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Abstract. We prove an averaging formula for the derivative of the absolutely
continuous part of the density of states measure for an ergodic family of CMV
matrices. As a consequence, we show that the spectral type of such a family is
almost surely purely absolutely continuous if and only if the density of states is
absolutely continuous and the Lyapunov exponent vanishes almost everywhere
with respect to the same. Both of these results are CMV operator analogues
of theorems obtained by Kotani for Schrödinger operators.

1. Introduction

1.1. Background and motivation. CMVmatrices are unitary operators on �2(Z)
or �2(N) that have attracted substantial interest in recent years. These operators
were introduced in [6] as a bridge between spectral theory and the theory of orthog-
onal polynomials on the unit circle, an idea extensively explored in the monographs
[31, 32]. In [4], CMV operators were also proposed as a model for understanding
one-dimensional quantum walks (quantum mechanical analogues of classical ran-
dom walks). This connection has drawn a lot of attention recently from both
mathematicians and physicists. See for instance [2, 3, 5, 7, 9, 11–14, 16–22] in addi-
tion to the foregoing references. Moreover, as observed in [13], one can relate the
classical ferromagnetic Ising model in one dimension to a suitable CMV operator,
a connection that allows one to rigorously prove characteristics such as the absence
of phase transitions [10].

From the perspective of quantum walks, understanding the spectral type of CMV
operators is particularly important, as the spectral type influences the scattering
behavior (or lack thereof) for the associated quantum walk. A more precise re-
lationship is furnished by a discrete-time variant of the RAGE Theorem (a name
coined by Barry Simon to reflect the contributions of [1, 15, 28]). Such a discrete-
time formulation of the RAGE Theorem suitable for quantum walks (with proofs)
may be found in the Appendix of [16]. Roughly, point spectrum is associated with
localization; that is, the walker remains close to its starting position. Absolutely
continuous spectrum is associated with scattering; that is, the walker flees to infin-
ity; and, most exotically, singular continuous spectrum is associated with recurrent
scattering, for which the walker flees to infinity in a time-averaged sense but may
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potentially recur to its initial position along a subsequence of time scales. Thus, de-
termining when a CMV operator possesses purely absolutely continuous spectrum
is helpful in determining when scattering occurs in a quantum walk.

To this end, in this paper we adapt to the CMV operator some ideas originally
used to solve related problems in the theory of Schrödinger operators in L2(R), that
is, second-order differential operators of the form Hψ = −ψ′′ + V ψ.

For such operators, Kotani theory refers to a far-reaching family of results of
Shinichi Kotani regarding the absolutely continuous spectrum of H whenever V is a
metrically transitive potential (in more modern parlance: whenever V is an ergodic,
dynamically defined potential) [23–26]. Barry Simon generalized Kotani’s work to
the setting of Jacobi [29] and CMV [32] operators, with one exception. In the Notes
for [32, Section 10.11], Simon points out that Kotani proves a stronger version of
[32, Theorem 10.11.2], namely, that an ergodic family of Schrödinger operators
exhibits purely absolutely continuous spectrum (almost surely with respect to the
underlying ergodic measure) if and only if the density of states (DOS) measure is
absolutely continuous and the Lyapunov exponent vanishes a.e. with respect to the
DOS measure; see [26, Corollary 4.8.2]. Simon notes that such a result also ought
to hold true for ergodic families of CMV operators. The aim of this work is to prove
exactly this theorem.

The key ingredient in Kotani’s proof of this statement for Schrödinger operators
is an averaging formula, found in [26, Theorem 4.8]. Broadly speaking, Kotani’s
formula identifies the absolutely continuous part of the DOS with the average of
the absolutely continuous parts of the associated spectral measures. In the present
paper, we prove a suitable version of Kotani’s averaging formula for CMV matrices
and then deduce his characterization of purely absolutely continuous spectrum as
a consequence.

1.2. Results. An extended CMV matrix is a pentadiagonal unitary operator on
�2(Z) with a repeating 2× 4 block structure of the form
(1)

E = Eα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
. . .

