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COUNTING PROBLEMS FOR GEODESICS ON ARITHMETIC

HYPERBOLIC SURFACES
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(Communicated by David Futer)

Abstract. It is a longstanding problem to determine the precise relation-
ship between the geodesic length spectrum of a hyperbolic manifold and its
commensurability class. A well-known result of Reid, for instance, shows
that the geodesic length spectrum of an arithmetic hyperbolic surface de-
termines the surface’s commensurability class. It is known, however, that
non-commensurable arithmetic hyperbolic surfaces may share arbitrarily large
portions of their length spectra. In this paper we investigate this phenomenon
and prove a number of quantitative results about the maximum cardinality of
a family of pairwise non-commensurable arithmetic hyperbolic surfaces whose
length spectra all contain a fixed (finite) set of non-negative real numbers.

1. Introduction

Let M be an orientable hyperbolic manifold (or orbifold) with finite volume.
The length spectrum of M is defined to be the set of all lengths of closed geodesics
in M . Further, two manifolds are said to be commensurable if they share an iso-
metric finite-sheeted covering. Commensurability is an equivalence relation, and
the commensurability class of M is the equivalence class containing M .

One of the earliest results concerning the relationship between the length spec-
trum of a hyperbolic manifold and its commensurability class is due to Reid [16] and
shows that if two arithmetic hyperbolic 2-manifolds have the same length spectra,
then they are necessarily commensurable. This was later extended to arithmetic
hyperbolic 3-manifolds by Chinburg-Hamilton-Long-Reid [4]. It turns out that one
does not need the entire length spectrum in order to force commensurability in
these cases. In [9], Linowitz, McReynolds, Pollack and Thompson showed that
two arithmetic hyperbolic 3-manifolds of volume at most V whose length spectra
coincide for all geodesic lengths less than c ·

(
exp(log V log V )

)
are commensurable,

where c > 0 is an absolute constant. A similar result was proven for arithmetic
hyperbolic surfaces.

Although a number of authors have addressed the relationship between the length
spectrum of a hyperbolic manifold and its commensurability class in the arithmetic
setting, far fewer have considered the non-arithmetic setting. Among those that
have are Millichap [14] and Futer and Millichap [5]. These papers construct families
of non-commensurable 3-manifolds having the same volume and the same n shortest
geodesic lengths.
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The past ten years have seen a number of papers considering this problem for
more general locally symmetric spaces. Lubotzky, Samuels and Vishne [10], for
instance, have constructed non-commensurable arithmetic manifolds with universal
cover the symmetric space associated to PGLn(R) (for n ≥ 3) having the same
length spectra. More generally, Prasad and Rapinchuk [15] have considered locally
symmetric spaces XΓ = K\G/Γ where G = G(R) is the Lie group associated to a
connected semi-simple real algebraic subgroup G of SLn, K is a maximal compact
subgroup of G and Γ is a discrete torsion-free subgroup of G. In particular they
showed that there exist pairs of non-commensurable locally symmetric spaces XΓ1

and XΓ2
with the same length spectra only if G is of type An(n > 1), D2n+1(n ≥ 1),

D4 or E6. It should be pointed out that for real rank greater than one the results
of Prasad and Rapinchuk require Schanuel’s conjecture in transcendental number
theory.

In this paper we focus on hyperbolic surfaces and prove a variety of results which
quantify the extent to which two non-commensurable hyperbolic surfaces may con-
tain many geodesic lengths in common. Because we will be considering arithmetic
hyperbolic surfaces, we briefly recall what it means for a hyperbolic surface to be
arithmetic. Given a discrete subgroup Γ of PSL2(R), the commensurator of Γ is
the set

Comm(Γ) = {g ∈ PSL2(R) : Γ and gΓg−1 are commensurable}.

The celebrated Margulis dichotomy [13] states that Γ is arithmetic if and only if
Γ has infinite index in Comm(Γ). An alternative characterization of arithmeticity
defines a hyperbolic surface to be arithmetic if and only if it is commensurable
with a hyperbolic surface of the form H2/Γ1

O. Here H2 denotes the hyperbolic
plane and Γ1

O is a group constructed from a maximal order in a quaternion algebra
defined over a totally real field (we will review the construction of Γ1

O in Section 3).
We note that an arithmetic hyperbolic surface is called derived from a quaternion
algebra if its fundamental group is contained in a group of the form Γ1

O.
We now define a counting function whose behavior will be studied through-

out this paper. Given a set S = {�1, . . . , �r} of non-negative real numbers we
define π(V, S) to be the maximum cardinality of a collection of pairwise non-
commensurable arithmetic hyperbolic surfaces derived from quaternion algebras,
each of which has volume less than V and length spectrum containing S.

The function π(V, S) was previously studied in [9, Theorem 4.10], where it was
shown that if π(V, S) → ∞ as V → ∞, then there exist integers 1 ≤ a, b ≤ |S| and
constants c1, c2 > 0 such that

c1
V

log V 1− 1
2a

≤ π(V, S) ≤ c2
V

log V 1− 1

2b

for all sufficiently large V .
The first result of this paper considers the asymptotic behavior of π(V, S) in

short intervals and provides a lower bound on the number of arithmetic hyperbolic
surfaces which are pairwise non-commensurable, have length spectra containing S
and volume contained in an interval of the form [V, V +W ].
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Theorem 1.1. Fix a finite set S of non-negative real numbers for which π(V, S) →
∞ as V → ∞. Let r be the cardinality of S and define θ = 8

3 if r = 1 and θ = 1
2r

otherwise. If ε > 0 and V 1−θ+ε < W < V , then as V → ∞ we have

π(V +W,S)− π(V, S) ≥ 1

2r
· W

log V
.

