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A NON-PI MINIMAL SYSTEM IS LI-YORKE SENSITIVE
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(Communicated by Yingfei Yi)

Abstract. It is shown that any non-PI minimal system is Li-Yorke sensitive.
Consequently, any minimal system with non-trivial weakly mixing factor (such
a system is non-PI) is Li-Yorke sensitive, which answers affirmatively an open
question by Akin and Kolyada in [Nonlinearity, 16 (2003) pp. 1421–1433].

1. Introduction

1.1. Li-Yorke sensitivity. A topological dynamical system (X,T ) is a compact
metric space (X, ρ) endowed with a continuous surjective map T : X → X. For
simplicity, we only consider homeomorphisms in this paper.

(X,T ) is Li-Yorke sensitive, briefly LYS or LYSε, if there is an ε > 0 with the
property that every x ∈ X is a limit of points y ∈ X such that the pair (x, y) is
proximal but not ε-asymptotic, i.e., if

lim inf
n→∞

ρ(Tnx, Tny) = 0, and lim sup
n→∞

ρ(Tnx, Tny) > ε.

Each pair satisfying the above condition is called an ε-Li-Yorke pair. A subset
S ⊆ X is called an ε-scrambled set if each pair with distinct elements is an ε-Li-
Yorke pair. (X,T ) is ε-Li-Yorke chaotic, briefly LYCε if it has an uncountable
ε-scrambled subset, for some ε > 0.

Li-Yorke chaos [LY75] and sensitivity [Gu79, GW93] are two basic notions to
describe the complexity of a topological dynamical system. The notion of Li-Yorke
sensitivity, combining the above two notions together, was introduced and studied
by Akin and Kolyada [AK03]. For surveys on Li-Yorke sensitivity and other con-
cepts of chaos, see [K04, LiY16]. For more details related to Li-Yorke sensitivity,
see [AK03,CM06,CM09,CM16].

In [AK03] the authors showed that every non-trivial weak mixing system is LYS,
and they stated five conjectures concerning LYS. Three of them were disproved in
[CM06] and [CM09]. In particular, it was proved that a minimal LYS system needs
not to have a non-trivial weak mixing factor [CM06], and that a minimal system
with a non-trivial LYS factor needs not to be LYS [CM09]. The remaining two
open problems are the following:

Question 1.1 ([AK03, Question 4.]). Is every minimal system with a non-trivial
weak mixing factor LYS?
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Question 1.2 ([AK03, Question 2.]). Does Li-Yorke sensitivity imply Li-Yorke
chaos?

In this paper we give an affirmative answer to Question 1.1. Before stating our
main result, we need some basic notions on topological dynamics. In the article,
integers, non-negative integers and natural numbers are denoted by Z, Z+ and N

respectively.

1.2. Topological dynamics. A topological dynamical system (X,T ) is transitive
if for each pair of opene (i.e. open and non-empty) subsets U and V , N(U, V ) =
{n ∈ Z : U ∩ T−nV �= ∅} is non-empty. (X,T ) is (topologically) weakly mixing if
the product system (X × X,T × T ) is transitive. A point x ∈ X is a transitive
point if its orbit Orb(x, T ) = {Tnx : n ∈ Z} is dense in X. If every point of X is
transitive, we say that (X,T ) is minimal. A point is minimal if its orbit closure is
a minimal subsystem. It is well known that for a compact metric space X without
isolated points, a system (X,T ) is transitive if and only if there exists a transitive
point if and only if there is a point x ∈ X with forward orbit {Tnx : n ∈ Z+} dense
in X [AC12].

A pair (x, y) ∈ X ×X is said to be proximal if lim infn→∞ ρ(Tnx, Tny) = 0, and
it is called asymptotic when limn→∞ ρ(Tnx, Tny) = 0. The set of proximal pairs
is denoted by P (X,T ) or P when the system is clear. P is a reflexive, symmetric,
T -invariant relation but in general is neither transitive nor closed. For x ∈ X, the
set P [x] = {y ∈ X : (x, y) ∈ P} is called the proximal cell of x. An important result
concerning the proximal cell is that for any x ∈ X, P [x] contains a minimal point;

more precisely, every minimal subset of Orb(x, T ) meets P [x] [Au88, Theorem 5.3.].
A point x ∈ X is called a distal point if P [x] is a singleton. Since P [x] contains a
minimal point, it follows immediately that a distal point x is minimal. A system
is called a distal system when every point is distal. A system (X,T ) with some
distal point x whose orbit Orb(x, T ) is dense in X is called a point-distal system.
For a weakly mixing system, the proximal cell P [x] is “big”, in the sense that it is
a residual subset of X for all x ∈ X [AK03]. In fact, for mixing systems, proximal
cells can be very complicated [HSY].