α0ρ−1 −α0α−1 α1ρ0 ρ1ρ0
ρ0ρ−1 −ρ0α−1 −α1α0 −ρ1α0

α2ρ1 −α2α1 α3ρ2 ρ3ρ2
ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2

. . .
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where αn ∈ D
def
= {z ∈ C : |z| < 1} and ρn =

√
1− |αn|2 for all n ∈ Z. Setting

α−1 = −1, the operator decouples into two half-line operators. The operator on
the right half-line takes the form

(2) C =

⎡
⎢⎢⎢⎢⎢⎣

α0 α1ρ0 ρ1ρ0
ρ0 −α1α0 −ρ1α0

α2ρ1 −α2α1 α3ρ2 ρ3ρ2
ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2

. . .
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

and is known as a standard or half-line CMV matrix.
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Let us briefly recall how the density of states is defined. Given a CMV operator E
and n ∈ Z+, we denote its restriction to [−n, n] with Dirichlet boundary conditions
by En = χ[−n,n]E . Then, we define dkn to be the normalized eigenvalue counting
measure; that is, dkn puts a Dirac atom of weight m/(2n+1) at ζ whenever ζ is an
eigenvalue of En having multiplicity m. Whenever dkn enjoys a weak∗ limit as n →
∞, we refer to said limit as the density of states measure (henceforth: DOS) of E and
denote it by dk. This is also closely related to the so-called density of zeros measure
for orthogonal polynomials on the unit circle (OPUC); cf. [31, Proposition 8.2.1 and
Theorem 10.5.21].

Ergodic CMV operators (sometimes called stochastic CMV operators) supply an
important class of examples for which the DOS exists. Concretely, let S : Ω → Ω
be an invertible transformation of a Borel space Ω. Given a measurable function
f : Ω → D, we may define CMV operators indexed by Ω via Eω = Eα(ω), where

αn(ω) = f(Snω), n ∈ Z, ω ∈ Ω.

Then, if μ is an S-ergodic measure on Ω and |f | ≤ C < 1 μ-almost everywhere, then
the DOS of Eω exists for μ-a.e. ω ∈ Ω by ergodicity. Moreover, as demonstrated in
[32, Theorem 10.5.21], the DOS of an element of such an ergodic family is μ-almost
surely given by the μ-average of spectral measures:∫

g dk =

∫
Ω

〈δ0, g(Eω)δ0〉 dμ(ω).

We will use E(·) to denote integration against μ, that is,

E(f) =

∫
Ω

f(ω) dμ(ω)

for f ∈ L1(Ω, dμ). We denote the δ0 spectral measure of Eω by dνω, i.e.,

(3) 〈δ0, g(Eω)δ0〉 =
∫
S1

g(z) dνω(z),

where S1 = ∂D denotes the unit circle. Finally, we define the Lyapunov exponent
by

γ(z) = lim
n→∞

1

n
E(log ‖An

z ‖),
where An

z denotes the Szegő cocycle at spectral parameter z ∈ C, that is,

An
z (ω) =

[
z −αn−1(ω)

−αn−1(ω)z 1

]
× · · · ×

[
z −α0(ω)

−α0(ω)z 1

]
, n ≥ 1, ω ∈ Ω.

A crucial role is played by the set on which γ vanishes:

Z def
= {z ∈ C : γ(z) = 0} .

We let ν
(ac)
ω (z) denote the density of the absolutely continuous part of dνω and

k(ac)(z) the density of the absolutely continuous part of dk. Our main result is that

k(ac) is precisely the μ-average of ν
(ac)
ω almost everywhere on Z.

Theorem 1. For Lebesgue-almost every z ∈ Z,

(4) k(ac)(z) = E

(
ν(ac)ω (z)

)
.

As a consequence, we deduce Kotani’s characterization of (almost-sure) pure a.c.
spectrum.
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Corollary 1. The spectral type of Eω is purely absolutely continuous for μ-almost
every ω ∈ Ω if and only if the density of states measure is absolutely continuous
and the Lyapunov exponent vanishes almost everywhere with respect to the density
of states measure.

We note that the hypotheses of this corollary are satisfied in the case where
the Verblunsky coefficients form a periodic sequence. We refer the reader to [32,
Chapter 11] for further details.