The assumption that π(V, S) → ∞ as V → ∞ is necessary in Theorem 1.1
because of the existence of sets S for which the function π(V, S) is non-zero yet
constant for all sufficiently large V . The remainder of this paper is devoted to a
careful analysis of the situation in which π(V, S) is eventually constant.

In Lemma 6.1 we will show that if S is such that π(V, S) > 0 for sufficiently
large V , then every arithmetic hyperbolic surface with length spectrum containing
S must have the same invariant trace field (see Section 3 for a definition). In the
following theorem we will denote this common invariant trace field by k.

Theorem 1.2. Suppose that for some fixed (finite) set S of non-negative real num-
bers the function π(V, S) is eventually constant and greater than zero. There exist
integers �,m, n with � ∈ {0, 1}, m ∈ {1, [k : Q]} and n ≥ 0 such that

lim
V→∞

π(V, S) = m2n − �.

Furthermore, � = 0 whenever k has narrow class number one.

The case in which k = Q is especially nice, as this field has narrow class number
one and of course satisfies [k : Q] = 1. Theorem 1.2 therefore immediately implies:

Corollary 1.3. Suppose that for some fixed (finite) set S of non-negative real
numbers the function π(V, S) is eventually constant. If Q is the invariant trace
field associated to S, then there is an integer n ≥ 0 such that

lim
V→∞

π(V, S) = 2n.

As a complement to Corollary 1.3 we prove the following theorem which shows
that for every integer n ≥ 0 one can find a set S such that limn→∞ π(V, S) = 2n.

Theorem 1.4. For every integer n ≥ 0 there exists a set S of non-negative real
numbers such that

lim
V→∞

π(V, S) = 2n.

Our proofs are for the most part number theoretic and make extensive use of the
correspondence between lengths of closed geodesics on arithmetic hyperbolic sur-
faces and algebraic integers in quadratic subfields of certain quaternion algebras.
Of particular importance are Borel’s formula for the area of an arithmetic hyper-
bolic surface [2], a “selectivity” theorem for embeddings of commutative orders into
quaternion orders due to Chinburg and Friedman [3], as well as a version of the
Chebotarev density theorem in short intervals due to Balog and Ono [1].

2. Quaternion algebras and quaternion orders

Let k be a number field with ring of integers Ok. A quaternion algebra over k
is a central simple k-algebra of dimension 4. Equivalently, a quaternion algebra
over k is a 4-dimensional k-vector space with basis {1, i, j, ij} such that i2, j2 ∈ k∗,
ij = −ji and such that every element of k commutes with i and j. Suppose that
B is a quaternion algebra over k. Given a prime p of k, we define the completion
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Bp of B at p as Bp = B ⊗k kp. The classification of quaternion algebras over
local fields shows that if Bp is not a division algebra, then Bp

∼= M2(kp). If Bp

is a division algebra we say that p ramifies in B. Otherwise we say that p is
unramified or split in B. The set of primes of k (finite or infinite) which ramify in
B is denoted Ram(B). We denote by Ramf (B) (respectively Ram∞(B)) the set
of finite (respectively infinite) primes of k which ramify in B. The set Ram(B) is
known to be finite of even cardinality. Conversely, given any finite set T of primes of
k (which are either finite or else real) having even cardinality there exists a unique
(up to isomorphism) quaternion algebra B over k for which Ram(B) = T . Note
that B is a division algebra if and only if Ram(B) 	= ∅.

Suppose that B is a quaternion algebra over k and L is a degree 2 extension of
k. An important consequence of the Albert-Brauer-Hasse-Noether theorem is that
B admits an embedding of L if and only if

{primes of k which split in L} ∩ Ram(B) = ∅.
We will make use of this fact many times in this paper. We remind the reader that
in the context of a real prime ν of k, we say that ν ramifies in L if ν extends to a
complex prime of L and splits in L if ν extends to a pair of distinct real primes of
L. As an example, the real prime of Q splits in every real quadratic field.

Given a quaternion algebra B over a number field k, we define a quaternion
order to be a subring of B which is also finitely generated as an Ok-module and
contains a basis for B over k. A quaternion order is called a maximal order if it is
not properly contained in any other quaternion order.

3. Arithmetic hyperbolic surfaces and their closed geodesics

Let k be a totally real field of degree nk with absolute value of discriminant dk
and Dedekind zeta function ζk(s). Let B be a quaternion algebra over k which is
unramified at a unique real place ν of k. This gives us an identification B ⊗k kν ∼=
M2(R). Let O be a maximal order of B and O1 be the multiplicative subgroup
of O∗ consisting of those elements with reduced norm one. We denote by Γ1

O the
image of O1 in PSL2(R). It was shown by Borel [2] (see also the earlier work of
Shimizu [18, Appendix]) that Γ1

O is a discrete subgroup of PSL2(R) whose coarea
is given by the formula:

(3.1) coarea(Γ1
O) =

8πd
3
2

k ζk(2)

(4π2)nk

∏
p∈Ramf (B)

(N(p)− 1) .

