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INVARIANT HOLOMORPHIC DISCS

IN SOME NON-CONVEX DOMAINS

FLORIAN BERTRAND AND HERVÉ GAUSSIER

(Communicated by Filippo Bracci)

Abstract. We give a description of complex geodesics and we study the
structure of stationary discs in some non-convex domains for which complex
geodesics are not unique.

1. Introduction and preliminaries

The theory developed by L. Lempert in his seminal paper [4] offers a complete
understanding of the complex geometry of bounded smooth strongly convex do-
mains in Cn: every such domain admits a singular foliation through any point by
images of holomorphic discs centered at the point, these discs being infinitesimal
extremal for the Kobayashi metric and stationary. Moreover, these discs are com-
plex geodesics, are smooth up to the boundary, and are isolated. Some examples
of strictly pseudoconvex non-convex domains with locally non-isolated extremal
discs are presented in [5]. The aim of this article is to describe precisely (infinitesi-
mal) extremal discs, complex geodesics (Theorem 1), and to study the structure of
stationary discs (Theorem 2) for those domains.

For r > 0 we denote by Δr the disc centered at the origin of radius r in C and
let Δ = Δ1 be the unit disc in C. Let D ⊂ Cn be a domain. The Kobayashi
pseudometric KD at p ∈ D and v ∈ TpD is defined by

KD (p, v) = inf {r > 0 | ∃ f : Δ → D holomorphic, f (0) = p, f ′(0) = v/r} ,
and the Kobayashi pseudodistance dD is defined, for p, q ∈ D, as its integrated
pseudodistance

dD (p, q) = inf

{∫ 1

0

KD (γ (t) , γ̇ (t)) dt | γ : [0, 1] → D, γ (0) = p, γ (1) = q

}
,

where the infimum is taken over all piecewise smooth C1 curves. When dD is a
distance, the domain D is called Kobayashi hyperbolic. Recall that in the case of
the unit disc, KΔ and dΔ are respectively the Poincaré metric and the Poincaré
distance. We refer to [3] for the definitions and the main properties of the Kobayashi
pseudometric, pseudodistance and of hyperbolic spaces. Following [4, 10], we may
define complex geodesics and extremal discs as follows:

Definition 1.1. Assume that D ⊂ C
n is a Kobayashi hyperbolic domain and let

f : Δ → D be a holomorphic map, also called a holomorphic disc.
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(i) The disc f is an infinitesimal extremal disc for the pair (p, v) ∈ D × TpD if
f(0) = p and f ′(0) = λv with λ > 0, and if g : Δ → D is holomorphic and
such that g(0) = p, g′(0) = μv with μ > 0, then μ ≤ λ.

(ii) The disc f is an infinitesimal complex geodesic ifKD(f(ζ), dζf(v0))=KΔ(ζ, v0)
for all ζ ∈ Δ and v0 ∈ C.

(iii) The disc f is an extremal disc for the points p, q ∈ D if f(0) = p and f(ζ) = q
for some ζ ∈ Δ, and if g : Δ → D is holomorphic and such that g(0) = p and
g(ζ ′) = q, then |ζ| ≤ |ζ ′|.

(iv) The disc f is a complex geodesic if f is an isometry for the relative Kobayashi
distances, namely, dD(f(ζ), f(ζ ′)) = dΔ(ζ, ζ

′) for all ζ, ζ ′ ∈ Δ.

Note that in case the domain D is taut, then for any pair (p, v) ∈ D × TpD
there exists an infinitesimal extremal disc for (p, v). The question of the existence
of complex geodesics is a difficult question. It was completely solved for bounded,
smooth, strongly convex domains by L. Lempert in [4]. In case D is bounded and
convex, according to to H.L. Royden and P.M. Wong [6] (see also [1], Theorem
2.6.19), any (infinitesimal) extremal disc is a complex geodesic. Such a domain
being taut, this implies the existence of complex geodesics passing through any
point in any direction in a bounded convex domain. Moreover, in such domains f
is an infinitesimal complex geodesic if and only if f is a complex geodesic (see [6]
and also [1], Corollary 2.6.20).

