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TOPOLOGICAL STABILITY AND PSEUDO-ORBIT TRACING
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NHAN-PHU CHUNG AND KEONHEE LEE

(Communicated by Yingfei Yi)

Abstract. In this paper we extend the concept of topological stability from
homeomorphisms to group actions on compact metric spaces and prove that
if an action of a finitely generated group is expansive and has the pseudo-
orbit tracing property, then it is topologicaly stable. This represents a group
action version of P. Walter’s stability theorem [Lecture Notes in Math., vol.
668, Springer, 1978, pp. 231–244]. Moreover we give a class of group actions
with topological stability or pseudo-orbit tracing property. In particular, we
establish a characterization of subshifts of finite type over finitely generated
groups in terms of the pseudo-orbit tracing property.

1. Introduction

In 1970, Walters [15] introduced the notion of topological stability, a kind of
stability for homeomorphisms in which continuous perturbations are allowed. In
that paper he proved that Anosov diffeomorphisms on compact smooth manifolds
are not only structurally stable but also topologically stable. Several results dealing
with this new kind of stability were then appearing. For instance, Nitecki [10]
proved that Axiom A diffeomorphisms with the strong transversality condition
on compact smooth manifolds are topologically stable. Afterwards, Walters [16]
proved that every expansive homeomorphism with pseudo-orbit tracing property on
a compact metric space is topologically stable. Very recently, Lee and Morales [9]
introduced the notions of topological stability and pseudo-orbit tracing property for
Borel measures on compact metric spaces and showed that any expansive measure
with pseudo-orbit tracing property is topologically stable.

In this paper we will obtain a group action version of this result. Indeed, we
introduce the notion of topological stability for an action of a finitely generated
group on a compact metric space and prove that if a group action is expansive
and has the pseudo-orbit tracing property, then it is topologically stable. This
represents a further contribution to the study of the pseudo-orbit tracing prop-
erty (or shadowing) of a group action developed elsewhere in the recent literature
[11–14]. Furthermore, we establish a characterization of subshifts of finite type
over finitely generated groups via the pseudo-orbit tracing property. This charac-
terization extends the main results of [16] and [11] when the acting group is Z and
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Z
d, respectively. Finally, we show that every equicontinuous action of an infinite,

finitely generated group on the Cantor space has the pseudo-orbit tracing property.
We round out the introduction with some notation that we will use in the paper.

Let G be a finitely generated discrete group and X be a compact metric space with
a metric d. Put Homeo(X) as the space of all homeomorphisms of X. We denote
by Act(G,X) the set of all continuous actions T of G on X. Let Homeo(X)G =∏

G Homeo(X) be the set of homomorphisms fromG to Homeo(X) with the product
topology. Then Act(G,X) can be considered as a subset of Homeo(X)G. Let A be
a finitely generating set of G. We define a metric dA on Act(G,X) by

dA(T, S) := supx∈X
a∈A

d(Tax, Sax),

for T, S ∈ Act(G,X).

2. Topological spability and pseudo-orbit tracing property

First of all, we introduce the notion of topological stability of a finitely generated
group action on a compact metric space.

Definition 2.1. Let A be a finitely generating set of G, and let T ∈ Act(G,X).
We say that T is A-topologically stable if for every ε > 0, there exists δ > 0
such that if S is another continuous action of G on X with dA(T, S) < δ, then
there exists a continuous map f : X → X with Tgf = fSg, for every g ∈ G and
d(f, IdX) := supx∈X d(f(x), x) ≤ ε.

It is clear that the definition of A-topological stability of T does not depend on
the choice of a compatible metric d on X. Note that the definition of topological
stability of a homeomorphism introduced in [15] coincides with our definition when
G = Z and A = {1}. Furthermore, we can see that topological stability of T does
not depend on the choice of a symmetric finitely generating set A of G. Recall that
A is symmetric if for any a ∈ A, a−1 ∈ A.

Lemma 2.2. Let A and B be symmetric finitely generating sets of G. For any
T ∈ Act(G,X), T is A-topologically stable if and only if it is B-topologically stable.