We define an arithmetic Fuchsian group to be a discrete subgroup of PSL2(R)
which is commensurable with a group of the form Γ1

O. An arithmetic Fuchsian
group is derived from a quaternion algebra if it is contained in a group of the form
Γ1
O. Although not every arithmetic Fuchsian group Γ is derived from a quaternion

algebra, it is known that the subgroup Γ2 of Γ generated by squares of elements
of Γ is always derived from a quaternion algebra [11, Chapter 8]. An arithmetic
hyperbolic surface is a hyperbolic surface of the form H2/Γ where Γ is an arithmetic
Fuchsian group. We will say that an arithmetic hyperbolic surface is derived from a
quaternion algebra if its fundamental group Γ is derived from a quaternion algebra.

Suppose that Γ is an arithmetic Fuchsian group. The trace field of Γ is the field
Q(tr γ : γ ∈ Γ). It follows from the Mostow Rigidity Theorem that this trace field is
a number field. Although it turns out that the trace field of an arithmetic Fuchsian
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group is not an invariant of the commensurability class, it can be shown that the
invariant trace field Q(tr γ2 : γ ∈ Γ) is a commensurability class invariant. We will
denote the invariant trace field of Γ by kΓ.

We will now define a quaternion algebra over kΓ. Let

BΓ =
{∑

biγi : bi ∈ kΓ, γi ∈ Γ
}

where only finitely many of the bi are non-zero. We may define multiplication in
BΓ in the obvious manner: (b1γ1) · (b2γ2) = (b1b2)(γ1γ2). The algebra BΓ is a
quaternion algebra over kΓ which we call the invariant quaternion algebra of Γ.

Suppose that Γ1,Γ2 are arithmetic Fuchsian groups. It was shown by Maclachlan
and Reid [11, Chapter 8.4] that the surfaces H2/Γ1 and H2/Γ2 are commensurable
if and only if kΓ1

∼= kΓ2 and BΓ1
∼= BΓ2.

Let Γ be an arithmetic Fuchsian group and γ ∈ Γ be a hyperbolic element. Let
λ = λγ be an eigenvalue of a preimage of γ in SL2(R) for which |λ| > 1. Then λ is
well defined up to multiplication by ±1. The axis of γ in H2 projects to a closed
geodesic on H2/Γ of length � = �(γ) where cosh(�/2) = ± tr(γ)/2.

4. Quaternion algebras with specified maximal subfields

In this section we prove a variety of results concerning quaternion algebras ad-
mitting embeddings of a fixed set of quadratic fields. These results will play an
important role in the proofs of this paper’s main theorems.

Example 4.1. Consider the three real quadratic fields Q(
√
3),Q(

√
17),Q(

√
51).

The discriminants of these fields are 12, 17 and 204, hence the primes 2 and 3 ramify
in Q(

√
3), the prime 17 ramifies in Q(

√
17) and the primes 2, 3 and 17 ramify in

Q(
√
51). It is straightforward to check that 2 splits in the field Q(

√
17) and that

neither 3 nor 17 split in any of these three quadratic fields. Suppose now that p is
a prime not in {2, 3, 17}. Then p splits in the quadratic field of discriminant d if

and only if the Kronecker symbol
(

d
p

)
= 1, is inert if and only if

(
d
p

)
= −1 and

ramifies if and only if
(

d
p

)
= 0. Therefore if p is inert in both Q(

√
3) and Q(

√
17),

then

1 = −1 · −1 =

(
12

p

)(
17

p

)
=

(
12 · 17

p

)
=

(
204

p

)
,

showing that p splits in Q(
√
51). This shows that 3 and 17 are the only primes not

splitting in any of these three quadratic fields. It follows that if B is a quaternion
division algebra over Q which admits embeddings of Q(

√
3),Q(

√
17) and Q(

√
51),

then B is the unique quaternion division algebra over Q with Ram(B) = {3, 17}.
The quaternion algebra M2(Q) also admits embeddings of these quadratic fields,
hence there are (up to isomorphism) two quaternion algebras over Q which admit

embeddings of Q(
√
3),Q(

√
17) and Q(

√
51).

Theorem 4.2. Suppose that {L1, . . . , Lr} is a collection of quadratic extensions of
a number field k with the property that only finitely many quaternion algebras over
k admit embeddings of all of the Li. Then the number of isomorphism classes of
quaternion algebras over k which admit embeddings of all of the Li is 2n for some
n ≥ 0.

Proof. Let k be a number field and L1, . . . , Lr be a collection of quadratic exten-
sions of k such that there are only finitely many isomorphism classes of quaternion
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algebras over k admitting embeddings of all of the Li. We claim that all but finitely
many primes of k split in at least one of the Li. Indeed, suppose to the contrary
that p1, p2, . . . are distinct primes of k which do not split in any of the Li. Because
a quaternion algebra over k admits an embedding of a quadratic extension L/k if
and only if no prime of k which ramifies in the algebra splits in L/k, it follows that
the (mutually non-isomorphic) quaternion algebras

{Bi : Ram(Bi) = {pi, pi+1}}
each admit embeddings of all of the Li, giving us a contradiction which proves our
claim.

We have shown that all but finitely many primes (finite or infinite) of k split in
at least one of the Li. Let S = {p1, . . . , pm} be the primes of k not splitting in
any of the Li. On the one hand there are precisely 2m−1 subsets of S with an even
number of elements, each of which corresponds to a unique quaternion algebra (the
algebra which is ramified precisely at the primes in this subset). Of these algebras,
2m−1 − 1 are division algebras; the remaining algebra is M2(k) and corresponds
to the empty subset of S. On the other hand, if B is a quaternion algebra over k
which admits embeddings of L1, . . . , Lr, then the only primes which may ramify in
B are those lying in S. It follows that Ram(B) ⊆ S. Because the set Ram(B) is
non-empty and determines the isomorphism class of B, the theorem follows. �

The following corollary to Theorem 4.2 considers a similar counting problem,
though with the caveat that the quaternion algebras being considered are required
to have a prescribed archimedean ramification behavior which will be necessary in
our geometric applications.