For a topological dynamical system (X,T ), a pair is said to be a Li-Yorke pair if it
is proximal but not asymptotic. A point x ∈ X is recurrent if there is a subsequence
{ni} of N with ni → +∞ such that Tnix → x. A pair (x, y) ∈ X × X \ ΔX is
said to be a strong Li-Yorke pair if it is proximal and is also a recurrent point of
(X ×X,T × T ), where ΔX = {(x, x) ∈ X ×X : x ∈ X}. A subset S ⊂ X is called
scrambled (resp. strongly scrambled) if every pair of distinct points in S is Li-Yorke
(resp. strong Li-Yorke). A system (X,T ) is said to be Li-Yorke chaotic (resp.
strong Li-Yorke chaotic) if it contains an uncountable scrambled (resp. strongly
scrambled) subset.

Let (X,T ) be a dynamical system. A subset K of X is uniformly recurrent if for
every ε > 0 there is an n ∈ N with d(Tnx, x) < ε for all x in K. K is recurrent if
every finite subset of K is uniformly recurrent. The subset K is called uniformly
proximal if for every ε > 0 there is n ∈ N with diamTnK < ε. A subset K of X is
called proximal if every finite subset of K is uniformly proximal.

An extension π : (X,T ) → (Y, S) is a continuous surjective map from X to Y
such that S ◦ π = π ◦ T . In this case we also say that (X,T ) is an extension of
(Y, S) and that (Y, S) is a factor of (X,T ). An extension π is determined by the
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corresponding closed invariant equivalence relation Rπ = {(x1, x2) : πx1 = πx2} =
(π × π)−1ΔY ⊂ X ×X.

1.3. Main result of the paper. Here is our main result of the paper (for the
definition of PI, see the next subsection):

Main Theorem. Let (X,T ) be a minimal system. If (X,T ) is not PI, then there
is some ε > 0 such that for any x ∈ X and any neighbourhood U of x, there is a
subset S ⊆ U such that

(1) S is uncountable and x ∈ S ⊆ P [x] ∩ U ;
(2) S is ε-scrambled;
(3) S is proximal;
(4) S is recurrent.

In particular, (X,T ) is ε-Li-Yorke chaotic, strongly Li-Yorke chaotic and Li-
Yorke sensitive.

It is known that a factor of a minimal PI system is PI (see Theorem 2.4). Using
this fact it is easy to show that every minimal system with a non-trivial weak
mixing factor is not a PI system. So a minimal system with a non-trivial weakly
mixing factor is LYS, answering Question 1.1 affirmatively. Moreover, by the Main
Theorem, we have that any non-PI system is (strongly) Li-Yorke chaotic, which
was proved first in [AGHSY]. Note that here we offer a different approach.

1.4. On the structure of minimal systems. Our main tool to prove the Main
Theorem is the structure theorem of minimal systems. In this subsection we state
the structure theorem for minimal systems and give the definition of a PI system.
For other undefined notions, see [Au88,G76,V77].

We first recall definitions of extensions. An extension π : (X,T ) → (Y, S) is
called proximal if Rπ ⊂ P (X,T ). An extension π is an equicontinuous or almost
periodic extension if for every ε > 0 there is δ > 0 such that (x, y) ∈ Rπ and
ρ(x, y) < δ imply ρ(Tnx, Tny) < ε, for every n ∈ Z. In the metric case an equicon-
tinuous extension is also called an isometric extension. An extension π is a weakly
mixing extension if (Rπ, T×T ) as a subsystem of the product system (X×X,T×T )
is transitive. An extension π is called a relatively incontractible (RIC) extension if
it is open and for every n ≥ 1 the minimal points are dense in the relation

Rn
π = {(x1, . . . , xn) ∈ Xn : π(xi) = π(xj), ∀ 1 ≤ i ≤ j ≤ n}.