We recall that a disc f : Δ → Cn, holomorphic in Δ and continuous up to ∂Δ,
is attached to a real hypersurface M = {ρ = 0} ⊂ C

n if f(∂Δ) ⊂ M . Following
[4], such a disc is stationary for M if there exists a continuous function c : ∂Δ →
R \ {0} such that ζ �→ ζc(ζ)∂ρ(f(ζ)), defined on ∂Δ, extends holomorphically on
Δ. Equivalently, following [8], f is stationary for M if there exists a holomorphic

lift f = (f, f̃) of f to the cotangent bundle T ∗Cn, continuous up to ∂Δ and such
that f(ζ) ∈ NM(ζ) for all ζ ∈ ∂Δ, where

(1.1) NM(ζ) = {(z, z̃) ∈ C
2n | z ∈ M, z̃ ∈ ζN∗

zM \ {0}}.

Here N∗
zM = spanR{∂ρ(z)} denotes the conormal fiber at z of the hypersurface

M .
Finally, a set X in a domain D ⊂ C

n is a holomorphic retract if there exists a
holomorphic map r : D → D such that r(D) ⊂ X and r|X = idX .

The following domain was introduced by N. Sibony [7]. It is an example of
a domain with non-isolated extremal discs; see [5] by M.-Y. Pang. Let ρ be the
real-valued function defined on C2 by

ρ(z, w) = |z|2 + |w|2 −�e
(
z̄4w2

)
− 1.

We fix 0 < ε <
1

100
and we consider the domain Ω ⊂ C2 defined by

Ω = {ρ < 0} ∩
(
Δ1+ε ×Δ 1

4(1+ε)3

)
.

One of the main purposes of the paper is to give a precise description of complex

geodesics and of extremal discs contained in Ω and close to the disc f0 : Δ → Ω
defined by f0(ζ) = (ζ, 0).
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We observe the two following points:

(i) The Levi form of ρ at (z, w) ∈ C2 and (Z,W ) ∈ C2 is given by

Lρ((z, w), (Z,W )) = |Z|2 + |W |2 − 8�e
(
z̄3wZ̄W

)

= |Z − 4z̄3wW |2 +
(
1− 16|z|6|w|2

)
|W |2.

For |z| < 1+ε and |w| < 1

4(1 + ε)3
, the function ρ is strictly plurisubharmonic.

Therefore, the domain Ω is strongly pseudoconvex near ∂Δ× {0}.
(ii) The domain Ω is such that Ω ⊂ Δ × C. Indeed, if (z, w) ∈ Ω with 1 < |z|,

then

|w|2(1− |z|4) ≤ |w|2 − �e
(
z̄4w2

)
≤ 1− |z|2

and thus

|w|2(1 + |z|2) ≥ 1,

which is not possible for (z, w) ∈ Δ1+ε × Δ 1
4(1+ε)3

. It follows that the set

Δ × {0} is a holomorphic retract of Ω and we denote by π1 : Ω → Δ the
holomorphic projection defined by π1(z, w) = z.

2. Complex geodesics in Ω

Let f : Δ → Ω be a holomorphic disc of the form f(ζ) = (eiθζ, f2(ζ)), for some
θ ∈ R. We first observe that by the decreasing property of the Kobayashi distance
and metric, we have for ζ, ζ ′ ∈ Δ and v ∈ C:

(2.1) dΔ(ζ, ζ
′) = dΔ(π1(f(ζ)), π1(f(ζ

′))) ≤ dΩ(f(ζ), (f(ζ
′))) ≤ dΔ(ζ, ζ

′)

and

(2.2) KΔ(ζ, v) = KΔ(π1(f(ζ)), π1(dζfv)) ≤ KΩ(f(ζ), dζfv) ≤ KΔ(ζ, v).

This directly shows the following.

Lemma 2.1. Any holomorphic disc f : