every m ∈ FS=a(H), SG(m) is even.

Proof. Pick n in FS=b(H) so large that the following three points are satisfied:

(1) μ(m) < λ(n),
(2) for all x ≤ μ(m), x ∈ K if and only if x ∈ K[λ(n)],
(3) μ(m+ n) = μ(n).

This choice is legitimate since H satisfies the Apartness Condition and is infinite.
Since m ∈ FS=a(H) there exists t1 < t2 < · · · < ta elements of H such that
m = t1 + t2 + · · · + ta. Since H satisfies the Apartness Condition, we have that
μ(m) = μ(ta) and λ(m) = λ(t1). (Analogous equations hold for sums of type b,
a+ b, a+2b). Now observe that elements of FS=b(H) are unbounded with respect
to their λ-projection; i.e., for all d there exists q ∈ FS=b(H) such that λ(q) > d.
This follows from the fact that H satisfies the Apartness Condition and by the
previous observations on λ-projections of sums. So requirements (1) and (2) above
can be met. Requirement (3) follows from requirement (1).

We now compute the number of very short gaps of m+ n, arguing as in [2]. We
consider separately the gaps of m, the gaps of n and the gap (μ(m), λ(n)).

The gap (μ(m), λ(n)) is not very short, by choice of n (item (2) above).
A gap of n is very short in m + n if and only if it is very short in n, since

μ(m+ n) = μ(n).
A gap (a, b) of m is very short in m+ n if and only if it is short (not necessarily

very short) as a gap of m: Suppose that (a, b) is a gap of m very short in m + n.
By definition there exists x ≤ a such that x ∈ K[μ(m + n)] but x /∈ K[b]. Then
there exists x ≤ a such that x ∈ K but x /∈ K[b]; hence (a, b) is short in m. For
the other direction suppose (a, b) is short in m; that is, there exists x ≤ a such
that x ∈ K but x /∈ K[b]. Then by choice of n (μ(m) < λ(n) by item (1) above
and λ(n) < μ(n)) we have that x ≤ a and x ∈ K implies that x ∈ K[μ(n)]. But
μ(n) = μ(m+ n) by item (3) above. Hence (a, b) is very short in m.

Therefore we have the following equation:

V SG(m+ n) = SG(m) + V SG(n).

By hypothesis on H, V SG(m+n) and V SG(n) have the same parity, since m+n ∈
FS=a+b(H). �
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Claim 2. For every m ∈ FS=b(H), SG(m) is even.

Proof. Pick n in FS=a(H) so large that the following three points are satisfied:

(1) μ(m) < λ(n),
(2) for all x ≤ μ(m), x ∈ K if and only if x ∈ K[λ(n)],
(3) μ(m+ n) = μ(n).

This choice is legitimate since H satisfies the Apartness Condition and is infinite.
Then argue as previously. We end up with

V SG(m+ n) = SG(m) + V SG(n).

By hypothesis on H, V SG(m+n) and V SG(n) have the same parity, since m+n ∈
FS=a+b(H). �

Claim 3. For every m ∈ FS=a+b(H), SG(m) is even.

Proof. Pick n in FS=b(H) so large that the following three points are satisfied:

(1) μ(m) < λ(n),
(2) for all x ≤ μ(m), x ∈ K if and only if x ∈ K[λ(n)],
(3) μ(m+ n) = μ(n).

This choice is legitimate since H satisfies the Apartness Condition and is infinite.
Then argue as previously. We end up with

V SG(m+ n) = SG(m) + V SG(n).

By hypothesis on H, V SG(m+n) and V SG(n) have the same parity, since m+n ∈
FS=a+2b(H). �

Claim 4. For all m ∈ FS=a(H) and all n ∈ FS=b(H) such that μ(m) < λ(n) we
have

∀x ≤ μ(m)(x ∈ K ↔ x ∈ K[λ(n)]).

Proof. By way of contradiction suppose that (μ(m), λ(n)) is short. Then

SG(m+ n) = SG(m) + SG(n) + 1.

But SG(m+ n), SG(n), SG(m) are all even by the previous claims. Contradiction.
�

We now describe an algorithm showing that K is computable from H. Given
an input x, use the oracle to find an m ∈ FS=a(H) such that x ≤ μ(m) and an
n ∈ FS=b(H) such that m < n and μ(m) < λ(n).

Then run the algorithm enumerating K for λ(n) steps to decide membership of
x ∈ K[λ(n)]. By Claim 4 this also decides membership in K. �

As in [2] a straightforward relativization of the above proof gives the following
proposition.

Proposition 3. Over RCA0, HT
{a,a+b,a+2b}∪{b}
2 with apartness implies ACA0.

Note that the above proof works for any member HTA
2 of our family such that A

is guaranteed to contain a set of the form {x, x+ y, x+2y} ∪ {y} for some positive
integers x, y, and the Apartness Condition is assumed.
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4. Conclusions

We have introduced a family of natural restrictions of Hindman’s Finite Sums
Theorem such that each member of the family admits a fairly simple proof, has
arithmetical upper bounds for computable instances, yet many members of the
family imply the existence of the Halting Set. These are the first examples with
these properties. In fact, Hindman’s Theorem restricted to sums of at most 3 terms
and 3-colorings HT≤3

3 shares the same ∅′ lower bound (by the main result of [6])
but has no other proof (resp. upper bound) apart from the proof (resp. upper

bound) known for the full Finite Sums Theorem. Of all members HTA
2 of our

family we showed how to prove that they achieve the only lower bounds known for
the full Finite Sums Theorem provided that the Apartness Condition is assumed
and the set A of lengths of sums for which homogeneity is guaranteed contains a
3-term arithmetic progression and its difference. It is an interesting question to
characterize the members in the family that imply ACA0.

Some members of our family are apparently strong when compared to the family
of restrictions of Hindman’s Theorem based on the mere number of terms in the
sums studied in [6]. Compare, e.g., HT

{a,b,a+b,a+2b,a+3b,...,a+100b}
2 with HT≤3

2 . Yet

this superficial impression might be misleading. It is an easy observation that HTA
2

for an A such that A ⊇ {a, 2a} for some a > 0 implies HT≤2
2 . Analogous relations

hold for A ⊇ {a, 2a, 3a} and HT≤3
2 . Yet it doesn’t seem easy to prove any of those

HTAs by the methods of the present paper. Many more non-trivial implications
can be established and will be reported elsewhere.
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