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Abstract. We define the complete numerical radius norm for homomorphisms
from any operator algebra into B(H), and show that this norm can be com-
puted explicitly in terms of the completely bounded norm. This is used to
show that if K is a complete C-spectral set for an operator T , then it is a
complete M -numerical radius set, where M = 1

2
(C + C−1). In particular, in

view of Crouzeix’s theorem, there is a universal constant M (less than 5.6) so
that if P is a matrix polynomial and T ∈ B(H), then w(P (T )) ≤ M‖P‖W (T ).

When W (T ) = D, we have M = 5
4
.

In 2007, Michel Crouzeix [6] proved the remarkable fact that for any operator
T on a Hilbert space H, the numerical range is a complete C-spectral set for some
constant with a universal bound of 11.08. Moreover in [5], he conjectures that the
optimal constant is 2, which is the case for a disc. Related is a result of Drury
[8] showing that if the numerical range of T is contained in the disc, then the
numerical radius of any polynomial in T is bounded by 5

4 times the supremum
norm of the polynomial over the disc. Generally all that one can say about the
relationship between the norm and numerical radius is that w(X) ≤ ‖X‖ ≤ 2w(X),
with equality for many operators, so the improvement from 2 to Drury’s 5

4 was
unexpected.

In this note, we establish a precise relationship between the completely bounded
norm of a homomorphism of an arbitrary operator algebra and what we call the
complete numerical radius norm of the homomorphism. When applied to the case
of the disc, our relationship yields Drury’s result in the matrix polynomial case,
and our result also applies to the general study of complete C-spectral sets.

We now introduce the definitions and prior results that we shall need.
A set K is a C-spectral set for an operator T if for every rational function f with

poles off of K, one has
‖f(T )‖ ≤ C‖f‖K

where ‖f‖K = sup{|f(z)| : z ∈ K}. It is a complete C-spectral set if this inequality
holds for all matrices with rational coefficients. This inequality clearly extends to
R(K), the uniform closure of these rational functions in C(K). It is well known
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that when the complement of K is connected (such as when K is convex), it suffices
to verify this inequality for polynomials. When the constant C = 1, we call K a
(complete) spectral set. The second author [12] showed in 1984 that K is a complete
C-spectral set for T if and only if there is an invertible operator S so that K is a
complete spectral set for STS−1 and ‖S‖ ‖S−1‖ ≤ C.

The numerical range of an operator T is the set

W (T ) = {〈Tx, x〉 : ‖x‖ = 1}.

This set is always convex and contains the spectrum of T . The numerical radius of
T is

w(T ) = sup{|λ| : λ ∈ W (T )}.
It is well known that w(T ) ≤ ‖T‖ ≤ 2w(T ), and that these two inequalities are
sharp.

Early estimates for w(p(T )) for a polynomial p in the case of the disc were due
to Berger and Stampfli [4]: if w(T ) ≤ 1 and p(0) = 0, then w(p(T )) ≤ ‖p‖D. A
recent result of Drury [8] deals with the case of p(0) �= 0:

w(p(T )) ≤ 5

4
‖p‖D.

This inequality can be seen to be sharp by taking T = [ 0 2
0 0 ] and using a sequence

of polynomials approaching the Möbius map that takes the unit disc onto itself and
sends 0 to 1/2. Drury gives more precise information about the shape of W (p(T ))
as a “teardrop”. For another proof of this fact, see [10]. Since we are primarily
interested in matrix polynomials, this geometric teardrop result is no longer valid,
but we prove the same 5

4 inequality.
We will say that a compact set K is a C ′-numerical radius set for T if

w(f(T )) ≤ C ′‖f‖K for all f ∈ R(K),

and it is a complete C ′-numerical radius set if the same inequality holds for matrices
over R(K). One of our key results is the following:

Theorem 3.1. Let C ≥ 1 and set C ′ = 1
2 (C + C−1). A compact subset K ⊂ C is

a complete C-spectral set for T ∈ B(H) if and only if it is a complete C ′-numerical
radius set for T .

In fact, we will prove a general result about unital operator algebras. Recall that
every unital operator algebra A has a family of norms on Mn(A), and that A may
be represented completely isometrically as an algebra of operators on some Hilbert
space. See [13] for details. If Φ : A → B(H) is a bounded linear map, it induces
coordinatewise maps Φ(n) : Mn(A) → Mn(B(H)) � B(H(n)); and one defines the
completely bounded norm by

‖Φ‖cb = sup
n≥1

‖Φ(n)‖.

We will also define a complete numerical radius norm on such maps

‖Φ‖wcb := sup
n≥1

sup
A∈Mn(A), ‖A‖≤1

w(Φ(n)(A)).
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Our main result is the following:

Theorem 2.3. Let A be an operator algebra, and let Φ be a completely bounded
homomorphism. Then

‖Φ‖wcb =
1

2

(
‖Φ‖cb + ‖Φ‖−1

cb

)
.

