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THE DEGREE OF A TROPICAL BASIS

MICHAEL JOSWIG AND BENJAMIN SCHRÖTER

(Communicated by Irena Peeva)

Abstract. We give an explicit upper bound for the degree of a tropical basis
of a homogeneous polynomial ideal. As an application f -vectors of tropical va-
rieties are discussed. Various examples illustrate differences between Gröbner
and tropical bases.

1. Introduction

Computations with ideals in polynomial rings require an explicit representation
in terms of a finite set of polynomials which generate that ideal. The size, i.e.,
the amount of memory required to store this data, depends on four parameters:
the number of variables, the number of generators, their degrees and the sizes of
their coefficients. For purposes of computational complexity it is of major interest
to obtain explicit bounds for these parameters. An early step in this direction is
Hermann’s degree bound [Her26] on solutions of linear equations over Q[x1, . . . , xn].
In practice, however, not all generating sets are equally useful, and so it is impor-
tant to seek complexity results for generating sets which have additional desirable
properties. A landmark result here is the worst case space complexity estimate for
Gröbner bases by Mayr and Meyer [MM82].

Tropical geometry associates with an algebraic variety a piecewise linear object
in the following way. Let K be a field with a real-valued valuation, which we denote
as val. We consider an ideal I in the polynomial ring K[x1, . . . , xn] and its vanishing
locus V(I), which is an affine variety. The tropical variety T (I) is defined as the
topological closure of the set

(1) val
(
V(I)

)
=

{(
val(z1), . . . , val(zn)

) ∣∣ z ∈ V(I) ∩ (K \ {0})n
}

⊂ Rn .

In general, T (I) is a polyhedral complex whose dimension agrees with the Krull di-
mension of I; see Bieri and Groves [BG84]. If, however, the ideal I has a generating
system of polynomials whose coefficients are mapped to zero by val that polyhedral
complex is a fan. This is the constant coefficient case. A major technical challenge
in tropical geometry is the fact that, in general, intersections of tropical varieties
do not need to be tropical varieties. Therefore, the following concept is crucial for
an approach via computational commutative algebra. A finite generating subset T
of I is a tropical basis if the tropical variety T (I) coincides with the intersection of
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the finitely many tropical hypersurfaces T (f) for f ∈ T ; see [MS15, §2.6] for the
details.

Our main result states that each such ideal has a tropical basis whose degree does
not exceed a certain bound which is given explicitly. While the bound which we
are currently able to achieve is horrendous, to the best of our knowledge this is the
first result of this kind. The main result comes in two versions: Theorem 5 covers
the case of constant coefficients, while Theorem 10 deals with the general case.
Moreover, we present examples of tropical bases which exhibit several interesting
features. We close this paper with an application to f -vectors of tropical varieties
and two open questions.

2. Degree bounds

In this section we will assume that the valuation on the field K is trivial, i.e., we
are in the constant coefficient case. Throughout the following let I be a homoge-
neous ideal in the polynomial ring R := K[x1, . . . , xn]. Bogart et al. were the first
to describe an algorithm for computing a tropical basis [BJS+07, Thm. 11]. This
algorithm is implemented in Gfan, a software package for computing Gröbner fans
and tropical varieties [Jen]. Since our proof rests on the method of Bogart et al.
we need to give a few more details. Every weight vector w ∈ Rn gives rise to a
generalized term order on R. The generalization lies in the fact that this order may
only be partial, which is why the initial form inw(f) of a polynomial f does not
need to be a monomial. Now the tropical variety of I can be described as the set

T (I) = {w ∈ Rn | inw(I) does not contain any monomial} ,

where the initial ideal inw(I) is generated from all initial forms of polynomials in
I. Declaring two weight vectors equivalent whenever their initial ideals agree yields
a stratification of Rn into relatively open polyhedral cones; this is the Gröbner fan
of I. Each maximal cone of the Gröbner fan corresponds to a proper term order or,
equivalently, to a monomial initial ideal and a reduced Gröbner basis. A Gröbner
basis is universal if it is a Gröbner basis for each term order. By construction T (I)
is a subfan of the Gröbner fan. A polynomial f ∈ I is a witness for a weight vector
w ∈ Rn if its initial form inw(f) is a monomial. Such a polynomial f certifies that
the Gröbner cone containing w is not contained in T (I). The algorithm in [BJS+07]
now checks each Gröbner cone and adds witnesses to a universal Gröbner basis to
obtain a tropical basis.

