Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Generation of Siegel modular function fields of even level


Author: Dong Sung Yoon
Journal: Proc. Amer. Math. Soc. 146 (2018), 921-931
MSC (2010): Primary 11F46; Secondary 14K25
DOI: https://doi.org/10.1090/proc/13768
Published electronically: September 13, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For positive integers $ g$ and $ N$, let $ \mathcal {F}_N^{(g)}$ be the field of meromorphic Siegel modular functions of genus $ g$ and level $ N$ whose Fourier coefficients belong to the $ N$th cyclotomic field. We construct explicit generators of $ \mathcal {F}_N^{(g)}$ over $ \mathcal {F}_1^{(g)}$ by making use of a quotient of theta constants, when $ g\geq 2$ and $ N$ is even.


References [Enhancements On Off] (What's this?)

  • [1] Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673
  • [2] Ick Sun Eum, Ja Kyung Koo, and Dong Hwa Shin, Some applications of modular units, Proc. Edinb. Math. Soc. (2) 59 (2016), no. 1, 91-106. MR 3439125, https://doi.org/10.1017/S0013091514000352
  • [3] Jun-ichi Igusa, On the graded ring of theta-constants. II, Amer. J. Math. 88 (1966), 221-236. MR 0200482, https://doi.org/10.2307/2373057
  • [4] J. K. Koo, G. Robert, D. H. Shin, and D. S. Yoon, On Siegel invariants of certain CM-fields, submitted, http://arxiv.org/abs/1508.05602.
  • [5] J. K. Koo, D. H. Shin, and D. S. Yoon, Generators of Siegel modular function field of higher genus and level, submitted, http://arxiv.org/abs/1604.01514.
  • [6] Daniel S. Kubert and Serge Lang, Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 244, Springer-Verlag, New York-Berlin, 1981. MR 648603
  • [7] Serge Lang, Elliptic functions, 2nd ed., Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987. With an appendix by J. Tate. MR 890960
  • [8] Goro Shimura, Theta functions with complex multiplication, Duke Math. J. 43 (1976), no. 4, 673-696. MR 0424705
  • [9] Goro Shimura, Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, vol. 82, American Mathematical Society, Providence, RI, 2000. MR 1780262

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F46, 14K25

Retrieve articles in all journals with MSC (2010): 11F46, 14K25


Additional Information

Dong Sung Yoon
Affiliation: Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
Email: math_dsyoon@kaist.ac.kr

DOI: https://doi.org/10.1090/proc/13768
Keywords: Siegel modular functions, theta constants
Received by editor(s): September 7, 2016
Received by editor(s) in revised form: April 5, 2017
Published electronically: September 13, 2017
Additional Notes: The author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03030015).
Communicated by: Kathrin Bringmann
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society