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ASYMPTOTICS OF RACAH POLYNOMIALS

WITH FIXED PARAMETERS

X.-S. WANG AND R. WONG

(Communicated by Mourad Ismail)

Abstract. In this paper, we investigate asymptotic behaviors of Racah poly-
nomials with fixed parameters and scaled variable as the polynomial degree
tends to infinity. We start from the difference equation satisfied by the poly-
nomials and derive an asymptotic formula in the outer region via ratio asymp-
totics. Next, we find the asymptotic formulas in the oscillatory region via a
simple matching principle. Unlike the varying parameter case considered in a
previous paper, the zeros of Racah polynomials with fixed parameters may not
always be real. For this unusual case, we also provide a standard method to

determine the oscillatory curve which attracts the zeros of Racah polynomials
when the degree becomes large.

1. Introduction

The Racah polynomials, which lie on the top level of Askey hierarchy for hyper-
geometric orthogonal polynomials, have the following 4F3 hypergeometric function
representation [6, 8]:

Rn(z) = Rn(z;α, β, γ, δ)(1.1)

:= 4F3

(
−n, n+ α+ β + 1, −x, x+ γ + δ + 1

α+ 1, β + δ + 1, γ + 1

∣∣∣∣ 1
)
,

where n and N are two non-negative integers with 0 ≤ n ≤ N , z = x(x+γ+δ+1),
and one of the following three equalities is satisfied: α + 1 = −N or γ + 1 = −N
or β + δ + 1 = −N . The orthogonality relation for the Racah polynomials is [6, 8]

N∑
x=0

w(x)Rm(z)Rn(z)

= M
(n+ α+ β + 1)n(α+ β − γ + 1)n(α− δ + 1)n(β + 1)nn!

(α+ β + 2)2n(α+ 1)n(β + δ + 1)n(γ + 1)n
δmn,

where z = x(x+ γ + δ + 1),

w(x) =
(α+ 1)x(β + δ + 1)x(γ + 1)x(γ + δ + 1)x((γ + δ + 3)/2)x
(−α+ γ + δ + 1)x(−β + γ + 1)x((γ + δ + 1)/2)x(δ + 1)xx!
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and

M =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−β)N (γ + δ + 2)N
(−β + γ + 1)N (δ + 1)N

, if α+ 1 = −N,

(−α+ δ)N (γ + δ + 2)N
(−α+ γ + δ + 1)N (δ + 1)N

, if β + δ + 1 = −N,

(α+ β + 2)N (−δ)N
(α− δ + 1)N (β + 1)N

, if γ + 1 = −N.

Here, we have made use of the Pochhammer symbol

(α)n :=
n−1∏
k=0

(α+ k).

The Racah polynomials can also be viewed as birth and death process polynomials
in the sense that they satisfy the difference equation [4, 6]:

(1.2) −zRn(z) = λnRn+1(z) + μnRn−1(z)− (λn + μn)Rn(z),

together with initial conditions R0(z) = 1 and R1(z) = (λ0+μ0− z)/λ0, where the
birth and death rates are given by

(1.3)

λn := − (n+ α+ 1)(n+ α+ β + 1)(n+ β + δ + 1)(n+ γ + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
,

μn := −n(n+ α+ β − γ)(n+ α− δ)(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)
,

respectively. By normalizing the leading coefficients, we have the monic Racah
polynomials

πn(z) :=
(α+ 1)n(β + δ + 1)n(γ + 1)n

(n+ α+ β + 1)n
Rn(z),

which satisfy the difference equation

πn+1(z) = (z − an)πn(z)− bnπn−1(z), π0(z) = 1, π1(z) = z − a0,(1.4)

where

(1.5) an = λn + μn, bn = λn−1μn.

In addition to the applications in birth and death processes, the Racah polynomials
are also related to the so-called 6-j symbols in the quantum mechanical theory of
angular momentum [1, 8]. Asymptotic behaviors of Racah polynomials for large
degree n were studied by Chen, Ismail and Simeonov [2], where both the variable
and parameters were fixed. Their formulas were given in terms of 3F2 or 2F1 hyper-
geometric functions. Ismail and Simeonov [5] studied inequalities and asymptotics
for a terminating 4F3 series. Their results can be applied to a special case of Racah
polynomials with α = β = 0 and δ = −γ = N + 1. Note that for this special
case, two parameters are fixed, while the other two are large and varying. In a
recent work [7], we derived explicit asymptotic formulas, in terms of elementary
functions such as logarithmic, exponential and rational functions, for Racah poly-
nomials with scaled variable and large varying parameters. A simple formula for
the fixed variable was also obtained. It remains to consider the case with scaled
variable and fixed parameters, which is the main focus of this paper. To be specific,
we will provide asymptotic analysis of the monic Racah polynomials πn(N

2y) as
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N → ∞, where n/N = p is a fixed positive number. The following three cases will
be investigated respectively: α+ 1 = −N , γ + 1 = −N , and β + δ + 1 = −N .