Proof. Suppose T is A-topologically stable. Then for any ε > 0, there exists δ′ > 0
such that if S is another continuous action of G on X with dA(T, S) < δ′, then
there exists a continuous map f : X → X with Tgf = fSg, for every g ∈ G
and d(f, IdX) ≤ ε. It suffices to show that there exists δ > 0 such that for any
S ∈ Act(G,X), if dB(T, S) < δ, then dA(T, S) < δ′. Put m := maxa∈A �B(a),
where �B is the word length metric on G induced by B. Choose δ1 > 0 such that
mδ1 < δ′. Since X is compact, A and B are finite and the action T is continuous,
there exists δ > 0 such that d(Thx, Thy) < δ1 for x, y ∈ X with d(x, y) < δ and
for h ∈ G with �B(h) ≤ m. For any a ∈ A, we write a as b1 · · · b�(a), where
�(a) = �B(a) ≤ m, bi ∈ B, i = 1, . . . , �(a). Then for any S ∈ Act(G,X) with
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dB(T, S) < δ, we have

d(Tax, Sax) = d(Tb1···b�(a)
x, Sb1···b�(a)

x)

≤ d(Tb1···b�(a)−1
Tb�(a)

x, Tb1b2···b�(a)−1
Sb�(a)

x)

+ d(Tb1b2···b�(a)−2
Tb�(a)−1

Sb�(a)
x, Tb1b2···b�(a)−2

Sb�(a)−1
Sb�(a)

x)

+ · · ·+ d(Tb1Tb2Sb3···b�(a)−1b�(a)
x, Tb1Sb2Sb3···b�(a)−1b�(a)

x)

+ d(Tb1Sb2···b�(a)−1b�(a)
x, Sb1···b�(a)

x)

< mδ1 < δ′.

This means that dA(T, S) < δ′, and so completes the proof. �
Definition 2.3. An action T ∈ Act(G,X) is said to be topologically stable if it is
A-topologically stable for a symmetric finitely generating set A of G.

Remark 2.4. Let A be a finitely generating set of G. We define a metric d̃A on
Act(G,X) by

d̃A(T, S) := supx∈X
a∈A

{d(Tax, Sax) + d(T−1
a x, S−1

a x)},

for T, S ∈ Act(G,X). Clearly dA and d̃A are equivalent. Furthermore, the topology

on Act(G,X) induced by d̃A coincides with the product topology on Act(G,X)
inherited from Homeo(X)G. Hence the space Act(G,X) is a separable complete
metrizable topological space, and so a Polish space.

If T and S are two continuous actions of G on X with dA(T, S) < δ, then the
S-orbit {Sgx} of x ∈ X is nearly a T -orbit in the sense that d(TaSgx, Sagx) < δ for
all a ∈ A and g ∈ G. This observation motivates the following definition.

Definition 2.5. Let A be a finitely generating set of G and δ > 0. A δ pseudo-
orbit of T ∈ Act(G,X) with respect to A is a sequence {xg}g∈G in X such that
d(Taxg, xag) < δ for all a ∈ A, g ∈ G.

Definition 2.6. Let A be a finitely generating set of G. An action T ∈ Act(G,X)
is said to have the pseudo-orbit tracing property (abbreviated POTP) with respect
to A if for every ε > 0, there exists δ > 0 such that any δ pseudo-orbit {xg}g∈G for
T with respect to A is ε-traced by some point x of X, that is, d(Tgx, xg) < ε for
all g ∈ G.

Note that the pseudo-orbit tracing property of T does not depend on the choice
of a compatible metric d of X. Osipov and Tikhomirov [12] introduced the notion
of POTP, which they called shadowing, for actions of finitely generated groups by
using symmetric finitely generating sets of the acting groups. They showed that the
definition of POTP does not depend on the choice of symmetric finitely generating
sets. Indeed, it is not hard to check that it actually does not depend on the choice
of general finitely generating sets; see for example [13, Lemma 2.2].

Definition 2.7. We say that an action T ∈ Act(G,X) has POTP if T has POTP
with respect to A for a finitely generating set A of G.

Note that the definition of POTP of a homeomorphism coincides with our def-
inition when G = Z and A = {1}. We recall that an action T of a group G on a
compact metric space X is expansive if there exists an open subset U in X × X
such that ΔX =

⋂
g∈G g−1U , where ΔX := {(x, x) : x ∈ X} and the action of G on
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X ×X is defined by g(x, y) := (gx, gy) for every x, y ∈ X, g ∈ G. Note that T is
expansive if and only if there exists a constant c > 0 called an expansive constant
of T such that for every x �= y, one has supg∈G d(gx, gy) > c. Now we prove that
if an action of a finitely generated group on a compact metric space is expansive
and has POTP, then it is topologically stable. This extends the main results of
[16, Theorems 4 and 5] to group actions.

