Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Multiplicity of solutions for nonlinear nonhomogeneous Robin problems


Authors: Nikolaos S. Papageorgiou and Vicenţiu D. Rădulescu
Journal: Proc. Amer. Math. Soc. 146 (2018), 601-611
MSC (2010): Primary 35J20; Secondary 35J60
DOI: https://doi.org/10.1090/proc/13862
Published electronically: September 13, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a nonlinear nonhomogeneous Robin problem, with an indefinite concave term near the origin and a perturbation of arbitrary growth. By modifying the perturbation and using a variant of the symmetric mountain pass theorem due to Heinz (J. Diff. Equ. 66 (1987)), we show that the problem has a whole sequence of distinct nontrivial smooth solutions converging to the trivial solution.


References [Enhancements On Off] (What's this?)

  • [1] Antonio Ambrosetti, Haïm Brezis, and Giovanna Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519-543. MR 1276168, https://doi.org/10.1006/jfan.1994.1078
  • [2] Antonio Ambrosetti, Jesus Garcia Azorero, and Ireneo Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), no. 1, 219-242. MR 1383017, https://doi.org/10.1006/jfan.1996.0045
  • [3] Tiziana Cardinali, Nikolaos S. Papageorgiou, and Paola Rubbioni, Bifurcation phenomena for nonlinear superdiffusive Neumann equations of logistic type, Ann. Mat. Pura Appl. (4) 193 (2014), no. 1, 1-21. MR 3158835, https://doi.org/10.1007/s10231-012-0263-0
  • [4] Leszek Gasiński and Nikolaos S. Papageorgiou, Nonlinear analysis, Series in Mathematical Analysis and Applications, vol. 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR 2168068
  • [5] Hans-Peter Heinz, Free Ljusternik-Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems, J. Differential Equations 66 (1987), no. 2, 263-300. MR 871998, https://doi.org/10.1016/0022-0396(87)90035-0
  • [6] Shouchuan Hu and Nikolas S. Papageorgiou, Nonlinear Neumann equations driven by a nonhomogeneous differential operator, Commun. Pure Appl. Anal. 10 (2011), no. 4, 1055-1078. MR 2787434, https://doi.org/10.3934/cpaa.2011.10.1055
  • [7] Gary M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), no. 2-3, 311-361. MR 1104103, https://doi.org/10.1080/03605309108820761
  • [8] Dimitri Mugnai and Nikolaos S. Papageorgiou, Wang's multiplicity result for superlinear $ (p,q)$-equations without the Ambrosetti-Rabinowitz condition, Trans. Amer. Math. Soc. 366 (2014), no. 9, 4919-4937. MR 3217704, https://doi.org/10.1090/S0002-9947-2013-06124-7
  • [9] Nikolaos S. Papageorgiou and Vicenţiu D. Rădulescu, Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim. 69 (2014), no. 3, 393-430. MR 3197304, https://doi.org/10.1007/s00245-013-9227-z
  • [10] N. S. Papageorgiou and V. D. Rădulescu, Noncoercive resonant $ (p,2)$-equations, Appl. Math. Optim., DOI: 10.1007/s 00245-016-9363-2.
  • [11] Nikolaos S. Papageorgiou and Vicenţiu D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations 256 (2014), no. 7, 2449-2479. MR 3160450, https://doi.org/10.1016/j.jde.2014.01.010
  • [12] Nikolaos S. Papageorgiou and Vicenţiu D. Rădulescu, Infinitely many nodal solutions for nonlinear nonhomogeneous Robin problems, Adv. Nonlinear Stud. 16 (2016), no. 2, 287-299. MR 3491870, https://doi.org/10.1515/ans-2015-5040
  • [13] Nikolaos S. Papageorgiou and Vicenţiu D. Rădulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud. 16 (2016), no. 4, 737-764. MR 3562940, https://doi.org/10.1515/ans-2016-0023
  • [14] Nikolaos S. Papageorgiou and Patrick Winkert, On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction, Adv. Nonlinear Stud. 14 (2014), no. 3, 565-591. MR 3244348, https://doi.org/10.1515/ans-2014-0303
  • [15] Nikolaos S. Papageorgiou and Patrick Winkert, Resonant $ (p,2)$-equations with concave terms, Appl. Anal. 94 (2015), no. 2, 342-360. MR 3295701, https://doi.org/10.1080/00036811.2014.895332
  • [16] Mingzheng Sun, Meiling Zhang, and Jiabao Su, Critical groups at zero and multiple solutions for a quasilinear elliptic equation, J. Math. Anal. Appl. 428 (2015), no. 1, 696-712. MR 3327010, https://doi.org/10.1016/j.jmaa.2015.03.033
  • [17] Zhi-Qiang Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, NoDEA Nonlinear Differential Equations Appl. 8 (2001), no. 1, 15-33. MR 1828946, https://doi.org/10.1007/PL00001436

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J20, 35J60

Retrieve articles in all journals with MSC (2010): 35J20, 35J60


Additional Information

Nikolaos S. Papageorgiou
Affiliation: Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece
Email: npapg@math.ntua.gr

Vicenţiu D. Rădulescu
Affiliation: Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia – and – Department of Mathematics, University of Craiova, Street A.I. Cuza 13, 200585 Craiova, Romania
Email: vicentiu.radulescu@imar.ro

DOI: https://doi.org/10.1090/proc/13862
Keywords: Robin boundary condition, nonhomogeneous differential operator, indefinite concave term, nonlinear regularity theory, infinitely many solutions
Received by editor(s): July 13, 2016
Received by editor(s) in revised form: March 13, 2017
Published electronically: September 13, 2017
Additional Notes: The second author acknowledges the support through a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0130.
Communicated by: Catherine Sulem
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society