Note that R1
π = X and R2

π = Rπ. We say that a minimal system (X,T ) is a
strictly PI system (PI means proximal-isometric) if there is an ordinal η (which is
countable when X is metrizable) and a family of systems {(Wι, wι)}ι≤η such that

(1) W0 is the trivial system,
(2) for every ι < η there exists an extension φι : Wι+1 → Wι which is either

proximal or equicontinuous (isometric when X is metrizable),
(3) for a limit ordinal ν ≤ η the system Wν is the inverse limit of the systems

{Wι}ι<ν ,
(4) Wη = X.

We say that (X,T ) is a PI system if there exists a strictly PI system X̃ and a

proximal extension θ : X̃ → X.
Finally, we have the structure theorem for minimal systems (see Ellis-Glasner-

Shapiro [EGS75], McMahon [Mc76], Veech [V77], and Glasner [G76]).
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Theorem 1.3 (Structure theorem for minimal systems). Let (X,T ) be a minimal
system. Then we have the following diagram:

X X∞

π∞

��

θ
��

Y∞

where X∞ is a proximal extension of X and an RIC weakly mixing extension of the
strictly PI system Y∞.

The extension π∞ is an isomorphism (so that X∞ = Y∞) if and only if X is a
PI system.

Remark 1.4. If (X,T ) is a weakly mixing minimal system, then in the structure
theorem, X = X∞ and Y∞ is trivial. Hence if a minimal system is both PI and
weakly mixing, then it is trivial.

2. Proof of the Main Theorem

In this section we will give the proofs of the main results of the paper. To this
aim, we need some basic results from the theory of minimal flows.

First recall some basic notions related to the Ellis semigroup. For more details
on Ellis semigroups, please refer to Chapter 3 and Chapter 6 of [Au88]. Given a
system (X,T ) its enveloping semigroup or Ellis semigroup E(X,T ) is defined as the
closure of the set {Tn : n ∈ Z} in XX (with its compact, usually non-metrizable,
pointwise convergence topology). Let (X,T ), (Y, S) be systems and π : X → Y be
an extension. Then there is a unique continuous semigroup homomorphism π∗ :
E(X,T ) → E(Y, S) such that π(px) = π∗(p)π(x) for all x ∈ X, p ∈ E(X,T ). When
there is no confusion, we usually regard the fact that the enveloping semigroup of
X acts on Y : pπ(x) = π(px) for x ∈ X and p ∈ E(X,T ).

For a semigroup an element u with u2 = u is called an idempotent. The well-
known Ellis-Numakura theorem states that for any enveloping semigroup E the set
J(E) of idempotents of E is not empty. An idempotent u ∈ J(E) is minimal if
v ∈ J(E) and vu = v implies uv = u. A point x ∈ X is minimal if and only if
ux = x for some minimal idempotent u ∈ E(X,T ).

For n ∈ N, let T (n) = T × T × . . .× T (n times). For a subset A ⊆ Xn, let

Orb(A, T (n)) =
⋃{(

T (n)
)k
A : k ∈ Z

}
.

The following theorem is crucial to prove the Main Theorem. Note that we
assume that X and Y are metrizable.

Theorem 2.1 ([SY, Lemma B.2 and Theorem B.3]). Let (X,T ) and (Y, S) be
minimal systems and let π : X → Y be an RIC weakly mixing extension. Let y ∈ Y
with uy = y, where u ∈ E(Y, S) is a minimal idempotent. Then for all n ≥ 2, any

non-empty open subset U of uπ−1(y) and any transitive point x′ = (x′
1, · · · , x′

n−1) ∈
Rn−1

π with π(x′
j) = y, j = 1, · · · , n− 1, one has that

Orb({x′} × U, T (n)) = Rn
π .

Moreover, for each transitive point x′ = (x′
1, · · · , x′

n−1) ∈ Rn−1
π with π(x′

j) =

y, j = 1, · · · , n− 1, there is some residual subset D of uπ−1(y) such that if x′′ ∈ D,

then Orb((x′, x′′), T (n)) = Rn
π.
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Remark 2.2. We have the following:

(1) To prove Theorem 2.1 one needs the so-called Ellis trick by Glasner in [G76].
We refer to [G05] for more discussions about weakly mixing extensions.