Theorem 2.8. If an action T ∈ Act(G,X) is expansive and has POTP, then it is
topologically stable. Moreover, for a finitely generating set A of G, for ε > 0 with
ε < η/3, where η is an expansive constant of T , there exists δ > 0 such that if S
is another continuous action of G on X with dA(T, S) < δ, then there is a unique
map f : X → X with Tgf = fSg for every g ∈ G and d(f, IdX) ≤ ε. Furthermore,
if S is also expansive with an expansive constant ηS ≥ 2ε, then the conjugating map
f is injective.

To prove the above theorem, we need the following two lemmas.

Lemma 2.9. Let T ∈ Act(G,X) be an expansive action with POTP with respect to
a finitely generating set A of G. Let ε < η/2 and δ correspond to ε as in Definition
2.6, where η is an expansive constant of T . Then every δ pseudo-orbit of T is
ε-traced by a unique point in X.

Proof. Let {xg}g∈G be a δ pseudo-orbit of T, and let x, y be two points that ε-trace
{xg}g∈G. Then one has d(Tgx, Tgy) ≤ d(Tgx, xg) + d(xg, Tgy) < 2ε < η for every
g ∈ G. By the expansiveness of T , we get x = y. �
Lemma 2.10. Let T ∈ Act(G,X) be an expansive action with an expansive con-
stant η. Then, for any ε > 0, there exists a non-empty finite subset F of G such
that whenever supg∈F d(Tgx, Tgy) ≤ η, we have d(x, y) < ε.

Proof. Assume that there exists ε > 0 such that for any non-empty finite subset F
of G, there exist xF , yF ∈ X such that

sup
g∈F

d(Tgx, Tgy) ≤ η and d(xF , yF ) ≥ ε.

Choose a sequence of non-empty finite subsets Fn of G satisfying

F1 ⊂ F2 ⊂ · · · and G =
⋃
n∈N

Fn.

Then for every n ∈ N, there exist xn, yn ∈ Fn such that

sup
g∈Fn

d(Tgxn, Tgyn) ≤ η and d(xn, yn) ≥ ε.

After taking a subsequence, we can assume that xn → x and yn → y. Then we have
d(Tgx, Tgy) ≤ η for all g ∈ G and d(x, y) ≥ ε, which contradicts the expansiveness
of T . �
Proof of Theorem 2.8. Let η be an expansive constant of T and let ε < η/3. Let A
be a finitely generating set of G. Choose δ corresponding to ε as in Definition 2.6.
Let S be a continuous action of G on X with dA(T, S) < δ. For any x ∈ X, we see
that the S-orbit {Sgx}g∈G of x is a δ pseudo-orbit for T . By Lemma 2.9, there is
a unique point denoted by f(x) whose T -orbit ε-traces {Sgx}g∈G. Then we have
the map f : X → X satisfying

(*) d(Tgf(x), Sgx) < ε for all g ∈ G, x ∈ X.
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In particular, we have d(f(x), x) < ε for every x ∈ X, and hence d(f, IdX) ≤ ε.
Now we will prove that Tgf(x) = fSg(x) for every x ∈ X, g ∈ G. In fact, we

have

d(Thf(Sgx), Shgx) = d(Thf(Sgx), ShSgx) < ε

for x ∈ X and g, h ∈ G. On the other hand, applying (*) again, we obtain

d(ThTgf(x), Shgx) = d(Thgf(x), Shgx) < ε.

Then we get Tgf(x) = fSg(x) by Lemma 2.9.
Next we will show that f is continuous. Let ε1 > 0. By Lemma 2.10, there exists

a non-empty finite subset F of G such that whenever supg∈F d(Tgx, Tgy) ≤ η one
has d(x, y) < ε1. Choose δ1 > 0 such that for every x, y ∈ X with d(x, y) < δ1, one
has d(Sgx, Sgy) < η/3 for every g ∈ F . Then, for any x, y ∈ X with d(x, y) < δ1
and g ∈ F , we get

d(Tgf(x), Tgf(y)) = d(fSg(x), fSg(y))

≤ d(fSg(x), Sg(x)) + d(Sg(x), Sg(y)) + d(Sg(y), fSg(y))

< ε+ η/3 + ε < η.