2. Case I: α+ 1 = −N

In this section, we consider the case α+ 1 = −N and β, δ, γ are fixed. First, we
let z = N2y and introduce the ratios

(2.1) wk(z) :=
πk(z)

πk−1(z)

for k = 1, · · · , n. It is readily seen from (1.4) that w1(z) = z − a0 and

(2.2) wk+1(z) = z − ak −
bk

wk(z)
,

where ak and bk are obtained by substituting α+1 = −N in (1.3) and using (1.5):

ak = − (k −N)(k −N + β)(k + β + δ + 1)(k + γ + 1)

(2k −N + β)(2k −N + β + 1)

− k(k −N + β − γ − 1)(k −N − δ − 1)(k + β)

(2k −N + β − 1)(2k −N + β)
;

bk =
k(k −N + β − γ − 1)(k −N − δ − 1)(k + β)

(2k −N + β − 1)(2k −N + β)

× (k −N − 1)(k −N + β − 1)(k + β + δ)(k + γ)

(2k −N + β − 2)(2k −N + β − 1)
.

If β, δ, γ are positive, then for sufficiently large N the coefficient bk with 1 ≤ k ≤ n
is always positive as long as n/N = p < 1/2. By Favard’s theorem [3, §§1.4 & 1.5],
the zeros of πk(z) are all real and simple. Put t := k/N . It follows from the above
expressions for ak and bk that

ak
N2

= −2f(t)− f(t)h1(t)

N
+O

(
1

N2

)
;

bk
N4

= f(t)2 +
f(t)2h2(t)

N
+O

(
1

N2

)
,

(2.3)

and

ak+1 − ak
N

= −2f(t)h0(t) +O

(
1

N

)
;
bk+1 − bk

N3
= 2f(t)2h0(t) +O

(
1

N

)
,(2.4)

where

f(t) :=
t2(t− 1)2

(2t− 1)2
;(2.5)

h1(t) :=
2β − γ − δ − 2

t− 1
+

2β + γ + δ + 2

t
− 4β

2t− 1
;(2.6)

h2(t) :=
2β − γ − δ − 4

t− 1
+

2β + γ + δ

t
− 4β − 4

2t− 1
;(2.7)

h0(t) :=
f ′(t)

f(t)
=

2

t− 1
+

2

t
− 4

2t− 1
= h1(t)− h2(t).(2.8)

Formula (2.4) can be obtained from (2.3) by simply taking derivative with respect
to t. When n/N = p < 1/2, the asymptotic formulas (2.3)-(2.4) are uniform in
k = 0, 1, · · · , n. Throughout this section, we shall always assume that p ∈ (0, 1/2).
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Note that if p ≥ 1/2, then the asymptotic formulas (2.3)-(2.4) are no longer valid.
It would be a challenge to derive the asymptotic formula of πn(N

2y) in this case.

Lemma 2.1. Let n/N = p be a fixed number in (0, 1/2) and z = N2y. For
y ∈ C \ [yp, 0] with yp = −4p2(p− 1)2/(2p− 1)2, we have

(2.9) wk = w0
k[1 + w1

k +O(1/N2)]

as N → ∞, where the leading term is

(2.10) w0
k =

z − ak +
√
(z − ak)2 − 4bk
2

,

and the first-order term is

(2.11) w1
k =

ak+1 − ak

2
√
(z − ak)2 − 4bk

+
2(bk+1 − bk) + (z − ak)(ak+1 − ak)

2[(z − ak)2 − 4bk]
.

The error estimate is uniform for all 1 ≤ k ≤ n.

Proof. Formally, we can obtain the leading term by substituting w0
k for both wk+1

and wk in (2.2) and then solving the resulting quadratic equation. To give a rigorous
argument, we need to estimate the error bound; namely, we will show that if w0

k

is defined as in (2.10), then the first-order error term ε1k := wk/w
0
k − 1 is of order

O(1/N). Furthermore, if w1
k is defined as in (2.11), then we shall prove that the

second-order error term ε2k := wk/w
0
k − 1− w1

k is of order O(1/N2).
We substitute wk = w0

k(1+ε1k) in (2.2) and use (2.10) to find a difference equation
for the first-order error term:

ε1k+1 =
z − ak − w0

k+1 − (z − ak − w0
k)(1 + ε1k)

−1

w0
k+1

.