Corollary 4.3. Let k be a number field of signature (r1, r2) with r1 > 0 and
L1, . . . , Lr be a collection of quadratic extensions of k such that only finitely many
quaternion algebras over k admit embeddings of the Li. There is a non-negative in-
teger n such that the number of quaternion algebras over k which admit embeddings
of all of the Li and are unramified at a unique real place of k, if non-zero, is equal
to m2n for some integer m ∈ {1, r1}.

Proof. We may assume that there exists at least one quaternion algebra B over k
which admits embeddings of all of the Li and is split at a unique real place of k,
as otherwise the total number of algebras we are counting is 0. Suppose that the
unique real place of k at which B is split is ν. If ω 	= ν is a real place of k, then
ω ramifies in B, hence ω does not split in any of the extensions Li/k (since no
place of k which ramifies in a quaternion algebra over k may split in a quadratic
extension of k which embeds into the quaternion algebra). We now have two cases
to consider.

The first case is that ν does not split in any of the extensions Li/k. In this case
no real place of k splits in any of the extensions Li/k. Fix a real place ν′ of k. We
will count the number of quaternion algebras over k which admit embeddings of all
of the Li and are split at ν′ and no other real places of k. The proof of Theorem
4.2 shows that all but finitely many primes (finite or infinite) of k split in at least
one of L1, . . . , Lr. Let S = {p1, . . . , pm} be the set of all primes of k which do not
split in any of these extensions. Note that we have already shown that in the case
we are considering S contains all real places of k. A quaternion algebra B over k is
ramified at all real places of k not equal to ν′, split at ν′ and admits embeddings
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of L1, . . . , Lr if and only if

Ram(B) = {ω : ω is a real place of k not equal to ν′} ∪ S′

for some subset S′ of S containing only finite primes and whose cardinality ensures
that Ram(B) has an even number of elements. The number of such subsets is 2n

for some integer n ≥ 0, hence there are a total of r12
n quaternion algebras over k

which are split at a unique real place of k and which admit embeddings of all of
the Li (since there are r1 choices for ν′).

Now consider the case in which ν splits in one of the extensions Li/k. In this
case a quaternion algebra over k admits embeddings of all of the Li only if ν does
not ramify in the quaternion algebra. Because we are counting quaternion algebras
which are ramified at all but one real place of k, it must be the case that all of the
quaternion algebras we are counting are split at ν and at no other real places of k.
That there is a non-negative integer n such that there are 2n quaternion algebras
which are split at ν and no other real place of k and which admit embeddings of all
of the Li now follows from the argument that was used in the previous case. �

Theorem 4.4. Let n ∈ Z with n ≥ 0. For every number field k there exist quadratic
extensions L1, . . . , Lr of k such that there are precisely 2n − 1 isomorphism classes
of quaternion division algebras over k which admit embeddings of all of the Li.

Proof. We begin by considering the case in which k = Q. Let p1 be a prime sat-
isfying p1 ≡ 1 (mod 8) and define L1 = Q(

√
p1). Let p2, . . . , pm be primes which

satisfy pi ≡ 1 (mod 8) and which are all inert in L1/Q. We briefly explain why
such primes necessarily exist. A prime p is inert in L1/Q if and only if the Kro-

necker symbol
(

p1

p

)
= −1. Because p1 ≡ 1 (mod 8), the prime p1 also satisfies

p1 ≡ 1 (mod 4), hence quadratic reciprocity implies that p is inert in L1/Q if and

only if
(

p
p1

)
= −1. Let x be a quadratic non-residue modulo p1. The Chinese

Remainder Theorem, along with Dirichlet’s theorem on primes in arithmetic pro-
gressions, implies that there are infinitely many primes which are congruent to 1
modulo 8 and which are congruent to x modulo p1. This shows that there exist
primes p2, . . . , pm which satisfy pi ≡ 1 (mod 8) and which are all inert in L1/Q.
We now define L2 = Q(

√
p1p2 · · · pm) and L3 = Q(

√
p2 · · · pm).

Let d1, d2, d3 denote the discriminants of L1, L2, L3. A prime p splits in the

extension Li/Q if and only if the Kronecker symbol
(

di

p

)
= 1, is inert in the

extension if and only if
(

di

p

)
= −1 and ramifies if and only if

(
di

p

)
= 0. Moreover,

as
(

ab
p

)
=

(
a
p

)(
b
p

)
for all positive integers a, b, we have the identity(

d1
p

)(
d2
p

)(
d3
p

)
=

(
d1d2d3

p

)
=

(
(p1p2 · · · pm)

2

p

)
= 1.

This shows that every prime p not lying in the set {p1, . . . , pm} must split in one of
the extensions Li/Q. While a prime pi with i > 1 is inert in L1/Q and ramifies in
L2/Q and L3/Q, quadratic reciprocity implies that the prime p1 will split in L3/Q
if and only if m is odd.