Establishing connections between the DOS measure and the spectral measure
is important, because this allows us to extract facts about the spectral measure
of a CMV operator based on an eigenvalue analysis of the finite sub-matrices of
the CMV matrix. An example where this technique was useful is in [16], where
we were able to prove results regarding the spreading behavior of a limit-periodic
quantum walk model by using the DOS measure of the CMV matrix to characterize
its spectral measure.

2. Proof of main theorem

We will follow Kotani’s original argument as presented in the proof of [8, Theo-
rem 5]. The broad strokes of the argument are similar; the main differences arise
from the more complicated nature of Weyl–Titchmarsh theory for CMV matrices.
Concretely, there are several different analytic functions that play the role of the
Weyl–Titchmarsh m-function, which complicates some of the algebraic gymnastics.
For more on the various analogues of the m-function for CMV operators, see [30].

We define first Green’s function

(5) Gω(z) = Gω(0, 0; z)
def
=

〈
δ0, (Eω − z)−1δ0

〉
, z ∈ C \ σ(Eω).

In view of the definition (3), one immediately has∫
S1

dνω(τ )

τ − z
= Gω(z).

The Carathéodory function of νω will be defined by

(6) Fω(z) =
〈
δ0, (Eω + z)(Eω − z)−1δ0

〉
, z ∈ C \ σ(Eω).

This defines an analytic function from D to the right half plane, whose limiting
behavior on the unit circle is connected to the behavior of dνω. Critically, one can
recover the absolutely continuous part of dνω from the boundary values of ReFω.
That is, by [32, (1.3.31)] we have

(7) ν(ac)ω (eiθ) = lim
r↑1

1

2π
ReFω(re

iθ)

for Lebesgue almost every θ ∈ [0, 2π).
Using (3), (5), and (6) we may relate the Carathéodory and Green functions via

(8) Fω(z) =

∫
S1

τ + z

τ − z
dνω(τ ) =

∫
S1

(
1 +

2z

τ − z

)
dνω(τ ) = 1 + 2zGω(z).

Let us define Γ as in [32, (10.11.18)], i.e.,

Γ(z) =

∫
S1

log

(
1− zτ

ρ∞

)
dk(τ ), where ρ∞ = exp

(
1

2
E
(
log(1− |f(ω)|2)

))
.
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By the ergodic theorem, one has

lim
n→∞

⎛
⎝n−1∏

j=0

(1− |αj(ω)|2)

⎞
⎠

1/2n

= ρ∞ for μ-almost every ω ∈ Ω.

The Lyapunov exponent satisfies the Thouless formula. That is, we have

(9) γ(z) = ReΓ(z)

for all z.1

We define also the Carathéodory function corresponding to the DOS by

K(z) =

∫
S1

τ + z

τ − z
dk(τ ), z ∈ D.

Just as with Fω, we may use the boundary values of K to recover the absolutely
continuous part of dk as in (7). One has

(10) k(ac)(eiθ) =
1

2π
lim
r↑1

ReK(reiθ)

for a.e. θ ∈ [0, 2π). By the definitions of the functions K and Γ, it is straightforward
to calculate that they are connected via

(11) K(z) = 1− 2z
dΓ

dz
(z),

which may be viewed as an analogue of (8).

Proof of Theorem 1. The “≥” direction follows immediately from [32, Theorem
10.11.11] and the fact that the average of absolutely continuous measures is abso-
lutely continuous.

For the other direction, we use (10.11.28) of [32], which states that

(12) E(Gω(z)) =

∫
S1

dk(τ )

τ − z
.

For convenience, let us introduce Z◦ ⊆ [0, 2π) by insisting that θ ∈ Z◦ if and
only if eiθ ∈ Z. By (9), (11), and standard facts about Carathéodory functions
(e.g. [31, Section 1.3]), one has

(13) lim
r↑1

∂γ

∂r
(reiθ) = lim

r↑1

γ(eiθ)− γ(reiθ)

1− r
= − lim

r↑1

γ(reiθ)

1− r

for Lebesgue almost every θ ∈ Z◦. Since it is critical to our proof, let us point out
that there is a sign error in [32, (10.11.22)], which is why it does not match our
equation (13) for the boundary values of ∂γ/∂r on Z.