(2) In Theorem 2.1, when n = 2, Rn−1
π = R1

π = X, i.e. for each x ∈ X

with π(x) = y there is some residual subset D of uπ−1(y) such that if

x′ ∈ D, Orb((x, x′), T × T ) = Rπ. This result is Theorems 14.27 and 14.28
in [Au88].

Corollary 2.3. Let (X,T ) and (Y, S) be minimal systems and let π : X → Y be an
RIC weakly mixing extension. Let y ∈ Y with uy = y, where u is a minimal idem-
potent. If π is non-trivial, then uπ−1(y) is perfect, and hence it has the cardinality
of the continuum.

Proof. If uπ−1(y) is not perfect, then there is some x ∈ uπ−1(y) such that {x} is

relatively open in uπ−1(y). Take n = 2 and U = {x} in Theorem 2.1; then we have

ΔX = Orb({x} × {x}, T × T ) = Rπ.

Thus π is trivial, a contradiction! The proof is completed. �

The following theorem will be used in the proof of the Main Theorem.

Theorem 2.4 ([EGS75, Corollary 7.4]). A factor of a PI flow is PI.

Now we are ready to give the proof of the Main Theorem.

Proof of the Main Theorem. By the structure theorem for minimal systems we have
the following diagram:

X X∞

π∞

��

θ
��

Y∞

where θ is a proximal extension, π∞ is a non-trivial weakly mixing RIC extension
and Y∞ is a strictly PI system. Let

d = max{ρ(θ(x1), θ(x2)) : (x1, x2) ∈ Rπ∞}.
Then d > 0, since if d = 0, then Rπ∞ ⊆ Rθ, which implies that X is a factor of Y∞,
a contradiction by Theorem 2.4. Put ε = 1

2d > 0.

Fix x ∈ X, an open neighbourhood U of x and choose x′
1 ∈ θ−1(x). Let ux′

1 = x′
1

for some minimal idempotent u, and let y = π∞(x′
1). Let U ′ = θ−1(U); then U ′

is a neighbourhood of x′
1. We are going to construct increasing subsets Xα ⊂

uπ−1
∞ (y)∩U ′, α < Ω such that each non-empty finite subset F of Xα is a transitive

point of R
|F |
π∞ , where Ω is the first uncountable ordinal number and |F | means the

cardinality of F .

Put X1 = {x′
1}. By Theorem 2.1 and Corollary 2.3, there is some x′

2 ∈ uπ−1
∞ (y)∩

U ′ such that (x′
1, x

′
2) is a transitive point of R2

π∞ . Let X2 = {x′
1, x

′
2}.

Now assume that α < Ω is an ordinal number and Xβ has been constructed for
any β < α such that each non-empty finite subset F of Xβ is a transitive point of

R
|F |
π∞ . If α is a limit ordinal number, then we put Xα =

⋃
β<α Xβ. It is clear that

each finite non-empty subset F of Xα is a transitive point of R
|F |
π∞ . Assume now

α is not a limit ordinal number. For each finite non-empty subset F of Xα−1, by
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Theorem 2.1 and Corollary 2.3, the set ZF of points z ∈ uπ−1
∞ (y) such that (F, z)

is transitive in R
|F |+1
π∞ is residual in uπ−1

∞ (y). Since Xα−1 is countable, the number
of finite non-empty subsets of Xα−1 is also countable. Hence Z =

⋂
F ZF is also

residual in uπ−1
∞ (y), where F runs over all finite non-empty subsets ofXα−1. Choose

x′
α ∈ (Z\Xα−1)∩U ′ and put Xα = Xα−1∪{x′

α}. It is clear that Xα ⊂ uπ−1
∞ (y)∩U ′

and each finite non-empty subset F of Xα is a transitive point of R
|F |
π∞ .

Let XΩ =
⋃

α<ΩXα and S =
⋃

α<Ω θ(Xα). Then S ⊆ U and x = θ(x′
1) ∈ S.

First we show that θ|XΩ
: XΩ → S is injective, and hence S is uncountable. Assume

to the contrary that there are some α < β < Ω such that xα = θ(x′
α) = θ(x′

β) = xβ.
In particular,

(x′
α, x

′
β) ∈ Rθ.