For z = N2y with y ∈ C \ [yp, 0], we shall prove by induction that ε1k = O(1/N)
uniformly for all k = 1, · · · , n. First, we rewrite the above equation as

(2.12) ε1k+1 =
w0

k − w0
k+1

w0
k+1

+
N2y − ak − w0

k

w0
k+1

[1− (1 + ε1k)
−1].

As N → ∞, we have from (2.3), (2.4), (2.10)

ε11 =
w1 − w0

1

w0
1

= O

(
1

N

)
,

w0
k − w0

k+1

w0
k+1

= O

(
1

N

)
,

and
N2y − ak − w0

k

w0
k+1

=
y + 2f(t)−

√
y2 + 4yf(t)

y + 2f(t) +
√
y2 + 4yf(t)

+O

(
1

N

)
.

By the definition of f(t) in (2.5), we observe that 0 ≤ f(t) ≤ f(p) for all 0 ≤ t ≤ p <

1/2. Moreover, yp = −4p2(p−1)2/(2p−1)2 = −4f(p). Note that |u+
√
u2 − 1| > 1

for all u bounded away from [−1, 1]. If we take u = [y + 2f(t)]/[2f(t)], then we
have for any y ∈ C \ [−4f(p), 0],

sup
t∈[0,p]

∣∣∣∣∣y + 2f(t)−
√
y2 + 4yf(t)

y + 2f(t) +
√
y2 + 4yf(t)

∣∣∣∣∣ < 1.
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Observe that the quantity inside the absolute-value signs above is (u−
√
u2 − 1)/(u+√

u2 − 1). Hence, there exist δ ∈ (0, 1), L > 0 and N1 > L such that |ε11| ≤ L/N
and ∣∣∣∣N2y − ak − w0

k

w0
k+1

∣∣∣∣ ≤ 1− δ,

∣∣∣∣w0
k − w0

k+1

w0
k+1

∣∣∣∣ ≤ δ2L

N
,

sup
|s|≤L/N

|1− (1 + s)−1|
|s| ≤ 1 + δ,

for all k = 1, · · · , n and N > N1. It is readily seen from (2.12) that if |ε1k| ≤ L/N
for some k ≥ 1, then

|ε1k+1| ≤
δ2L

N
+

(1− δ)(1 + δ)L

N
=

L

N
.

By induction, we have |ε1k| ≤ L/N for all k = 1, · · · , n and N > N1.
To derive the explicit formula (2.11) for the first-order term w1

k, we substitute
wk = w0

k(1+w1
k+ε2k) into (2.2) to obtain a difference equation for the second-order

error term:

(2.13) w0
k+1(1 + w1

k+1 + ε2k+1) = z − ak − bk
w0

k

(1 + w1
k + ε2k)

−1.

By (2.10), we can rewrite bk/w
0
k as z − ak − w0

k. Formally, let us for the moment
treat ε2k, ε

2
k+1, (w

1
k)

2 and w1
k+1 − w1

k as being of order O(1/N2). Equation (2.13)
then becomes

w0
k+1

[
1 + w1

k +O(1/N2)
]
= z − ak − (z − ak − w0

k)
[
1− w1

k +O(1/N2)
]
.

Upon rearranging the terms, we obtain

(2.14)
[
w0

k+1 − (z − ak − w0
k)
]
w1

k = w0
k − w0

k+1 +O(1),

where we have made use of the facts that

z − ak − w0
k =

z − ak −
√
(z − ak)2 − 4bk
2

= O(N2)

and

w0
k+1 =

z − ak+1 +
√
(z − ak+1)2 − 4bk+1

2
= O(N2).

The coefficient of w1
k on the left-hand side of (2.14) can be expressed as

w0
k+1 − (z − ak − w0

k) =
ak − ak+1 +

√
(z − ak+1)2 − 4bk+1 +

√
(z − ak)2 − 4bk

2
.

It is easily seen that the first square root on the right-hand side of the last equation
is equal to√

(z − ak)2 − 4bk − 4(bk+1 − bk)− 2(z − ak)(ak+1 − ak) + (ak+1 − ak)2.

Using binomial expansion, we can also show that the above quantity is equal to√
(z − ak)2 − 4bk − 2(bk+1 − bk) + (z − ak)(ak+1 − ak)√

(z − ak)2 − 4bk
+O(1).
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Thus √
(z − ak+1)2 − 4bk+1 =

√
(z − ak)2 − 4bk

− 2(bk+1 − bk) + (z − ak)(ak+1 − ak)√
(z − ak)2 − 4bk

+O(1).