Thus d(f(x), f(y)) < ε1 for x, y ∈ X with d(x, y) < δ1. This means that f is
continuous.

Assume that there is another map f1 such that Tgf1 = f1Sg for all g ∈ G and
d(f1, IdX) ≤ ε. Then, for any g ∈ G, we have

d(Tgf(x), Tgf1(x)) ≤ d(Tgf(x), Sg(x)) + d(Sg(x), Tgf1(x))

= d(fSg(x), Sg(x)) + d(Sg(x), f1Sg(x)) < 2ε < η.

By the expansiveness of T , we get f(x) = f1(x). Finally, we will prove the last
assertion. Let f(x) = f(y). Then for any g ∈ G, we have

d(Sgx, Sgy) ≤ d(Sgx, f(Sgx)) + d(f(Sgx), f(Sgy)) + d(f(Sgy), Sgy)

= d(Sgx, f(Sgx)) + d(Tgf(x), Tgf(y)) + d(f(Sgy), Sgy) < 2ε ≤ ηS ,

and so x = y by the expansiveness of S. �

Next we will provide a class of topologically stable actions. First, we recall the
definition of nilpotent group. Let G be a countable group. We denote by e the
unit of G. The lower central series of G is the sequence {Gi}i≥0 of subgroups
of G defined by G0 = G and Gi+1 = [Gi, G], where [Gi, G] is the subgroup of G
generated by all commutators [a, b] := aba−1b−1, a ∈ Gi, b ∈ G. The group G is
said to be nilpotent if there exists n ≥ 0 such that Gn = {e}. The smallest such n
is called the nilpotent degree of G.

Theorem 2.11. Let G be a finitely generated virtually nilpotent group; i.e. there
exists a nilpotent subgroup H of G with finite index. Let T be a continuous action
of G on X. If there exists an element g ∈ G such that Tg is expansive and has
POTP, then T is topologically stable.

The following two lemmas were proved implicitly in ([12, Lemmas 1 and 2]). For
convenience, we provide those implicit proofs here.

Lemma 2.12. Let G be a finitely generated group and H be a finitely generated
normal subgroup of G. Let T be a continuous action of G on X. If the restriction
action TH of T to H is expansive and has POTP, then T has POTP.
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Proof. Let A be a finitely generating set of H. We can add more elements to A
to get a symmetric finitely generating set B of G. Let c be an expansive constant
of TH . Since X is compact and B is finite, there exists 0 < η < c/3 such that
d(Tbx, Tby) < c/3 for every b ∈ B and every x, y ∈ X with d(x, y) < η. Let ε > 0
be a constant with ε < η. We can choose 0 < δ < ε such that every δ pseudo-orbit
for TH with respect to A is ε-traced by some point of X. Let {xg}g∈G be a δ
pseudo-orbit of T with respect to B. For every g ∈ G, the sequence {xhg}h∈H is
a δ pseudo-orbit of TH with respect to A. Since TH is expansive, by Lemma 2.9,
there exists a unique point yg ∈ X such that

d(xhg, Thyg) < ε, for every h ∈ H.(1)

Now we will prove that yg = Tgye for g ∈ G. Fix g ∈ G and b ∈ B. For any
h ∈ H, there exists h′ ∈ H such that hb = bh′. Then we have

d(xbh′g, Thybg) = d(xhbg, Thybg) < ε and d(Tbxh′g, TbTh′yg) < c/3.

Hence we get

d(Thybg, ThTbyg) ≤ d(Thybg, xbh′g) + d(xbh′g, Tbxh′g) + d(Tbxh′g, Tbh′yg) < c.

Since TH is expansive, we have Tbyg = ybg for every b ∈ B. As B is a symmetric
generating set of G, we get Tgye = yg for every g ∈ G. On the other hand,
by applying h = eG for (1), we have d(xg, yg) < ε for every g ∈ G and hence
d(xg, Tgye) < ε for g ∈ G. �

Lemma 2.13. Let G be a finitely generated nilpotent group and T be a continuous
action of G on X. If there exists g ∈ G such that Tg is expansive and has POTP,
then T has POTP.