Let L4 be a real quadratic field in which the prime p1 splits and in which
p2, . . . , pm are all inert. The existence of such a field follows from the existence
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of a prime p such that
(

p
p1

)
= 1 and

(
p
pi

)
= −1 for i = 2, . . . ,m (i.e., we would

take L4 = Q(
√
p)). It now follows from the previous paragraph that every prime

not in {p2, . . . , pm} splits in at least one of the quadratic fields {L1, . . . , L4}. If B
is a quaternion division algebra over Q into which L1, . . . , L4 all embed, then the
set Ram(B) of primes at which B is ramified is a non-empty set of even cardinal-
ity which satisfies Ram(B) ⊆ {p2, . . . , pm}. Conversely, every non-empty subset of
{p2, . . . , pm} with even cardinality defines a unique quaternion division algebra over
Q into which the quadratic fields {L1, . . . , L4} all embed. As there are precisely
2m−2−1 such subsets, setting m = n+2 proves the theorem in the case that k = Q.
Observe that the fields L1, . . . , L4 were all constructed so as to be real quadratic
fields. It follows that if B is a quaternion algebra over Q into which they embed,
then B is split at the real place of Q. Here we have used the fact that because
the real place of Q splits in each extension Li/Q, no quaternion algebra over Q

admitting embeddings of the Li may ramify at the real place of Q.
We now consider the general case in which k is an arbitrary number field. Let

k̂ be the Galois closure of k over Q. We begin by constructing quadratic fields

L1, . . . , L4 as above, though with the additional restrictions that Li ∩ k̂ = Q for
i = 1, . . . , 4 and that all of the primes in the set {p2, . . . , pm} split completely in
k/Q. In order to see why such primes and extensions L1, . . . , L4 exist, first recall
that a prime p of Q splits completely in k/Q if and only if p splits completely in

k̂/Q. Let p1 be a prime such that p1 ≡ 1 (mod 8) and Q(
√
p1) ∩ k̂ = Q. Such a

prime exists because there are infinitely many primes congruent to 1 modulo 8 and

only finitely many quadratic subfields of k̂. Define L1 = Q(
√
p1). Let p2, . . . , pm be

primes which are congruent to 1 modulo 8, inert in L1/Q, split completely in k̂/Q
and have the property that neither Q(

√
p1p2 · · · pm) nor Q(

√
p2 · · · pm) is contained

in k̂. Because a prime is congruent to 1 modulo 8 if and only if the prime splits
completely in the cyclotomic field Q(ζ8), the existence of these primes follows from

an application of the Cheboatrev density theorem to the compositum of Q(ζ8), k̂
and L1. In particular the Chebotarev density theorem implies the existence of

infinitely many primes that split completely in both Q(ζ8)/Q and k̂/Q and that
are inert in L1/Q. Note that this application of the Chebotarev density theorem

makes use of the fact that by construction L1 ∩ k̂ = Q, and L1 ∩ Q(ζ8) = Q since
the prime p1 splits completely in Q(ζ8)/Q and ramifies in L1/Q. We now define
L2 = Q(

√
p1p2 · · · pm) and L3 = Q(

√
p2 · · · pm). As before, we let L4 = Q(

√
p) be a

real quadratic field of prime discriminant in which the prime p1 splits and in which
p2, . . . , pm are all inert. Because there are infinitely many choices for the prime p,

we may choose L4 such that L4 ∩ k̂ = Q.
Let p 	∈ {p2, . . . , pm} be a rational prime and p be a prime of k lying above p.

Then for i = 1, . . . , 4 the prime p splits in the quadratic extension kLi/k, where
kLi is the compositum of k and Li. Also, if q ∈ {p2, . . . , pm} and q is a prime of
k lying above q, then q is inert in kLi/k for i = 1, . . . , 4. Both of these assertions
follow from standard properties of the Artin symbol [7, Chapter X, pp. 197-198]
and the fact that Gal(kLi/k) is isomorphic to Gal(Li/Q) via restriction to Li. It
follows that all but finitely many primes of k split in at least one of the extensions
kL1, . . . , kL4 and that there are at least m − 1 primes of k which do not split in
any of the kLi. By considering a fifth quadratic extension of k in which m − 1
of these primes are inert and the remainder of the primes split (the existence of
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such a quadratic extension follows from the Grunwald-Wang theorem [17, Theorem
32.18]), we obtain five quadratic extensions of k with the property that all but
m − 1 primes (finite or infinite) of k split in at least one of these extensions. The
theorem now follows, as it did in the k = Q case, from the correspondence between
quaternion division algebras over k admitting embeddings of these five quadratic
extensions and even order subsets of these m− 1 primes. �
Remark 4.5. Because it will be important in the proof of Theorem 1.4, we remark
that in the case that k = Q, the quadratic fields furnished by Theorem 4.4 may all
be assumed to be totally real. This follows immediately from the proof of Theorem
4.4.

5. Selectivity in quaternion algebras

Let k be a number field, B be a quaternion algebra over k which admits em-
beddings of the quadratic extensions L1, . . . , Lr of k. For each i = 1, . . . , r, fix a
quadratic Ok-order Ωi ⊂ Li. We would like to determine which maximal orders of
B contain conjugates of all of the quadratic orders Ωi. In the case that r = 1 this
problem was solved by Chinburg and Friedman [3, Theorem 3.3]. Because of our
interest in arithmetic hyperbolic surfaces and their invariant quaternion algebras,
we are primarily interested in the case that k is totally real and B is unramified at
a unique real place of k.

Theorem 5.1 (Chinburg and Friedman). Let B be a quaternion algebra over a
number field k, Ω ⊂ B be a commutative Ok-order and assume that B is unramified
at some real place of k. Then every maximal order of B contains a conjugate (by
B∗) of Ω, except when the following three conditions hold:

(1) Ω is an integral domain and its quotient field L ⊂ B is a quadratic extension
of k.

(2) The extension L/k and the algebra B are unramified at all finite places and
ramify at exactly the same (possibly empty) set of real places of k.