We complete this introduction with a bit more background on the numerical
radius. Ando [1] provided some useful characterizations of w(T ). One we require
is Ando’s numerical radius formula:

w(T ) = min
{

1
2‖A+B‖ :

[
A T
T ∗ B

]
≥ 0

}
.

Numerical range is intimately connected to dilation theory. The first such result
was due to Berger [3], who showed that if w(T ) ≤ 1, then there is a unitary operator
U on a Hilbert space K containing H such that

Tn = 2PHUn|H for n ≥ 1.

Sz.-Nagy and Foiaş [14] introduced the notion of a ρ-contraction (for ρ ≥ 1) as an
operator T for which there is a ρ-dilation, meaning a unitary operator U on K ⊃ H
such that

Tn = ρPHUn|H for n ≥ 1.

Okubo and Ando [11] show that if T is a ρ-contraction, then there is an invertible
S so that ‖STS−1‖ ≤ 1 and ‖S‖ ‖S−1‖ ≤ ρ. Easy examples show that the converse
is not valid. By the remarks above, this shows that D is a complete ρ-spectral set
for T . In particular, if w(T ) ≤ 1, then T is a 2-contraction by Berger’s dilation,
and thus D is a complete 2-spectral set for T .

In view of the work of Crouzeix [6], there has been a lot of renewed interest in
numerical range. See the monograph [9] and the recent survey [2] for many relevant
references.

2. The main theorem

We begin with a key observation which yields one direction of our theorem.

Lemma 2.1. If ‖T‖ ≤ 1 and ‖S‖ ‖S−1‖ ≤ C, then

w(S−1TS) ≤ 1

2
(C + C−1).

Proof. Using polar decomposition, S = U |S|, we may replace T by the unitarily
equivalent U∗TU and suppose that S > 0. After scaling, we may suppose that
C−1/2I ≤ S ≤ C1/2I. Since ‖T‖ ≤ 1 we have that[

0 0
0 0

]
≤

[
S−1 0
0 S

] [
I T
T ∗ I

] [
S−1 0
0 S

]
=

[
S−2 S−1TS

ST ∗S−1 S2

]
.

By Ando’s numerical radius formula, we obtain that

w(S−1TS) ≤ 1

2
‖S−2 + S2‖

≤ sup{1
2
(t+ t−1) : C−1 ≤ t ≤ C}

=
1

2
(C + C−1). �
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To establish the converse, we first need a simple computational lemma.

Lemma 2.2. Let B ∈ B(H) and let T =

[
αI B
0 αI

]
. Then

‖T‖ =
‖B‖+

√
‖B‖2 + 4|α|2
2

and w(T ) = |α|+ 1
2‖B‖.

In particular, ‖T‖ = 1 if and only if |α|2 + ‖B‖ = 1.

Proof. It is straightforward to show that ‖T‖ =
∥∥∥[ ‖B‖ |α|

|α| 0

]∥∥∥, and computation of

the eigenvalues of this self-adjoint 2× 2 matrix yields the desired formula. Routine
manipulation now shows that ‖T‖ = 1 if and only if |α|2 + ‖B‖ = 1.

It is also easy to see that W ([ 0 B
0 0 ]) = W

([
0 ‖B‖
0 0

])
is a disc centred at 0 of

radius ‖B‖/2. Hence W (T ) = α+ ‖B‖
2 D, and therefore w(T ) = |α|+ 1

2‖B‖. �

Theorem 2.3. Let A be a unital operator algebra, and let Φ be a unital completely
bounded homomorphism. Then

‖Φ‖wcb =
1

2

(
‖Φ‖cb + ‖Φ‖−1

cb

)
.

Proof. Let C = ‖Φ‖cb. By Paulsen’s similarity theorem [12], there is an invertible
operator S so that AdS ◦ Φ is completely contractive and ‖S‖ ‖S−1‖ = C. (Here
AdS(T ) = STS−1.) Let A ∈ Mn(A) with ‖A‖ = 1. Then T := (AdS ◦ Φ)(n)(A)
satisfies ‖T‖ ≤ 1 and Φ(A) = AdS−1(n)(T ). Hence by Lemma 2.1, w(Φ(n)(A)) ≤
1
2 (C + C−1). Thus

‖Φ‖wcb ≤
1

2
(C +

1

C
).

Conversely, suppose that A ∈ Mn(A) with ‖A‖ = 1 such that ‖Φ(n)(A)‖ > C−ε
for some ε > 0. Define B ∈ M2n(A) by

B =

[
C−1In (1− C−2)A

0 C−1In

]
.