An ideal I contains the monomial xm = xm1
1 · · ·xmn

n if and only if the quotient

I : xm = {f ∈ R | xmf ∈ I}

contains a unit. The ideal

(I : xm)∞ =
⋃
k∈N

(I : xkm)

is called the saturation of I with respect to xm. Since the ring R is Noetherian
there exists a smallest number k such that I : xkm = (I : x)∞. That number k is
the saturation exponent. Hence the total degree of any witness does not exceed αn,
where α is the maximal saturation exponent of all initial ideals of I with respect
to x1 · · ·xn. We need to get a grip on that parameter α. The degree of a finite set
of polynomials is the maximal total degree which occurs.
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Proposition 1. Let I be a homogeneous ideal. The saturation exponent α of I
with respect to x1 · · ·xn is bounded by

α ≤ degH,

where H is a universal Gröbner basis for I.

Proof. Since H is universal it contains a Gröbner basis {f1, . . . , fs} for the reverse
lexicographic order. By [Eis95, Prop. 15.12] the set{

f1
gcd(xn, f1)

,
f2

gcd(xn, f2)
, . . . ,

fs
gcd(xn, fs)

}

is a Gröbner basis for I : xn. Thus the saturation exponent of I with respect to xn

is bounded by the degree degxn
(H) ofH in the variable xn. Permuting the variables

implies a similar statement for xi. It follows that α = max1≤i≤n degxi
H ≤ degH.

�
Notice that the tropical variety of a homogeneous ideal I coincides with the

tropical variety of the saturated ideal I : (x1 · · ·xn)
∞. For the next step we need to

determine the degree of a universal Gröbner basis. The key ingredient is a result of
Mayr and Ritscher [MR10]. Here and below d is the degree of I, i.e., the minimum
of the degrees of all generating sets, and r is the Krull dimension.

Proposition 2 (Mayr and Ritscher). Assume that r ≥ 1. Each reduced Gröbner
basis G of the ideal I satisfies

(2) degG ≤ 2

(
dn−r + d

2

)2r−1

.

Lakshman and Lazard [LL91] give an asymptotic bound of the degree on zero-
dimensional ideals, that is, for r = 0. For Gröbner bases one could argue that
the degree is more interesting than the number of polynomials. This is due to the
following simple observation.

Remark 3. A reduced Gröbner basis of degree e (of any ideal in R) can contain at
most

(
e+n−1

e

)
=

(
e+n−1
n−1

)
polynomials. The reason is that no two leading monomials

can divide one another.

We are ready to bound the degree of a universal Gröbner basis. In view of the
previous remark this also entails a bound on the number of polynomials. Since we
will use Proposition 2, throughout this section we will assume that r ≥ 1.

Corollary 4. There is a universal Gröbner basis for I whose degree is bounded by
(2).

Proof. The union of the reduced Gröbner bases for all term orders is universal. The
claim follows since the bound in Proposition 2 is uniform. �

For our main result we apply the bounds which we just obtained to the output
of the algorithm in [BJS+07].

Theorem 5. Suppose that the valuation val on the coefficients is trivial. There is
a universal Gröbner basis U and a tropical basis T of the homogenous ideal I with

(3) deg T ≤ max {degU, αn} ≤ n degU ≤ 2n

(
dn−r + d

2

)2r−1

.
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Proof. The number αn bounds the degree of a witness, and so the first inequality
follows from the correctness of the algorithm [BJS+07, Thm. 11]. For a weight
vector w we abbreviate J := inw(I). From U we can obtain a universal Gröbner
basis H for J , and this satisfies degH ≤ degU . The initial ideal J coincides with
the initial ideal of I with respect to a perturbation of the term order that yields J
in direction w. From Proposition 1 we thus get the second inequality. Finally, the
third inequality follows from (2) and Corollary 4. �

Replacing (2) by other estimates gives variations of the last inequality in (3).
For example, the bound

(4) degG ≤ 2

(
d2

2
+ d

)2n−1

of Dubé [Dub90] does not rely on the dimension r. Multiplying that bound by n
also yields an upper bound on the degree of a tropical basis. Note that the results
of this section hold for arbitrary characteristic of K.

3. Examples

Throughout this section, we will be looking at the case K = C, and val sends
each non-zero complex number to zero. In particular, as above, we are considering
constant coefficients.

It is known that, in general, a universal Gröbner basis does not need to be a
tropical basis; see [BJS+07, Ex. 10] or [MS15, Ex. 2.6.7]. That is, it cannot be
avoided to compute witness polynomials. In fact, the following example, which is
a simple modification of [BJS+07, Ex. 10], shows that adding witnesses may even
increase the degree.