(3) All prime ideals of k dividing the relative discriminant ideal dΩ/Ok
of Ω are

split in L/k.

Suppose now that (1), (2) and (3) hold. Then B has an even number of conjugacy
classes of maximal orders and the maximal orders containing some conjugate of Ω
make up exactly half of these conjugacy classes.

Remark 5.2. We note that Chinburg and Friedman actually prove a stronger result
which shows exactly which conjugacy classes of maximal orders have representatives
admitting embeddings of Ω.

Before stating this section’s main theorem we define a bit of notation. Let k be
a number field and B be a quaternion algebra over k. If R is an order of B, then
the genus of R is the set of all orders of B which are everywhere locally isomorphic
to R.

Theorem 5.3. Let k be a totally real number field and L1, . . . , Lr be quadratic
extensions of k. For each i = 1, . . . , r let Ωi be a quadratic Ok-order contained in
Li. Suppose that there exists a quaternion algebra over k which is unramified at a
unique real place of k and into which all of the Li embed. Then with one possible
exception, every quaternion algebra over k which is unramified at a unique real
place of k and into which all of the Li embed has the property that every maximal
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order of the quaternion algebra contains conjugates of all of the Ωi. Furthermore,
this exceptional quaternion algebra does not exist if the narrow class number of k
is equal to one.

Proof. Suppose first that k has narrow class number one and that B is a quaternion
algebra over k which is unramified at a unique real place of k and in which all of the
Li embed. It was shown in [8, Proposition 5.4] that if R is an order of B, then there
is an extension k(R) of k with the property that if Li 	⊂ k(R), then every order
in the genus of R admits an embedding of Ωi. By the Skolem-Noether theorem,
this is equivalent to the statement that R contains a conjugate of Ωi. Moreover, it
was shown in [8, Section 3] that the conductor of k(R) is divisible only by primes
which divide the level ideal of R. In the case we are considering, R is a maximal
order. Therefore its level ideal is trivial and the genus of R is simply the set of all
maximal orders of B. It follows that k(R) is contained in the narrow class field of
k. As k has narrow class number one, this means that k(R) = k, hence [8, Section
3] shows that every maximal order of B contains conjugates of all of the Ωi.

We now prove the first statement of the theorem. If k = Q, then k has narrow
class number one and we are done by the previous paragraph. We may therefore
assume that k 	= Q. Note that because k is totally real and not equal to Q, it
follows that k has at least two real places. By hypothesis there exists a quaternion
algebra B over k which is unramified at a unique real place of k and into which
all of the Li embed. Denote by ν the real place of k which is unramified in B. If
ω 	= ν is another real place of k, then ω ramifies in B, hence ramifies in all of the
extensions Li/k, as otherwise the Li would not all embed into B.

Let B′ be a quaternion algebra over k which admits embeddings of all of the
Li and which is unramified at a unique real place of k. Suppose that B′ and
one of the extensions, say Li, satisfy condition (2) in Theorem 5.1. We have al-
ready seen that every real place ω of k not equal to ν ramifies in Li. Because
B′ and Li satisfy (2), it must be that B′ ramifies at ω as well. Because B′

is not ramified at all real places of k we may deduce that Ram∞(B′) = {ω :
ω is a real place of k not equal to ν}. Also, because B′ satisfies (2) we see that
Ramf (B

′) = ∅. This shows that if B′ and Li satisfy condition (2) of Theorem 5.1,
then Ram(B′) = {ω : ω is a real place of k not equal to ν}. Because a quaternion
algebra is completely determined by the primes that ramify in the algebra, we con-
clude that there is at most one quaternion algebra over k for which the conditions
in Theorem 5.1 are satisfied for any of the Ωi and Li. The theorem now follows
from Theorem 5.1. �

6. A useful lemma

In this section we prove a lemma which will play an important role in the proofs
of our main theorems.

Lemma 6.1. Let Γ,Γ′ be arithmetic Fuchsian groups such that the surfaces
H2/Γ,H2/Γ′ have closed geodesics of length �. Let γ ∈ Γ be the hyperbolic ele-
ment associated to � and λγ the corresponding eigenvalue. Then the invariant trace
fields of Γ and Γ′ are equal, and the invariant quaternion algebras of Γ and Γ′ both
admit embeddings of the quadratic extension Q(λγ2) of this common invariant trace
field.
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Proof. We begin by noting that every arithmetic Fuchsian group is contained in an
arithmetic Kleinian group [11, Exercise 8.3.2]. Therefore there exists an arithmetic
Kleinian group Λ which contains Γ. It follows that if γ ∈ Γ, then γ2 ∈ Λ2, where
Λ2 is the subgroup of Λ generated by squares. This latter group is derived from
a quaternion algebra [11, Corollary 8.3.5]. Let K denote the invariant trace field
of Λ2 and K+ denote the maximal totally real subfield of K. Because λγ2 is real,
Lemma 2.3 of [4] shows that K+ = Q(λγ2 +1/λγ2) = Q(tr(γ2)) and that Q(λγ2) is
a degree 2 extension of K+. We note that because the minimal polynomial of the
extension Q(λγ2)/Q(λγ2 + 1/λγ2) is x2 − (λγ2 + 1/λγ2)x+ 1 and has discriminant
(λγ2 + 1/λγ2)2 − 4 > 0, the field Q(λγ2) is not totally complex. Denote by kΓ
the invariant trace field of Γ. We claim that kΓ = K+. Indeed, this follows from
Corollary 9.5.3 of [11], which shows that [K : kΓ] = 2 and kΓ = K ∩R, along with
the fact that kΓ is totally real. This shows that the invariant trace field of Γ is
Q(tr(γ2)).