Proof. We prove by induction on the nilpotent degree n of G. If n = 1, then the
group G is abelian and hence H = 〈g〉 is a normal subgroup of G. Thus, T has
POTP by Lemma 2.12. Let n > 1 and assume that the statement of the lemma
is true for all nilpotent groups with nilpotent degree less than or equal to n − 1.
Put G1 := [G,G] and K := 〈G1, g〉. Then K has the nilpotent degree at most
n−1 [12, Proposition 2]. It is known that G1 is finitely generated [4, Lemma 6.8.4]
and hence K is finitely generated. Thus, from the induction assumption, we know
TK has POTP. Since Tg is expansive and g ∈ K, we have TK is expansive. As K
is a normal subgroup of G [12, Proposition 2], we complete the proof by Lemma
2.12. �

Proof of Theorem 2.11. Let H be a nilpotent normal subgroup of G with finite
index. Then H is finitely generated [4, Proposition 6.6.2]. Since H has finite index
in G, there exists n ∈ N such that gn ∈ H. Because Tg is expansive and has POTP,
Tgn = Tn

g is also expansive and has POTP. Thus, from Lemma 2.13, the action TH

has POTP. Since gn ∈ H and Tgn is expansive, one has TH is expansive. Applying
Theorem 2.8 and Lemma 2.12, we complete the proof. �

In the following example given in [7, Example 1.1], we see that the integral
Heisenberg group H induces an action on the torus T

3n which is topologically
stable.
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Example 2.14. Let H be the integral Heisenberg group, i.e. H = 〈a, b, c|ac =
ca, bc = cb, ab = bac〉. Then H is a nilpotent group. For every n ∈ N , we let
x, y ∈ SL(n,Z) be such that xy = yx. Put

a =

⎛
⎝x In 0
0 x 0
0 0 x

⎞
⎠ , b =

⎛
⎝y 0 0
0 y In
0 0 y

⎞
⎠ , c =

⎛
⎝In 0 x−1y−1

0 In 0
0 0 In

⎞
⎠ .

Then a, b, c satisfy the relations in H. Let T be the natural action of H ≤
SL(3n,Z) on T

3n. If x has no eigenvalues of modulus 1, then a also has no eigen-
values of modulus 1. Then we see that Ta is expansive and has POTP. Applying
Theorems 2.8 and 2.11, we know that the action T is topologically stable. Similarly
the case y has no eigenvalues of modulus 1.

3. Shifts of finite type and POTP

Let A be a finitely generating set of G. For any k ∈ N, we put B(k) := {g ∈ G :
�A(g) ≤ k}. Let S be a non-empty finite set. We denote by SG the product space∏

G S endowed with the product topology. We consider the action of G on SG by
right shifts, i.e. (gx)h = xhg for every g, h ∈ G and x ∈ SG. For any non-empty
finite subset F of G and x ∈ SG, we denote by xF the restriction of x to F and by
πF : SG → SF the natural projection map. An element f ∈ SF is called a pattern.
If F = {g} for some g ∈ G, we write xF simply as xg. A closed subset X of SG is
called a subshift if it is G-invariant, i.e. gx ∈ X for every g ∈ G, x ∈ X. A pattern
f ∈ SF is said to be allowed for the shift X if there exists x in X such that f = xF .
For every k ∈ N, a pattern f ∈ SB(k) is called a B(k)-block, and we denote by
Bk(S) and Bk(X) the set of all B(k)-blocks and the set of all B(k)-blocks allowed
in X, respectively. Then, we put B(S) =

⋃
k∈N

Bk(S) and B(X) =
⋃

k∈N
Bk(X).

Let W be a set of patterns. We define

XW := {x ∈ SG : (gx)F = xFg /∈ W for all g ∈ G

and all finite subsets F ( �= ∅) of G}.

A subshift X of SG is said to be of finite type if there are a non-empty finite
subset F of G and a subset P of SF such that

X = {x ∈ SG : πF (gx) ∈ P, ∀g ∈ G} =: S(F, P ).

The subsets F and P are called a defining window and a set of allowed words for
X, respectively. It is clear that if X is a subshift of finite type defined by a defining
window F and a set of allowed words P , then for any F ′ ⊃ F , it is also a subshift
of finite type defined by F ′ and P ′ = {x ∈ SF ′

: πF (x) ∈ P}. We refer readers
to [6, Chapter 2, Section 3] for details of subshifts of finite type over a countable
group. The following lemma is clear from the definitions of a subshift of finite type
and XW .