Coupling the last two equations gives

(2.15)

w0
k+1 − (z − ak − w0

k)√
(z − ak)2 − 4bk

= 1 +
ak+1 − ak

2
√
(z − ak)2 − 4bk

+

√
(z − ak+1)2 − 4bk+1 −

√
(z − ak)2 − 4bk

2
√
(z − ak)2 − 4bk

= 1 +O

(
1

N

)
and
(2.16)

w0
k − w0

k+1 =
z − ak +

√
(z − ak)2 − 4bk
2

− z − ak+1 +
√
(z − ak+1)2 − 4bk+1

2

=
ak+1 − ak

2
+

2(bk+1 − bk) + (z − ak)

2
√
(z − ak)2 − 4bk

+O(1).

Substituting (2.15) and (2.16) in (2.14) yields[
1 +O(1/N)

]
w1

k =
ak+1 − ak

2
√
(z − ak)2 − 4bk

+
2(bk+1 − bk) + (z − ak)(ak+1 − ak)

2
[
(z − ak)2 − 4bk

]
+

O(1)√
(z − ak)2 − 4bk

.

By ignoring the O(1/N) term in the last equation, we have at least formally derived
the explicit formula in (2.11). This formula would have been proved rigorously, if
we can show that the error term ε2k is O(1/N2), which is what we will do next.

Now we return to equation (2.13). By adding and subtracting, the right-hand
side of equation (2.13) becomes

w0
k + z − ak − w0

k − (z − ak − w0
k)(1 + w1

k)
−1

+ (z − ak − w0
k)
[
(1 + w1

k)
−1 − (1 + w1

k + ε2k)
−1

]
.

Thus, we obtain

w0
k+1(1 + w1

k+1 + ε2k+1) =w0
k + (z − ak − w0

k)
[
1− (1− w1

k)
−1

]
+ (z − ak − w0

k)
[
(1 + w1

k)
−1 − (1 + w1

k + ε2k)
−1

]
.

Solving for ε2k+1 gives

(2.17)

ε2k+1 =
w0

k − w0
k+1 + (z − ak − w0

k)
[
1− (1 + w1

k)
−1

]
− w0

k+1w
1
k+1

w0
k+1

+
z − ak − w0

k

w0
k+1

[
(1 + w1

k)
−1 − (1 + w1

k + ε2k)
−1

]
.
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We claim that the first term on the right-hand side of (2.17) is O(1/N2). By adding
and subtracting, this term can be broken into three fractions

(2.18)

w0
k − w0

k+1 + (z − ak − w0
k)w

1
k − w0

kw
1
k

w0
k+1

+
(z − ak − w0

k)
[
1− w1

k − (1 + w1
k)

−1
]

w0
k+1

+
w0

kw
1
k − w0

k+1w
1
k+1

w0
k+1

.

Making use of (2.3)−(2.4) and (2.10)−(2.11), we have the following estimates for
the last two fractions:

(2.19)

w0
kw

1
k − w0

k+1w
1
k+1

w0
k+1

=
(w0

k − w0
k+1)

w0
k+1

w1
k + (w1

k − w1
K+1)

= O

(
1

N

)
O

(
1

N

)
+O

(
1

N2

)
= O

(
1

N2

)
and

(2.20)
(z − ak − w0

k)

w0
k+1

[
1− w1

k − (1 + wk)
−1

]
= O(1)O

(
1

N2

)
= O

(
1

N2

)
.

For the first fraction in (2.18), we have

(2.21)

w0
k − w0

k+1 + (z − ak − 2w0
k)w

1
k

w0
k+1

=
(z − ak − 2w0

k)

w0
k+1

[
(w0

k − w0
k+1)

z − ak − 2w0
k

+ w1
k

]

= O(1)

[
w0

k − w0
k+1

z − ak − 2w0
k

+ w1
k

]
.

From (2.10) and (2.11), it also follows that the quantity inside the square brackets
is equal to

−
√
(z − ak)2 − 4bk+

√
(z − ak+1)2 − 4bk+1

2
√

(z − ak)2 − 4bk
+
2(bk+1 − bk) + (z − ak)(ak+1 − ak)

2
[
(z − ak)2 − 4bk

] .