By hypothesis H2/Γ′ also contains a geodesic of length �, hence the geodesic
length formula shows that Γ′ contains an element γ′ such that tr(γ′) = tr(γ′) (up
to a sign). In particular this implies that

tr(γ′2) = tr2(γ′)− 2 = tr2(γ)− 2 = tr(γ2),

from which we conclude that Q(tr(γ2)) = Q(tr(γ′2)). Because Q(tr(γ2)) is the
invariant trace field of Γ and Q(tr(γ′2)) is the invariant trace field of Γ′, this proves
the first part of the theorem.

Let k denote the invariant trace field of Γ and Γ′. Let BΓ denote the invariant
quaternion algebra of Γ and BΓ′ the invariant quaternion algebra of Γ′. The fields
k(λγ2) and k(λγ′2) embed into BΓ and BΓ′ by [11, Chapter 8], hence the theorem
follows from the fact that k(λγ2) ∼= Q(λγ2) ∼= k(λγ′2). �

The proof of Lemma 6.1 also shows the following.

Lemma 6.2. Let Γ,Γ′ be an arithmetic Fuchsian group derived from quaternion
algebras such that the surfaces H2/Γ,H2/Γ′ have closed geodesics of length �. Let
γ ∈ Γ be the hyperbolic element associated to � and λγ the corresponding eigenvalue.
Let k denote the invariant trace fields of Γ and Γ′. Then the invariant quaternion
algebras of Γ and Γ′ both admit embeddings of the quadratic extension k(λγ) of k.

7. Proof of Theorem 1.1

Let S = {�1, . . . , �r} be a set of non-negative real numbers for which π(V, S) →
∞ as V → ∞. Let H2/Γ0 be an arithmetic hyperbolic surface derived from a
quaternion algebra whose length spectrum contains S. Let k be the invariant trace
field of Γ0 and B0 be the invariant quaternion algebra of Γ0. For i = 1, . . . , r define
Li = k(λi). Since π(V, S) → ∞ as V → ∞ there are infinitely many pairwise non-
commensurable arithmetic hyperbolic surfaces derived from quaternion algebras
with geodesics of lengths {�1, . . . , �r}. By Lemma 6.2 the invariant quaternion
algebras of these surfaces, which are pairwise non-isomorphic, all admit embeddings
of L1, . . . , Lr. This shows, in particular, that there are infinitely many primes of k
which are inert in all of the extensions Li/k.

Suppose that B is a quaternion algebra over k which is unramified at a unique
real place of k, admits embeddings of L1, . . . , Lr and satisfies Ramf (B) 	= ∅. For
each i = 1, . . . , r, fix a quadratic Ok-order Ωi ⊂ Li which contains a preimage
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in Li of γi. It follows from Theorem 5.3 that every maximal order of B contains
conjugates of all of the Ωi. If O is one such maximal order, then the arithmetic
hyperbolic surfaceH2/ΓO, which is by definition derived from a quaternion algebra,
must have length spectrum containing S. Let V0 denote the area of H2/ΓO.

Let ε > 0 and define θ = 8
3 if r = 1 and θ = 1

2r if r > 1. Finally, let V 1−θ+ε <
W < V . In light of the previous paragraph it suffices to show that for all sufficiently
large V one can construct at least 1

2r ·
W

log V quaternion algebras B which are ramified

at a finite prime of k, a unique real place of k, admit embeddings of all of the Li and
satisfy coarea(Γ1

O) ∈ (V, V +W ) where O is a maximal order of B. Let p0 be a prime
of k which is inert in all of the extensions Li/k (for i = 1, . . . , r), is unramified in
B0 and which satisfies N(p0) > 13. Note that such a prime exists because we have
already shown that there are infinitely many primes of k which are inert in all of the
extensions Li/k. Before continuing we note that because the compact (respectively
non-compact) hyperbolic 2-orbifold of minimal area has area π/42 (respectively,
π/6), the fact that N(p0) > 13 ensures that V0 · (N(p0) − 1) > 1 (see [6] for an
interesting survey on the classification of hyperbolic orbifolds of minimal volume).
We will now construct our quaternion algebras B by choosing primes p of k which
are unramified in B0 and inert in all of the extensions Li/k, and then defining B
to be the quaternion algebra for which Ram(B) = Ram(B0)∪{p0, p}. As all of the
Li embed into B0 it must be the case that no prime of Ram(B0) splits in any of
the extensions Li/k. Further, because of the way that we chose p0 and p, neither
of these primes split in any of the extensions Li/k, hence B admits embeddings of
the Li as desired. If O is a maximal order of B, then the coarea of Γ1

O is given by

V0(N(p0)− 1)(N(p)− 1)

by (3.1).
Let L denote the compositum over k of L1, L2, . . . , Lr. We will show that [L :

k] = 2r. Suppose to the contrary that [L : k] = 2s < 2r. Relabelling the Li as
necessary, we may assume that the compositum over k of L1, . . . , Ls is L. Because
Lr is contained in L and Gal(L/k) ∼= (Z/2Z)s, the Galois correspondence implies
that there exist 1 ≤ i < j ≤ s such that Lr is contained in the compositum of Li

and Lj . Let q be a prime of k which is unramified in Li, Lj and Lr. We claim
that q splits in one of these three quadratic extensions of k. Indeed, were q inert in
all three extensions, then the Galois group Gal(LiLj/k) of the compositum of Li

and Lj would have to be cyclic of prime power order [12, p. 115], which is not the
case since Gal(LiLj/k) ∼= (Z/2Z)2. This shows that there are only finitely many
primes of k which do not split in any of Li, Lj , Lr. The proof of Theorem 4.2 now
implies that there are only finitely many quaternion algebras over k which admit
embeddings of Li, Lj and Lr, and hence of L1, . . . , Lr. This is a contradiction
as we have already seen that there are infinitely many such quaternion algebras.
Therefore [L : k] = 2r.