Then by Lemma 2.2, ‖B‖ = 1. Moreover by the second part of that lemma,

‖Φ‖wcb ≥ w(Φ(2n)(B))

= w
([

C−1In (1− C−2)Φ(n)(A)
0 C−1In

] )

> C−1 +
1

2
(1− C−2)(C − ε)

>
1

2
(C +

1

C
)− ε

2
.

As ε > 0 was arbitrary, we obtain

‖Φ‖wcb =
1

2
(C +

1

C
) =

1

2

(
‖Φ‖cb + ‖Φ‖−1

cb

)
. �

Remark 2.4. Inverting the above function shows that for a unital homomorphism
Φ,

‖Φ‖cb = ‖Φ‖wcb +
√

‖Φ‖2wcb − 1.
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3. Consequences

As an immediate application, we obtain the second theorem stated in the intro-
duction. Note that convexity of K is not required.

Theorem 3.1. Let C ≥ 1 and set C ′ = 1
2 (C + C−1). A compact subset K ⊂ C is

a complete C-spectral set for T ∈ B(H) if and only if it is a complete C ′-numerical
radius set for T .

Proof. If K is a complete C-spectral set for T , then the map ΦT (f) = f(T ) for
f ∈ R(K) has ‖ΦT ‖cb ≤ C. Hence by Theorem 2.3,

‖ΦT ‖wcb =
1

2

(
‖ΦT ‖cb + ‖ΦT ‖−1

cb

)
≤ 1

2
(C + C−1) = C ′.

Thus K is a complete C ′-numerical radius set for T .
Conversely, since ‖A‖ ≤ 2w(A), if K is a complete C ′-spectral set for T , it

follows that Φ is completely bounded. Then

1

2
(C + C−1) = C ′ ≥ ‖Φ‖wcb =

1

2

(
‖Φ‖cb + ‖Φ‖−1

cb

)

implies that ‖ΦT ‖cb ≤ C. So K is a complete C-spectral set for T . �

We apply this to the family of Cρ-contractions. For these operators, the set K
is the unit disc.

Corollary 3.2. Suppose that T is a Cρ-contraction for ρ ≥ 1. If F : D → Mn is a
matrix polynomial (or has coefficients in A(D)), then

w(F (T )) ≤ 1

2
(ρ+ ρ−1)‖F‖∞.

Proof. By [11, Theorem 2], there is an invertible operator S such that ‖S−1TS‖ ≤ 1
and ‖S‖ ‖S−1‖ ≤ ρ. After scaling, we may suppose that ‖F‖∞ = 1. Then by the
generalized von Neumann inequality, we have

1 ≥ ‖F (S−1TS)‖ = ‖(S−1 ⊗ In)F (T )(S ⊗ In)‖.

Now an application of Lemma 2.1 yields the conclusion. �

The case ρ = 2 includes all operators T with w(T ) ≤ 1. This provides a matrix
polynomial version of Drury’s scalar inequality for numerical range [8].

Corollary 3.3. Suppose that T has w(T ) ≤ 1. If F : D → Mn is a matrix
polynomial (or has coefficients in A(D)), then

w(F (C)) ≤ 5

4
‖F‖∞.

Remark 3.4. Note that the class of operators which have the disc as a complete
2-spectral set contains many operators which do not have numerical radius 1. For
example, let

T =

[
1/2 3/2
0 1/2

]
and S =

[
2 0
0 1

]
.

Then ‖S−1TS‖ = 1 and ‖S‖ ‖S−1‖ = 2 but w(T ) = 5/4.
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As we mentioned in the introduction, Crouzeix showed [6] that the numerical
range W (T ) is a complete C-spectral set for T for a universal constant C < 11.08.
Crouzeix conjectures [5] that the optimal constant is 2, which is the case for a disc
by [11].

The following are immediate from Theorem 3.1.

Corollary 3.5. Let T be a bounded operator on H. Suppose that W (T ) has a
complete Crouzeix constant of C, and let C ′ = 1

2 (C +C−1). If F : W (T ) → Mn is
a matrix polynomial (or has coefficients in A(W (T ))), then

w(F (T )) ≤ C ′‖F‖W (T ).

In particular, the constant C ′ = 5.6 is valid by Crouzeix’s result. Recently,
Crouzeix and Palencia [7] proved that the numerical range W (T ) is a complete

(1 +
√
2)-spectral set for T . Since

1

2

(
1 +

√
2 +

1

1 +
√
2

)
=

√
2,

it follows from their result and ours that W (T ) is always a complete
√
2-numerical

radius set for T .

Corollary 3.6. Let T be a bounded operator on H. Then W (T ) is a complete
2-spectral set for T if and only if

w(F (T )) ≤ 5

4
‖F‖W (T )

for every matrix polynomial F .

Thus Crouzeix’s conjecture is true if and only if the above 5/4’s inequality holds
for every operator T . Also, we know that 2 and 5

4 are the best possible constants
in each case.
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