Upon simplification, the last quantity becomes

(ak − ak+1)
2 + 2(z − ak)(ak − ak+1) + 4(bk − bk+1)

2
√
(z − ak)2 − 4bk

[√
(z − ak)2 − 4bk +

√
(z − ak+1)2 − 4bk+1

]
+
2(bk+1 − bk) + (z − ak)(ak+1 − ak)

2
[
(z − ak)2 − 4bk

] ,

and it can be shown that it is equal to

O

(
1

N2

)
+

(z − ak)(ak − ak+1) + 2(bk − bk+1)√
(z − ak)2 − 4bk

[√
(z − ak)2 − 4bk +

√
(z − ak+1)2 − 4bk+1

]
+

2(bk+1 − bk) + (z − ak)(ak+1 − ak)

2
[
(z − ak)2 − 4bk

] .

Further calculation shows that this quantity is equal to

O

(
1

N2

)
+

(
2(bk − bk) + (z − ak)(ak+1 − ak)

2
[
(z − ak)2 − 4bk

]
)

×
(
−
√

(z − ak)2 − 4bk +
√
(z − ak+1)2 − 4bk+1√

(z − ak)2 − 4bk +
√

(z − ak+1)2 − 4bk+1

)
.
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Since each factor in the above product is O(1/N), the calculation from (2.17) on-
wards gives

(2.22)
w0

k − w0
k+1 + (z − ak − 2w0

k)w
1
k

w0
k+1

= O

(
1

N2

)
.

A combination of (2.14), (2.15), (2.16) and (2.18) shows that the first term on the
right-hand side of (2.13) is indeed O(1/N2), thus proving our claim made earlier.

Following a similar argument as in the estimation of the first-order error term,
we can now find constants δ ∈ (0, 1), L > 0 and N1 > L such that |ε21| � L/N2 and∣∣∣∣z − ak − w0

k

w0
k+1

∣∣∣∣ � 1− δ,

∣∣∣∣w0
k − w0

k+1 + (z − ak − w0
k)[1− (1 + w1

k)
−1]− w0

k+1w
1
k+1

w0
k+1

∣∣∣∣ � δ2L

N2
,

sup
|s|�L/N2

∣∣(1 + w1
k)

−1 − (1 + w1
k + s)−1

∣∣
|s| � 1 + δ,

for all k = 1, · · · , n and N > N1. On account of (2.13), it is easily verified that if
|ε2k| � L/N2 for some k � 1, then

|ε2k+1| � δ2L

N2
+

(1− δ)(1 + δ)L

N2
=

L

N2
.

By induction, we have |ε2k| � L/N2 for all k = 1, · · · , n and N > N1. This
completes the proof of Lemma 2.1. �

On account of π0 = 1 in (1.4), we can multiply (2.1) from k = 1 to k = n and
arrive at πn = w1 · · ·wn. By taking logarithms on both sides of this equation and
using Lemma 2.1, we obtain

lnπn =
n∑

k=1

lnwk =
n∑

k=1

lnw0
k +

n∑
k=1

ln(1 + w1
k) +O

(
1

N

)
(2.23)

=
n∑

k=1

lnw0
k +

n∑
k=1

w1
k +O

(
1

N

)
.

To find an asymptotic formula for πn, we only need to approximate
∑n

k=1 lnw
0
k

and
∑n

k=1w
1
k, respectively. Applying (2.3) and (2.4) to (2.10) and (2.11) gives

2w0
k

N2
= T (y; t) +

T1(y; t)

N
+O

(
1

N2

)
,

and

Nw1
k = − f(t)h0(t)√

y2 + 4yf(t)
− f(t)h0(t)

y + 4f(t)
+O

(
1

N

)
,

where

(2.24) T (y; t) := y + 2f(t) +
√
y2 + 4yf(t),

and

(2.25) T1(y; t) := f(t)h1(t) +
yf(t)h1(t) + 2f(t)2h0(t)√

y2 + 4yf(t)
.
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Recall that n/N = p. It is easily seen from trapezoidal’s rule that

n∑
k=1

lnw0
k = n ln

N2

2
+N

∫ p

0

lnT (y; t)dt+
1

2
ln

T (y; p)

T (y; 0)
+

∫ p

0

T1(y; t)

T (y; t)
dt+O

(
1

N

)
,

(2.26)

and

n∑
k=1

w1
k = −

∫ p

0

f(t)h0(t)√
y2 + 4yf(t)

dt−
∫ p

0

f(t)h0(t)

y + 4f(t)
dt+O

(
1

N

)
.(2.27)

Finally, we have the following result.