1There is a small subtlety here: we are using γ to denote the averaged Lyapunov exponent,
which always exists and obeys the Thouless formula for all z. The behavior of the non-averaged
Lyapunov exponent can be somewhat delicate on S1; see the discussion in the Remark following
[32, Theorem 10.5.26] for additional details.
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We can then write

k(ac)(eiθ) = lim
r↑1

1

2π
ReK(reiθ) by (10)

= lim
r↑1

1

2π
Re

(
1− 2reiθ

dΓ

dz
(reiθ)

)
by (11)

=
1

2π
− lim

r↑1

1

π

∂γ

∂r
(reiθ) by (9) and Cauchy–Riemann

=
1

2π
+ lim

r↑1

1

π

(
γ(reiθ)

1− r

)
by (13)(14)

for Lebesgue a.e. θ ∈ Z◦.
Let f+(z) = f+(z, ω) and f−(z) = f−(z, ω) be the Schur functions correspond-

ing to the half-line CMV matrices with Verblunsky coefficient sequences given by
α0(ω), α1(ω), . . . and −α−1(ω),−α−2(ω), . . . respectively. A bit more precisely,
these coefficient sequences determine half-line operators C±(ω) as in (2) with cyclic
vector δ0 and associated spectral measures dμ±,ω. The Schur functions are analytic
functions from D to itself defined in terms of the half-line Carathéodory functions
K±,ω by

f±(z, ω) =
1

z

K±,ω(z)− 1

K±,ω(z) + 1
, K±,ω(z) =

∫
S1

τ + z

τ − z
dμ±,ω(τ ).

For further discussion of the role of the Schur function in the spectral theory of
CMV matrices, we refer the interested reader to [31, Section 1.3].

These half-line Schur functions are connected to the Lyapunov exponent via
[32, Proposition 10.11.7], which gives us

(15) γ(z) =
1

2
E

(
log

(
1− |zf+|2
1− |f+|2

))
.

Additionally, by [32, Proposition 10.11.12], the Schur functions are connected to
Green’s function in the following way:

(16) Gω(z) =
f+(z, ω)f−(z, ω)

1− zf+(z, ω)f−(z, ω)
.

In view of (8), this implies that

(17) Fω(z) =
1 + zf+(z, ω)f−(z, ω)

1− zf+(z, ω)f−(z, ω)
.

Moreover, by [32, Theorem 10.11.16], Eω is reflectionless on Z for μ a.e. ω ∈ Ω.
That is, for μ a.e. ω, we have

(18) f+(z0, ω) = z0f−(z0, ω)
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for Lebesgue a.e. z0 ∈ Z. Consequently, for μ a.e. ω, the following calculation holds
for Lebesgue a.e. θ ∈ Z◦:

ν(ac)ω (eiθ) = lim
r↑1

1

2π
ReFω(re

iθ) by (7)

= lim
r↑1

1

2π
Re

(
1 + reiθf+(re

iθ)f−(re
iθ)

1− reiθf+(reiθ)f−(reiθ)

)
by (17)

= lim
r↑1

1

2π

(
1 + |f+(reiθ)|2
1− |f+(reiθ)|2

)
by (18).(19)

Let PR be the Poisson kernel for the unit disk; that is, for R ∈ [0, 1) and τ ∈ S1,
put

PR(τ ) = Re

(
1 +Rτ

1−Rτ

)
.

Throughout the rest of the argument, we will freely use some basic facts about
Poisson integrals and boundary values of harmonic functions. The reader is invited
to consult [27, Chapter 11] for further information. Let us also define

CR(φ) =

∫
Z◦

PR(e
i(φ−φ′)) dφ′

and

P̃R(φ, φ
′) = PR(e

i(φ−φ′))CR(φ)
−1.

By Jensen’s inequality, we have∫ 2π

0

ν(ac)ω (eiφ
′
)PR(e

i(φ−φ′)) dφ′ ≥
∫
Z◦

ν(ac)ω (eiφ
′
)PR(e

i(φ−φ′)) dφ′

= CR(φ)

∫
Z◦

ν(ac)ω (eiφ
′
)P̃R(φ, φ

′) dφ′

≥ CR(φ)

(∫
Z◦

(
ν(ac)ω (eiφ

′
)
)−1

P̃R(φ, φ
′) dφ′

)−1

≥ CR(φ)
2

(∫ 2π

0

(
ν(ac)ω (eiφ

′
)
)−1

PR(e
i(φ−φ′)) dφ′

)−1

for every ω and every φ. Then, by (19), we get∫ 2π

0

ν(ac)ω (eiφ
′
)PR(e

i(φ−φ′)) dφ′ ≥ CR(φ)
2

2π

(
1 + |f+(Reiφ)|2
1− |f+(Reiφ)|2

)
for μ a.e. ω and Lebesgue a.e. φ ∈ Z◦. Consequently, for a.e. φ ∈ Z◦, we get∫ 2π

0

E

(
ν(ac)ω (eiφ

′
)
)
PR(e

i(φ−φ′)) dφ′ ≥ CR(φ)
2

2π
E

(
1 + |f+(Reiφ)|2
1− |f+(Reiφ)|2

)
.

Sending R ↑ 1, we note that |CR(φ)| ≤ 1 for all φ and CR(φ) → 1 for Lebesgue a.e.
φ ∈ Z◦ by standard properties of Poisson integrals. Consequently, after re-labeling
R as r, we get

(20) E

(
ν(ac)ω (eiφ)

)
≥ 1

2π
lim sup

r↑1
E

(
1 + |f+(reiφ)|2
1− |f+(reiφ)|2

)

for Lebesgue a.e. φ ∈ Z◦.
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At last, we put everything together. By (14) and (15), we have

k(ac)(eiφ) =
1

2π
+ lim

r↑1

1

2π(1− r)
E

(
log

(
1 +

|f+(reiφ)|2(1− r2)

1− |f+(reiφ)|2

))
for a.e. φ ∈ Z◦. Since log(1 + x) ≤ x for x ≥ 0, we get

k(ac)(eiφ) ≤ 1

2π
+

1

2π
lim sup

r↑1
E

(
|f+(reiφ)|2(1 + r)

1− |f+(reiφ)|2

)

=
1

2π
+

1

π
lim sup

r↑1
E

(
|f+(reiφ)|2

1− |f+(reiφ)|2

)

=
1

2π
lim sup

r↑1
E

(
1 + |f+(reiφ)|2
1− |f+(reiφ)|2

)

for a.e. φ ∈ Z◦. Combining this with (20) we get

k(ac)(eiφ) ≤ 1

2π
lim sup

r↑1
E

(
1 + |f+(reiφ)|2
1− |f+(reiφ)|2

)
≤ E

(
ν(ac)ω (eiφ)

)
for a.e. φ ∈ Z◦, which completes the proof. �

Proof of Corollary 1. Suppose first that the spectrum of Eω is purely absolutely
continuous for μ-almost every ω ∈ Ω. Then, as it is the average of absolutely
continuous measures, it follows that dk is absolutely continuous (cf. [32, (10.5.50)–
(10.5.51)]). Moreover, since the almost-sure absolutely continuous spectrum is given
by the essential closure of the set upon which the Lyapunov exponent vanishes
(e.g. by [32, Theorem 10.11.1]), it follows that the Lyapunov exponent vanishes
Lebesgue-a.e. (hence dk-a.e.) on the spectrum.

Conversely, if dk is purely a.c. and γ vanishes dk-a.e. on S1, then

1 =

∫
Σ

dk(z)

=

∫
Z
dk(z)

=

∫
Z
k(ac)(z) dλ(z)

=

∫
Z
E(ν(ac)ω (z)) dλ(z)

= E

(∫
Z
ν(ac)ω (z) dλ(z)

)

≤ E

(∫
Σ

ν(ac)ω (z) dλ(z)

)
≤ 1,

by Theorem 1 and Fubini’s Theorem. In the calculation above, dλ denotes nor-
malized 1D Lebesgue measure on S1. Since the chain of inequalities begins and
ends with one, all inequalities are equalities, so the absolutely continuous part of
νω has full weight for μ-a.e. ω. The transformation S preserves μ, so one also has

ν
(ac)
Sω (Σ) = 1 for μ-a.e. ω. Since νSω is the spectral measure of Eω corresponding
to the vector δ1 and the pair {δ0, δ1} is cyclic for Eω, taking the intersection of
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those two full-measure sets yields a full-measure set for which Eω has purely a.c.
spectrum. �
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