Lemma 3.1. Let X be a subset of SG. Then X is a subshift of finite type if
and only if there exist a non-empty finite subset F of G and W ⊂ SF such that
X = XW .

Now we establish a characterization of subshifts of finite type over finitely gen-
erated groups via POTP. This characterization extends the main results of [16] and
[11] when the acting group is Z and Z

d, respectively.
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Theorem 3.2. Let G be a finitely generated group and S be a non-empty finite
set. Let T be the right action of G on SG and X be a subshift of SG. Then X is
of finite type if and only if it has POTP; i.e. T has POTP on X.

Proof. Let A be a symmetric finitely generating set of G. We define a metric d on
X by

d(x, y) = 2−k, k := sup{j ∈ N : xg = yg, for all g ∈ B(j)}

for x, y ∈ X, where B(j) = {g ∈ G : �A(g) ≤ j}. Then d is a compatible metric on
X. Assume that X is a subshift of finite type. Then we can choose M ∈ N such
that F = B(M) is a defining window for X. Let W be the set of allowed words for
X with respect to the window F . Let ε > 0. Choose m ∈ N such that 2−m < ε and
m > M . Put δ = 2−(m+1). Then we will prove that every δ pseudo-orbit {x(g)}g∈G

for T on X with respect to A will be ε-traced by some point x ∈ X. Let {x(g)}g∈G

be a δ pseudo-orbit for T on X with respect to A, i.e. d(Tax
(g), x(ag)) < 2−(m+1)

for every g ∈ G, a ∈ A. Then for any h ∈ B(m), g ∈ G and a ∈ A, we have

(**) x
(g)
ha = (Tax

(g))h = x
(ag)
h .

Fix h ∈ B(m). Then we can write h as a1 · · · an, where ai ∈ A for every 1 ≤ i ≤ n

and n ≤ m. Put x := (xg)g∈G, where xg := x
(g)
e for every g ∈ G. Applying (**),

one has

(Tgx)h = xhg = x(hg)
e = x(a1···ang)

e = x(a2···ang)
a1

= · · · = x
(g)
a1···an = x

(g)
h ,

for every g ∈ G. Thus d(Tgx, x
(g)) ≤ 2−m < ε for every g ∈ G. Now we show that

x ∈ X. Since F = B(M) ⊂ B(m), we have (Tgx)f = x
(g)
f for f ∈ F and g ∈ G.

Hence we get

πF (Tgx) = πF (x
(g)) ∈ W

for every g ∈ G. This implies x ∈ X.
Now we will prove the converse. Assume that X has POTP. Take δ > 0 such that

every δ pseudo-orbit for T on X with respect to A is 1/2-traced. Choose m ∈ N

such that 2−m < δ. Let W ⊂ Bm+1(S) \ Bm+1(X). Then from the definition of
XW , one has X ⊂ XW . Now we claim that XW ⊂ X. Let y ∈ XW . Then for every
g ∈ G, one has (gy)B(m+1) ∈ Bm+1(X), and hence there exists x(g) ∈ X such that

x
(g)
B(m+1) = (gy)B(m+1). Then for any a ∈ A and g ∈ G, we get

(ax(g))B(m) = x
(g)
B(m)a = yB(m)ag = x

(ag)
B(m)

because B(m)a ⊂ B(m + 1). Therefore, we have d(ax(g), x(ag)) ≤ 2−m < δ, and
hence {x(g)}g∈G is a δ pseudo-orbit for T on X with respect to A. As X has POTP,

there exists x ∈ X such that {x(g)}g∈G is 1/2-traced by x, i.e. d(gx, x(g)) < 1/2
for every g ∈ G. Hence we get

xB(1)g = x
(g)
B(1) = yB(1)g

for g ∈ G, and thus y = x ∈ X. Applying Lemma 3.1, we complete the proof. �
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4. Equicontinuous actions and POTP

We say that an action T ∈ Act(G,X) is equicontinuous if for every ε > 0, there
exists δ > 0 such that for any x, y ∈ X with d(x, y) < δ, one has d(gx, gy) < ε for
every g ∈ G. T is called distal if for every x �= y ∈ X, one has infg∈G d(gx, gy) > 0.