Theorem 2.2. Let πn(z) be the monic Racah polynomials with α + 1 = −N .
Assume n/N = p is fixed in (0, 1/2). Denote yp = −4p2(p− 1)2/(2p− 1)2. For any
y ∈ C \ [yp, 0], we have

(2.28) πn(N
2y) =

(
N2

2

)n

eNg(y)+r(y)

[
1 + O

(
1

N

)]
,

as N → ∞, where the main function is given by

(2.29) g(y) :=

∫ p

0

lnT (y; t)dt,

and the correction term is given by
(2.30)

r(y) :=
1

2
ln

T (y; p)

T (y; 0)
+

∫ p

0

T1(y; t)

T (y; t)
dt−

∫ p

0

f(t)h0(t)√
y2 + 4yf(t)

dt−
∫ p

0

f(t)h0(t)

y + 4f(t)
dt.

Here, the functions f(t), h1(t), h2(t), h0(t), T (y; t), T1(y; t) are defined in (2.5)-(2.8)
and (2.24)-(2.25), respectively.

Proof. Use a combination of (2.23), (2.26) and (2.27). �

Next, we investigate the asymptotic behavior of πn(N
2y) for y in the oscillatory

interval (yp, 0). Recall that 0 < p < 1/2. By the definition in (2.5), the function
f(t) is monotonically increasing for t ∈ [0, p]. Moreover, 0 = −4f(0) and yp =
−4p2(p− 1)2/(2p− 1)2 = −4f(p). Thus, for any y ∈ (yp, 0), there exists a unique
ty ∈ (0, p) such that y = −4f(ty). Note that the functions T (y, t) and T1(y, t) in
(2.24)-(2.25) have a branch cut for y ∈ (−4f(t), 0). We introduce the one-side limit
functions for −4f(t) < y < 0 (or equivalently, ty < t < p):

(2.31) T±(y; t) := lim
ε→0+

T (y ± iε; t) = y + 2f(t)± i
√
−y[y + 4f(t)],

and

(2.32) T±
1 (y; t) := lim

ε→0+
T1(y ± iε; t) = f(t)h1(t)∓ i

yf(t)h1(t) + 2f(t)2h0(t)√
−y[y + 4f(t)]

.

We remark that T (y; t) and T1(y; t), treated as functions in y, can be analytically
continued to the interval yp < y < −4f(t). For convenience, we still define the one-
side limit functions T±(y; t) = T (y; t) and T±

1 (y; t) = T1(y; t) for yp < y < −4f(t)
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(i.e., 0 < t < ty). Also, we define the functions

S±(y; t) := lim
ε→0+

√
(y ± iε)[y ± iε+ 4f(t)]

=

{
±i

√
−y[y + 4f(t)], −4f(t) < y < 0,

−
√
(−y)[−y − 4f(t)], yp < y < −4f(t).

(2.33)

It can be shown from (2.29)-(2.33) that

g±(y) := lim
ε→0+

g(y ± iε; t) =

∫ p

0

lnT±(y; t)dt,(2.34)

and

r±(y) := lim
ε→0+

r(y ± iε; t)

=
1

2
ln

T±(y; p)

T±(y; 0)
+

∫ p

0

T±
1 (y; t)

T±(y; t)
dt−

∫ p

0

f(t)h0(t)

S±(y; t)
dt− Ω±(y),(2.35)

where

(2.36) Ω±(y) = P.V.

∫ p

0

f(t)h0(t)

y + 4f(t)
dt± iπ

f(ty)h0(ty)

4f ′(ty)
.

In (2.36), “P.V.” denotes the Cauchy principal value and f ′ denotes the derivative
of f . In (2.35), the first three integrals are obtained by taking one-side limits,
while the last term Ω±(y) is derived from one-side limits of Stieltjes transform and
Cauchy’s theorem. Note that the last integral of r(y) in (2.30) has a logarithmic
singularity at t = ty. We rewrite it as a Stieltjes integral

Ω(y) :=

∫ p

0

f(t)h0(t)

y + 4f(t)
dt =

∫ p

0

F (y; t)

t− ty
dt, y ∈ C \ [yp, 0],

where F (y; t) := f(t)h0(t)(t − ty)/[y + 4f(t)]. As a function of t, F (y; t) can be
continually defined at t = ty. An application of Cauchy’s theorem yields

Ω±(y) := lim
ε→0+

Ω(y ± iε) = P.V.

∫ p

0

F (y; t)

t− ty
dt± iπ lim

t→ty
F (y; t)

for y ∈ (yp, 0). By l’Hôpital’s rule,

lim
t→ty

F (y; t) = lim
t→ty

f(t)h0(t)(t− ty)

y + 4f(t)
= f(ty)h0(ty) lim

t→ty

t− ty
y + 4f(t)

=
f(ty)h0(ty)

4f ′(ty)
.

