Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Derivatives of Blaschke products whose zeros lie in a Stolz domain and weighted Bergman spaces


Author: Atte Reijonen
Journal: Proc. Amer. Math. Soc. 146 (2018), 1173-1180
MSC (2010): Primary 30J10; Secondary 30H20
DOI: https://doi.org/10.1090/proc/13791
Published electronically: October 6, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a Blaschke product $ B$ whose zeros lie in a Stolz domain, we find a condition regarding $ \omega $ which guarantees that $ B'$ belongs to the Bergman space $ A^p_\omega $. In addition, the sharpness of this condition is considered.


References [Enhancements On Off] (What's this?)

  • [1] Patrick Ahern, The Poisson integral of a singular measure, Canad. J. Math. 35 (1983), no. 4, 735-749. MR 723040, https://doi.org/10.4153/CJM-1983-042-0
  • [2] P. R. Ahern and D. N. Clark, On inner functions with $ H^{p}$-derivative, Michigan Math. J. 21 (1974), 115-127. MR 0344479
  • [3] Peter Colwell, Blaschke products: Bounded analytic functions, University of Michigan Press, Ann Arbor, MI, 1985. MR 779463
  • [4] N. Danikas and Chr. Mouratides, Blaschke products in $ Q_p$ spaces, Complex Variables Theory Appl. 43 (2000), no. 2, 199-209. MR 1812465
  • [5] Peter L. Duren, Theory of $ H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
  • [6] Daniel Girela and José Ángel Peláez, On the membership in Bergman spaces of the derivative of a Blaschke product with zeros in a Stolz domain, Canad. Math. Bull. 49 (2006), no. 3, 381-388. MR 2252260, https://doi.org/10.4153/CMB-2006-038-x
  • [7] Daniel Girela, José Ángel Peláez, and Dragan Vukotić, Integrability of the derivative of a Blaschke product, Proc. Edinb. Math. Soc. (2) 50 (2007), no. 3, 673-687. MR 2360523, https://doi.org/10.1017/S0013091504001014
  • [8] Daniel Girela, José Ángel Peláez, and Dragan Vukotić, Interpolating Blaschke products: Stolz and tangential approach regions, Constr. Approx. 27 (2008), no. 2, 203-216. MR 2336422, https://doi.org/10.1007/s00365-006-0651-6
  • [9] Alan Gluchoff, The mean modulus of a Blaschke product with zeroes in a nontangential region, Complex Variables Theory Appl. 1 (1983), no. 4, 311-326. MR 706988
  • [10] Janne Gröhn and Artur Nicolau, Inner functions in certain Hardy-Sobolev spaces, J. Funct. Anal. 272 (2017), no. 6, 2463-2486. MR 3603305, https://doi.org/10.1016/j.jfa.2016.12.001
  • [11] Haakan Hedenmalm, Boris Korenblum, and Kehe Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, vol. 199, Springer-Verlag, New York, 2000. MR 1758653
  • [12] Miroljub Jevtić, Blaschke products in Lipschitz spaces, Proc. Edinb. Math. Soc. (2) 52 (2009), no. 3, 689-705. MR 2546639, https://doi.org/10.1017/S001309150700065X
  • [13] Javad Mashreghi, Derivatives of inner functions, Fields Institute Monographs, vol. 31, Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2013. MR 2986324
  • [14] Miodrag Mateljević and Miroslav Pavlović, On the integral means of derivatives of the atomic function, Proc. Amer. Math. Soc. 86 (1982), no. 3, 455-458. MR 671214, https://doi.org/10.2307/2044447
  • [15] Miroslav Pavlović, Introduction to function spaces on the disk, Posebna Izdanja [Special Editions], vol. 20, Matematički Institut SANU, Belgrade, 2004. MR 2109650
  • [16] José Ángel Peláez and Jouni Rättyä, Embedding theorems for Bergman spaces via harmonic analysis, Math. Ann. 362 (2015), no. 1-2, 205-239. MR 3343875, https://doi.org/10.1007/s00208-014-1108-5
  • [17] Fernando Pérez-González and Jouni Rättyä, Derivatives of inner functions in weighted Bergman spaces and the Schwarz-Pick lemma, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2155-2166. MR 3611328, https://doi.org/10.1090/proc/13384
  • [18] F. Pérez-González, J. Rättyä, and A. Reijonen, Derivatives of inner functions in Bergman spaces induced by doubling weights, Ann. Acad. Sci. Fenn. Math. 42 (2017), 735-753.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30J10, 30H20

Retrieve articles in all journals with MSC (2010): 30J10, 30H20


Additional Information

Atte Reijonen
Affiliation: University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
Email: atte.reijonen@uef.fi

DOI: https://doi.org/10.1090/proc/13791
Keywords: Bergman space, Blaschke product, doubling weight, inner function, Stolz domain
Received by editor(s): November 25, 2016
Received by editor(s) in revised form: April 25, 2017
Published electronically: October 6, 2017
Additional Notes: This research was supported in part by Academy of Finland project no. 268009, JSPS Postdoctoral Fellowship for North American and European Researchers, and North Karelia Regional Fund of Finnish Cultural Foundation.
Communicated by: Stephen Ramon Garcia
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society