As (x′
α, x

′
β) is a transitive point of (Rπ∞ , T × T ), it follows that

Rπ∞ = Orb((x′
α, x

′
β), T × T ) ⊆ Rθ.

Hence X is a factor of Y∞, and X is a PI flow by Theorem 2.4, a contradiction.
Now we show that S is proximal and recurrent. Let n ∈ N and α1 < α2 <

. . . < αn < Ω. Let x′ = (x′
α1
, x′

α2
, . . . , x′

αn
) and x = (xα1

, xα2
, . . . , xαn

), where
xαi

= θ(x′
αi
), 1 ≤ i ≤ n. Since the diagonal of X∞

n is contained in Rn
π∞ and x′ is

the transitive point of Rn
π∞ , there are a sequence {ni} ⊆ N and some point z′ ∈ X∞

such that (Tnix′
α1
, . . . , Tnix′

αn
) → (z′, . . . , z′) as ni → ∞. Since θ is continuous,

(Tnixα1
, . . . , Tnixαn

) = (θ(Tnix′
α1
), . . . , θ(Tnix′

αn
)) → (θ(z′), . . . , θ(z′)), ni → ∞.

Thus {xα1
, xα2

, . . . , xαn
} is uniformly proximal.

Since x′ is the transitive point of Rn
π∞ , x′ is recurrent in the product system

(Xn
∞, T (n)) and hence its θ × . . . ,×θ-image x is also recurrent. So S is recurrent.
It is left to show that for all α < β < Ω, (xα, xβ) = (θ(x′

α), θ(x
′
β)) is LYSε. By

the definition of d, there is some pair (p, q) ∈ Rπ∞ such that ρ(θ(p), θ(q)) > 1
2d = ε.

Since (x′
α, x

′
β) is the transitive point of Rπ∞ , there is a sequence {mi} ⊆ N such

that (Tmix′
α, T

mix′
β) → (p, q) as mi → ∞. As θ is continuous,

lim
i
ρ(Tmixα, T

mixβ) = lim
i

ρ(θ(Tmix′
α), θ(T

mix′
β)) = ρ(θ(p), θ(q)) > ε.

Hence (xα, xβ) is LYSε. The proof is completed. �

Corollary 2.5. Any minimal system with a non-trivial weakly mixing factor is
Li-Yorke sensitive.

Proof. Let (X,T ) be a minimal system with a non-trivial weakly mixing factor
(Y, T ). By the Main Theorem, it remains to show that (X,T ) is not PI. If not,
then as a factor of (X,T ), (Y, T ) is PI by Theorem 2.4. Hence (Y, T ) is both weakly
mixing and PI, which means that (Y, T ) is trivial (Remark 1.4). A contradiction!

�

Remark 2.6. In this paper, we consider T : X → X as a homeomorphism for sim-
plicity. When T is a continuous surjective map, one can use the natural extension

to get the corresponding results. Recall that for a system (X,T ), let (X̃, T̃ ) be the

natural extension of (X,T ), i.e. X̃ = {(x1, x2, . . .) ∈
∏∞

i=1 X : T (xi+1) = xi, i ∈ N}
(as the subspace of the product space) and T̃ (x1, x2, . . .) = (T (x1), x1, x2, . . .). It is
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clear that T̃ : X̃ → X̃ is a homeomorphism and p1 : X̃ → X is an asymptotic ex-
tension, where p1 is the projection to the first coordinate. When (X,T ) is minimal,

(X̃, T̃ ) is minimal and p1 is almost one-to-one [AGHSY, Corollary 5.18]. We say

that a topological system (X,T ) is PI, if its natural extension (X̃, T̃ ) is PI. Then
the Main Theorem and Corollary 2.5 remain true.

Remark 2.7. We say that a subset of A of X is a Mycielski set if it can be expressed
as a union of countably many Cantor sets. Using the methods in the proof of
Theorem 5.10 in [AGHSY] and some more efforts, our Main Theorem can be stated
replacing “S is uncountable” by “S is Mycielski”.

3. A question

Finally we ask a question related to Question 1.2.

Question 3.1. Is a non-point-distal minimal system Li-Yorke chaotic?

Since each LYS minimal system is not point-distal, an affirmative answer to
Question 3.1 will also give an affirmative answer to Question 1.2 for the minimal
case.
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Matemática [Mathematical Notes], 122. MR956049
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