Example 6. Let I ⊂ C[x, y, z] be the ideal generated by the six degree 3 polyno-
mials

x2y + xy2 , x2z + xz2 , y2z + yz2 ,
x3 + x2y + x2z , xy2 + y3 + y2z , xz2 + yz2 + z3.

These six generators together with the ten polynomials of degree 3 below form a
universal Gröbner basis for I

x3 − xy2 − xz2 , x2y − y3 + yz2 , x2z + y2z − z3 ,
x3 − xy2 + x2z , xy2 + y3 − yz2 , xz2 − y2z + z3 ,
x3 + x2y − xz2 , x2y − y3 − y2z , x2z − yz2 − z3 ,

x3 + y3 + z3.

The monomial x2yz of degree 4 is contained in I. This is a witness to the fact that
the tropical variety T (I) is empty. Since, however, there is no monomial of degree
3 contained in I, any tropical basis must have degree at least 4. One such tropical
basis, T , is given by the six generators and the monomial x2yz. This also shows
that a tropical basis does not need to contain a universal Gröbner basis.

A tropical basis does not even need to be any Gröbner basis, as the next example
shows.

Example 7. Consider the three polynomials

x5 , x4 + x2y2 + y4 , y5,
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in C[x, y]. They form a tropical basis for the ideal they generate. However each
Gröbner basis has to include at least one of the S-polynomials x3y2 + xy4 or x4y+
x2y3.

For conciseness the Examples 6 and 7 address tropical varieties which are empty.
One can modify the above to obtain ideals and systems of generators with similar
properties for tropical varieties of arbitrarily high dimension. We leave the details
to the reader.

It is obvious that the final upper bound in (3) is an extremely coarse estimate.
However, better bounds on the degree of the universal Gröbner basis can clearly be
exploited. The following example may serve as an illustration.

Example 8. Let I = 〈xy − zw + uv〉 ⊂ C[x, y, z, u, v, w]. In this case we have
d = 2, n = 6 and r = 5. Since I is a principal ideal the single generator forms
a Gröbner basis, which is even universal and also a tropical basis. The degree of
that universal Gröbner basis is d = 2, which needs to be compared with the upper
bound of 217 from (2). For the saturation exponent we have α = 1 ≤ 2, and the
degree of the tropical basis equals d = 2. This is rather close to the bound αn = 6,
whereas the final upper bound in (3) is as much as 3 · 218.

Our final example generalizes the previous. In fact, Example 8 re-appears below
for D = 2 and N = 4.

Example 9. The Plücker ideal ID,N captures the algebraic relations among the
D×D-minors of a generic D×N -matrix with coefficients in the field K. This is a
homogeneous prime ideal in the polynomial ring over K with n =

(
N
D

)
variables.

The variety V(ID,N ) is the Grassmannian of D-planes in KN . Its tropicalization
T (ID,N ) is the tropical Grassmannian of Speyer and Sturmfels [SS04]; see also
[MS15, §4.3].

The Plücker ideal is generated by quadratic relations; see [Stu08, Thm 3.1.7].
Its dimension equals r = (N − D)D + 1; see [SS04, Cor 3.1]. From this data we
derive that there is a tropical basis TD,N of degree

deg TD,N ≤ 2 ·
(
N
D

)
·
(
2

(
N
D

)
−ND+D2−2 + 1

)2ND−D2

.

To the best of our knowledge explicit tropical bases for ID,N are known only for
D = 2 and (D,N) ∈ {(3, 6), (3, 7)}; see [SS04] and [HJJS09]. Note that for D = 2
the degree of a universal Gröbner basis grows with n while the quadratic 3-term
Plücker relations form a tropical basis.

4. Non-constant coefficients

Recently, Markwig and Ren [MR16] presented a new algorithm which extends
[BJS+07] to the case of non-constant coefficients. We will use their method to gen-
eralize Theorem 5 accordingly. To this end we will browse through our exposition
in Section 2 and indicate the necessary changes to the arguments.

Let K be a field equipped with a non-trivial discrete valuation val. The valuation
ring r :={a∈K | val(a)≥0} has a unique maximal ideal m :={a∈K | val(a)>0}.
The ideal m is generated by a prime element, which we denote as t. The residue
field of K is the quotient k := r/m. The initial form of a homogeneous polynomial
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f =
∑

u∈Nn cux
u in K[x1, . . . , xn] with respect to a weight vector w ∈ Rn is

inw(f) =
∑

w·u−val(cu)
maximal

t− val(cu)cu x
u ∈ k[x1, . . . , xn] ,

where · describes the canonical projection from r to k. The initial ideal J = inw(I),
the tropical variety T (I) of an ideal I, witnesses and tropical bases are defined as
in the constant coefficient case. The key difference to the classical case is that
the stratification of Rn by initial ideals yields a polyhedral complex, the Gröbner
complex Γ(I), which does not need to be a fan; see [MS15, Section 2.5]. The tropical
variety T (I) is a subcomplex of Γ(I).