It is known that every compact, totally disconnected, metrizable space without
isolated points is homeomorphic to the Cantor set and every equicontinuous action
of Z on the Cantor space has POTP. In the following theorem, we can see that it
still holds for actions of general groups.

Theorem 4.1. Let G be an infinite, finitely generated group and let T be an
equicontinuous action of G on the Cantor space X. Then T has POTP.

Proof. Since {0, 1}G is a compact, totally disconnected, metrizable space without
isolated points, we can assume that X = {0, 1}G. Let A be a symmetric finitely
generating set of G. We enumerate elements of G by e = g0, g1, · · · and define a
compatible metric d on X by

d(x, y) :=

∞∑
i=0

1

2i
dS(xgi , ygi)

for x, y ∈ X, where dS is the metric on {0, 1} defined by dS(a, b) is 1 if a �= b
and 0 otherwise. Put Fn := {g0, g1, . . . , gn}. Let ε > 0. Choose m ∈ N such
that 2−m < ε. Since the action T is equicontinuous, there exists k ∈ N such that
whenever d(x, y) < 2−k, one has d(gx, gy) < 2−m for every g ∈ G. This means
that for any x, y ∈ X with d(x, y) < 2−k, we have (gx)Fm

= (gy)Fm
for g ∈ G. Let

{x(h)}h∈G be a 2−k pseudo-orbit for T with respect to A; i.e. for a ∈ A, h ∈ G,
we have d(ax(h), x(ah)) < 2−k. Then (gax(h))Fm

= (gx(ah))Fm
for every a ∈ A and

h, g ∈ G. For g ∈ G, we write g as a1 · · · an for some n ∈ N and ai ∈ A. Then we
have

(gx(e))Fm
= (a1 · · · anx(e))Fm

= (a1 · · · an−1x
(an))Fm

= (a1 · · · an−2x
(an−1an))Fm

= · · · = x
(a1···an)
Fm

= x
(g)
Fm

.

Consequently we get d(gx(e), x(g)) < 2−m < ε, and so complete the proof. �

Corollary 4.2. Every distal action of a finitely generated group on the Cantor
space has POTP.

Proof. From [3, Corollary 1.9], we know that every distal action of a finitely gen-
erated group on the Cantor space is equicontinuous. �

Remark 4.3. We cannot leave out the assumption of Cantor space in Theorem 4.1,
because even in the case G = Z, every distal homeomorphism on a connected space
does not have POTP [1, Theorem 2.3.2].

Let G be a countable group. A chain of G is a sequence of subgroups {Gn}n≥0

such that G = G0 ≥ G1 ≥ G2 ≥ · · · such that [G : Gn] < ∞ for every n ≥ 0. For
a chain {Gn}n≥0, we define tree structure T (G, {Gn}) as follows. The vertices are
{gGn : n ≥ 0, g ∈ G}, and (g1Gn, g2Gm) is an edge if m = n+1 and g2Gm ⊂ g1Gn.

The boundary
←−
G{Gn} of T (G, {Gn}) consists of all sequences (x0, x1, · · · ) of vertices

with xn adjacent to xn+1 for each n ∈ Z+. Then
←−
G{Gn} is a compact metrizable

space endowed with the topology generated by the open basis consisting of all
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subsets Ox = {(x0, x1, · · · ) ∈
←−
G{Gn} : xN = x} with x ∈ G/GN and N ∈ Z+. The

natural left actions of G on G/Gn induce the profinite action (
←−
G{Gn}, G), an action

of G on
←−
G{Gn} by homeomorphisms. In this case the profinite action (

←−
G{Gn}, G)

is equicontinuous, since for any x = gGn ∈ G/Gn and h ∈ G we have hOx = Oy

with y = hgGn ∈ G/Gn.
Profinite actions have been studied extensively in rank gradient, orbit equiva-

lence, operator algebras, and sofic entropy theory [2, 5, 8]. Since every profinite

action of G on
←−
G{Gn} is equicontinuous and every infinite boundary space

←−
G{Gn}

is a Cantor space, from Theorem 4.1 we get the following corollary.

Corollary 4.4. Every profinite action of G on an infinite boundary space
←−
G{Gn}

has POTP.
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