We will now employ a version of the Chebotarev density theorem in short inter-
vals due to Balog and Ono [1]. This theorem shows that the number of primes P

of k which are unramified in L/k, have (P, L/k) = (1, . . . , 1) ∈ Gal(L/k) and have
X ≤ N(P) ≤ X + Y is asymptotically

1

2s
· Y

logX
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for all sufficiently large X if ε′ > 0 and X1−θ+ε′ ≤ Y ≤ X. Theorem 1.1 now
follows from the short intervals version of the Chebotarev density theorem upon
setting c = V0 · (N(p0)− 1) and X = 1

cV .

8. Proof of Theorem 1.2

Let S = {�1, . . . , �r} be a finite set of non-negative numbers for which π(V, S) is
eventually constant and greater than zero. Let H2/Γ be an arithmetic hyperbolic
surface derived from a quaternion algebra whose length spectrum contains S. Let
k = kΓ be the invariant trace field of Γ and B = BΓ be the invariant quaternion
algebra of Γ. For i = 1, . . . , r, let γi be the associated hyperbolic element and λγi

be the eigenvalue of the preimage in SL2(R) of γi for which |λγi
| > 1.

Suppose that H2/Γ′ is an arithmetic hyperbolic surface derived from a quater-
nion algebra whose length spectrum contains S and which is not commensurable
with H2/Γ. By Lemma 6.1, the invariant trace field of H2/Γ′ is also k and the
invariant quaternion algebra B′ of H2/Γ′ admits embeddings of the quadratic ex-
tensions k(λγ1

), . . . , k(λγr
) of k.

Conversely, suppose that B′′ is a quaternion algebra over k which is unramified
at a unique real place of k, admits embeddings of k(λγ1

), . . . , k(λγr
) and is not

isomorphic to B. For each i = 1, . . . , r, fix a quadratic Ok-order Ωi ⊂ k(λi) which
contains a preimage in k(λi) of γi. It follows from Theorem 5.3 that with one
possible exception (which can occur only if the narrow class number of k is greater
than one), every maximal order of B′′ contains conjugates of all of the Ωi and hence
gives rise to an arithmetic hyperbolic surface H2/ΓO containing closed geodesics
of lengths �1, . . . , �r. Moreover, such a surface is, by definition, derived from a
quaternion algebra.

From the above we deduce that with one possible exception, every isomorphism
class of quaternion algebras over k which split at a unique real place of k and
admit embeddings of all of the fields k(λγi

) will give rise to an arithmetic hyper-
bolic surface derived from a quaternion algebra with length spectrum containing S.
Moreover, because these algebras are pairwise non-isomorphic, the associated hy-
perbolic surfaces are pairwise non-commensurable. Theorem 1.2 now follows from
Corollary 4.3.

9. Proof of Theorem 1.4

Fix an integer n ≥ 0. By Theorem 4.4 there exist quadratic extensions L1, . . . , Lr

of Q such that there are precisely 2n− 1 quaternion division algebras over Q which
admit embeddings of all of the Li. Moreover, as was explained in Remark 4.5,
we may take these quadratic fields to all be real quadratic fields. The results of
[11, Chapter 12.2] (see for instance [11, Theorem 12.2.6], which also holds in the
context of arithmetic hyperbolic surfaces so long as the quadratic extensions in
question are not totally complex, which is the case we are dealing with since all
of our quadratic fields Li were taken to be real quadratic fields) show that these
real quadratic fields give rise to hyperbolic elements γ1, . . . , γr of PSL2(R) and
that each of the 2n − 1 quaternion division algebras gives rise to an arithmetic
hyperbolic surface derived from a quaternion algebra containing closed geodesics
of lengths �(γi), . . . , �(γr). Here we have used the fact that by Theorem 5.1, every
maximal order of these quaternion algebras contains a conjugate of each of the
γi. Similarly, the quaternion algebra M2(Q) admits embeddings of all of these real
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quadratic fields and gives rise to the hyperbolic surface H2/PSL2(Z) (whose length
spectrum must also contain �(γi), . . . , �(γr)). Let S = {�(γ1), . . . , �(γr)}. We have
just shown that for sufficiently large V we have that π(V, S) ≥ 2n. Suppose now
that H2/Γ is an arithmetic hyperbolic surface derived from a quaternion algebra
whose length spectrum contains S. Lemma 6.1 shows that the invariant trace field
of this surface is Q and that its invariant quaternion algebra admits embeddings of
the real quadratic fields L1, . . . , Lr. Recall that two arithmetic hyperbolic surfaces
are commensurable if and only if they have isomorphic invariant trace fields and
invariant quaternion algebras [11, Chapter 8.4]. If H2/Γ is not compact, then it is
commensurable with H2/PSL2(Z), while if H2/Γ is compact its invariant quater-
nion algebra must be one of our 2n − 1 quaternion division algebras by Theorem
4.4. This shows that H2/Γ is commensurable to one of the 2n hyperbolic surfaces
constructed above. Theorem 1.4 follows.
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