Let w ∈ Rn be a generic vector, i.e., it is an interior point of some maximal
cell of Γ(I). Like in the classical case, a Gröbner basis of I with respect to w
is a set of generators such that their initial forms with respect to w generate the
entire initial ideal inw(I). Further, a Gröbner basis is universal if it works for all
weight vectors. Again, a universal Gröbner basis enhanced with a witness for each
cell in Γ(I) \ T (I) forms a tropical basis. As before, the degree of a witness with
respect to w is bounded by the saturation exponent of the saturation exponent of
(inw(I) : x)

∞.
We are ready to state and prove the following generalization of Theorem 5, which

was suggested to us by Yue Ren. We are grateful for this hint.

Theorem 10. Suppose that val is a non-constant discrete valuation on K. There
is a universal Gröbner basis U and a tropical basis T of the homogeneous ideal I
with

(5) deg T ≤ max {degU, αn} ≤ n degU ≤ 2n

(
d2

2
+ d

)2n−1

.

Proof. Our proof is based on the algorithm of Markwig and Ren [MR16], which is
a direct generalization of [BJS+07]. Let U be a universal Gröbner basis of the ideal
I. For w ∈ Rn the set {inw(f) | f ∈ U} is a Gröbner basis of J . By Proposition 1,
the saturation exponent of the saturation (J : x)∞ is bounded by the degree degU .
This establishes the first two inequalities in (5). The final inequality follows from
Dubé’s bound (4). That result was extended to non-constant coefficients by Chan
and Maclagan; see [CM13, Theorem 3.1]. �

Remark 11. The canonical valuation on the field of Puiseux series C{{t}} is not
discrete, and the valuation ring is not Noetherian; see [MS15, Remark 2.4.13].
However, the computation of a tropical basis for any finitely generated ideal can
be restricted to a polynomial ring over an appropriate discretely valuated subfield.
The degree bound in Theorem 10 does not depend on the choice of that subfield.
Thus Theorem 10 also holds for K = C{{t}}, provided that I is finitely generated.

5. The f-vector of a tropical variety

The f -vector of a polyhedral complex, which counts the number of cells by
dimension, is a fundamental combinatorial complexity measure. In this section we
will give an explicit bound on the f -vector of a tropical variety T (I), with arbitrary
valuation on the field K, in terms of the number s of polynomials in a tropical basis
T and the degree d of a tropical basis, T . Notice that in the previous sections ‘d’
was the degree of I.



THE DEGREE OF A TROPICAL BASIS 967

First we discuss the case of a tropical hypersurface, that is, s = 1, as in Ex-
ample 8. Let g ∈ R be an arbitrary homogeneous polynomial of degree d. As in
Section 4, here we are admitting non-constant coefficients. A tropical hypersurface
T (g) is dual to the regular subdivision of the Newton polytope N(g) of g, which is
gotten from lifting the lattice points in N(g), which correspond to the monomials
in g, to the valuation of their coefficients [MS15, Prop. 3.1.6]. See the monograph
[DLRS10] for details on polytopal subdivisions of finite point sets. The polynomial

g has at most
(
d+n−1
n−1

)
monomials, which correspond to the lattice points in the dth

dilation of the (n−1)-dimensional simplex d ·Δn−1. The standard simplex Δn−1 is
the (n−1)-dimensional convex hull of the n standard basis vectors e1, . . . , en. The
maximal f -vector of a polytopal subdivision of d·Δn−1 by lattice points is (simulta-
neously for all dimensions) attained for a unimodular triangulation [BM85, Thm. 2].
If Δ is such a unimodular triangulation, then its vertices use all lattice points in
d ·Δn−1. The converse does not hold if n ≥ 4. The f -vector of Δ equals

(6) fΔ
j =

j∑
i=0

(−1)i+j
(
j
i

)(
di+d+n−1

n−1

)
;

see [DLRS10, Thm. 9.3.25]. By duality the bound in (6) translates into a bound
on the f -vector for the tropical hypersurface T (g):

(7) f
T (g)
j ≤ fΔ

n−j−1 ≤
n−j∑
i=1

(−1)n+i−j
(
n−j−1
i−1

)(
di+n−1
n−1

)
.

From the above computation we can derive the following general result.