This gives (2.36).
Our second result is stated below. Its proof is based on the observation that

the real part of an asymptotic approximant for orthogonal polynomials in the com-
plex plane is half of the corresponding asymptotic approximant in the interval of
orthogonality on the real line.

Theorem 2.3. Let πn(z) be the monic Racah polynomials with α + 1 = −N .
Assume n/N = p is fixed in (0, 1/2). For y ∈ (yp, 0) with yp = −4p2(p− 1)2/(2p−
1)2, we have

πn(N
2y) =

(
N2

2

)n {
eNg+(y)+r+(y)

[
1 +O

(
1

n

)]
+eNg−(y)+r−(y)

[
1 +O

(
1

n

)]}
,

(2.37)

as N → ∞, where g±(y) and r±(y) are defined as in (2.34) and (2.35), respectively.
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Proof. First, we note that the functions g±(y) and r±(y) can be analytically con-
tinued to a small neighborhood of any compact subset of (yp, 0) in the complex
plane. In such a neighborhood, we further observe that the difference

g+(y)− g−(y) =

∫ p

ty

ln
T+(y; t)

T−(y; t)
dt

has positive real part if y is in the upper-half plane and negative real part if y is in

the lower-half plane. Thus, the function eN [g+(y)−g−(y)] is exponentially large on the
upper-half plane and exponentially small on the lower-half plane, which together
with (2.28) implies that the asymptotic formula (2.37) is valid on both upper- and
lower-half planes. By taking limits, this formula is also valid for y ∈ (yp, 0). �

3. Case II: γ + 1 = −N

In this section, we consider the case γ +1 = −N and α, β, δ are fixed. It follows
from (1.3) and (1.5) that

ak =− (k + α+ 1)(k + α+ β + 1)(k + β + δ + 1)(k −N)

(2k + α+ β + 1)(2k + α+ β + 2)

− k(k +N + α+ β + 1)(k + α− δ)(k + β)

(2k + α+ β)(2k + α+ β + 1)
;

bk =
k(k+N+α+β+1)(k+α − δ)(k+β)(k+α)(k + α+ β)(k + β + δ)(k −N − 1)

(2k + α+ β − 1)(2k + α+ β)2(2k + α+ β + 1)
.

Put t := k/N . We obtain for 0 < t < 1,

(3.1)

ak
N2

= − t2

2
− t(2α+ 2β + 2)− (α+ β + 2δ + 2)

4N
+O

(
1

N2

)
;

bk
N4

=
t2(t2 − 1)

16
+

(α+ β)t(t− 1)(2t+ 1)− 2t2

16N
+O

(
1

N2

)
,

and

(3.2)
ak+1 − ak

N
= −t+O

(
1

N

)
;
bk+1 − bk

N3
=

t(2t2 − 1)

8
+O

(
1

N

)
.

It is noted that bk < 0 for large k and N such that k < N . Hence, Favard’s theorem
[3, §§1.4 & 1.5] is no longer applicable and it is expected that the zeros of πn(z)
are not necessarily all real; see Figure 1.

As in the previous section, we introduce the ratios wk(z) = πk(z)/πk−1(z) for
k = 1, · · · , n. The corresponding difference equation remains the same:

wk+1(z) = z − ak −
bk

wk(z)
.

Let z = N2y. By using the same argument as in the proof of Lemma 2.1, we have

(3.3) wk = w0
k[1 + w1

k +O(1/N2)]

as N → ∞, where the leading term is given by

w0
k =

z − ak +
√
(z − ak)2 − 4bk
2
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−0.4 −0.3 −0.2 −0.1

−0.2

−0.1

0.1

0.2

Figure 1. The zeros (red dots) of Racah polynomials πn(N
2y)

with N = 50, n = 45, p = n/N = 0.9, α = 0.3, β = 0.8, δ =
−1.2, γ = −N − 1 = −51, and the branch cut Γp (blue curves)
with p = 0.9 of the main function g(y) defined in (3.8).

and the first-order term by

w1
k =

ak+1 − ak

2
√
(z − ak)2 − 4bk

+
2(bk+1 − bk) + (z − ak)(ak+1 − ak)

2[(z − ak)2 − 4bk]
.

On account of (3.1) and (3.2), we rewrite the above two equations as

2w0
k

N2
= T (y; t) +

T1(y; t)

N
+O

(
1

N2

)
,

and

Nw1
k = − t

2
√
y2 + t2(y + 1/4)

− t(y + 1/4)

2y2 + 2t2(y + 1/4)
+ O

(
1

N

)
,

where

T (y; t) := y +
t2

2
+

√
y2 + yt2 +

t2

4
,(3.4)

and

T1(y; t)

(3.5)

:=
[2t(α+ β + 1)− (α+ β + 2δ + 2)]T (y; t)− (α+ β)t(t− 1)(t+ 1/2) + t2

4
√
y2 + yt2 + t2/4

.

Recall that n/N = p. It is easily seen from trapezoidal’s rule that

n∑
k=1

lnw0
k = n ln

N2

2
+N

∫ p

0

lnT (y; t)dt+
1

2
ln

T (y; p)

T (y; 0)
+

∫ p

0

T1(y; t)

T (y; t)
dt+O

(
1

N

)
,

(3.6)
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and
n∑

k=1

w1
k =

y −
√
y2 + p2(y + 1/4)

2(y + 1/4)
− 1

4
ln

y2 + p2(y + 1/4)

y2
+O

(
1

N

)
.(3.7)

Finally, we introduce the main function

(3.8) g(y) :=

∫ p

0

lnT (y; t)dt,

and define the curve Γp to be the set of complex numbers y at which the real part
of g+(y)−g−(y) vanishes, where g±(y) are the one-sided limits of g(y) on the curve
Γp; see Figure 1.

Theorem 3.1. Let πn(z) be the monic Racah polynomials with γ = −N − 1.
Assume n/N = p is fixed in (0, 1). For any y ∈ C \ Γ̄p, where Γ̄p is the closure of
Γp in the complex plane, we have as N → ∞,

(3.9) πn(N
2y) =

(
N2

2

)n

eNg(y)+r(y)

[
1 + O

(
1

N

)]
,

where the main function g(y) is given in (3.8) and the correction term is given by

r(y) :=
1

2
ln

T (y; p)

T (y; 0)
+

∫ p

0

T1(y; t)

T (y; t)
dt(3.10)

+
y −

√
y2 + p2(y + 1/4)

2(y + 1/4)
− 1

4
ln

y2 + p2(y + 1/4)

y2
.

Here, the functions T (y; t) and T1(y; t) are defined in (3.4) and (3.5), respectively.
Let r±(y) denote the one-sided limits of r(y) on Γp. For any y ∈ Γp, we have as
N → ∞,
(3.11)

πn(N
2y) =

(
N2

2

)n {
eNg+(y)+r+(y)

[
1+O

(
1

n

)]
+eNg−(y)+r−(y)

[
1+O

(
1

n

)]}
.

Proof. Just as in (2.23), we have

lnπn =

n∑
k=1

wk =

n∑
k=1

lnw0
k +

n∑
k=1

w1
k +O

(
1

N

)
.

Substituting (3.6) and (3.7) in the above equation gives (3.9). Formula (3.11)
follows from a similar argument as that in the proof of Theorem 2.3 and from the
choice of the branch cut Γp. �

4. Case III: β + δ + 1 = −N

In this section, we consider the case β + δ + 1 = −N and α, δ are fixed. There
are two subcases.

Subcase III.1: β = −N − δ − 1 and α, δ, γ are fixed.
Subcase III.2: δ = −N − β − 1 and α, β, γ are fixed.

For the subcase III.1, we introduce two parameters α̃ := β + δ = −N − 1 and
β̃ = α − δ. Note that the 4F3 hypergeometric function in the definition of Racah
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polynomials (1.1) is symmetric with respect to the switch of parameters:

4F3

(
−n, n+ α+ β + 1, −x, x+ γ + δ + 1

α+ 1, β + δ + 1, γ + 1

∣∣∣∣1
)

=4F3

(
−n, n+ α̃+ β̃ + 1, −x, x+ γ + δ + 1

α̃+ 1, β̃ + δ + 1, γ + 1

∣∣∣∣1
)
.

Thus, the subcase III.1 is the same as case I considered in Section 2.
For the subcase III.2, we introduce two parameters γ̃ := β + δ = −N − 1 and

δ̃ = γ − β. Note that the 4F3 hypergeometric function in the definition of Racah
polynomials (1.1) is symmetric with respect to the switch of parameters:

4F3

(
−n, n+ α+ β + 1, −x, x+ γ + δ + 1

α+ 1, β + δ + 1, γ + 1

∣∣∣∣1
)

=4F3

(
−n, n+ α+ β + 1, −x, x+ γ̃ + δ̃ + 1

α+ 1, β + δ̃ + 1, γ̃ + 1

∣∣∣∣1
)
.

That is, the subcase III.2 is the same as case II considered in Section 3.
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