Proposition 12. Let I be a homogeneous ideal in R. Then the f -vector of the
tropical variety T (I) with a tropical basis T , consisting of s polynomials of degree
at most d, is bounded by

fj ≤
n−j∑
i=1

(−1)n+i−j
(
n−j−1
i−1

)(
sdi+n−1

n−1

)
.

Proof. Let g denote the product h1 · · ·hs of all polynomials in the tropical basis
T . The tropical hypersurface of g is the support of the (n−1)-skeleton of the
polyhedral complex dual to a regular subdivision of the Newton polytope N(g); see
[MS15, Prop. 3.1.6]. This polytope is the Minkowski sum of all Newton polytopes
N(h) for h ∈ T . Moreover, the polyhedral subdivision of N(g) dual to T (g) is the
common refinement of the subdivisions of the Newton polytopes for the polynomials
in T . The tropical variety T (I) is a subcomplex of this refinement since, by the
definition of T , we have

T (I) =
⋂
f∈T

T (f) .

The polynomial g is of degree at most sd. From the inequality (7) we get the
claim. �

Let us now discuss the special case of a tropical hypersurface T (g) with constant
coefficients. That is, we assume that the valuation map applied to each coefficient
of the homogeneous polynomial g yields zero. In this case the lifting is trivial
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Table 1. The vectors λ(d, n) for small values of d and n. A star
indicates only a lower bound, which is due to the fact that we could
not complete our ad hoc computation with the given resources.

n\d 1 2 3 4 5

2 (2) (2) (2) (2) (2)
3 (3, 3) (4, 4) (6, 6) (6, 6) (8, 8)
4 (4, 6, 4) (7, 12, 8) (12, 18, 10) (15, 24, 16) (20, 36, 22)
5 (5, 10, 10, 5) (11, 30, 30, 10) (20, 48, 50, 20) (28, 83, 86, 33)∗ (33, 96, 101, 36)∗

and thus T (g) is dual to a lattice polytope contained in the simplex d ·Δn−1; see
[MS15, Prop. 3.1.10]. We introduce the parameter

λj(d, n) = max
{
fP
j

∣∣ P is a lattice polytope in d ·Δn−1

}
,

which measures how combinatorially complex tropical hypersurfaces (with constant
coefficients) can be. We arrive at the following conclusion.

Corollary 13. Let I be a homogeneous ideal in R which is generated by polynomials
with constant coefficients. Then the f -vector of the tropical variety T (I) a tropical
basis T , consisting of s polynomials of degree at most d, is bounded by

(8) fj ≤ λn−j−1(sd, n) .

Notice that the (n − 1)-simplex has λ0(1, n) = n vertices and an interval has
λ0(d, 2) = 2 vertices. The number of vertices λ0(d, n) does not exceed the sum of
the number of vertices in (d− 1) ·Δn−1 and d ·Δn−2. Hence, e.g., the number of
(n−1)-cells of T (I) in (8) is bounded by

fn−1 ≤ λ0(sd, n) ≤
sd−2∑
i=0

2

(
i+ n− 3

i

)
+

n−3∑
i=0

(n− i)

(
i+ sd− 2

i

)
.

We calculated the numbers λj(d, n) for small values of d and n with polymake

[GJ00]. The result is summarized in Table 1. Note that, e.g., for d = 2 and n = 4
there is no polytope that maximizes fj simultaneously for all j. We expect that
it is difficult to explicitly determine the values for λj(d, n). The somewhat related
question of determining the (maximal) f -vectors of 0/1-polytopes is a challenging
open problem; see [Zie00].

6. Open questions

For constant coefficients, Hept and Theobald [HT09] developed an algorithm for
computing tropical bases, which is based on projections.

Question A. Can their approach be used to obtain better degree bounds?

Our current techniques employ the Gröbner complex of an ideal, i.e., a universal
Gröbner basis. Yet, as Example 7 shows tropical bases and Gröbner bases are not
related in a straightforward way.

Question B. Is it possible to directly obtain a tropical basis from the generators
of an ideal, i.e., without the need to compute any Gröbner basis?
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Notice the algorithm of Hept and Theobald [HT09] uses elimination (Gröbner
bases). However, one may ask if techniques from polyhedral geometry can further
be exploited to obtain yet another method for computing tropical bases and tropical
varieties.
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Available at http://home.imf.au.dk/jensen/software/gfan/gfan.html.

[LL91] Y. N. Lakshman and Daniel Lazard, On the complexity of zero-dimensional algebraic
systems, Effective methods in algebraic geometry (Castiglioncello, 1990), Progr. Math.,
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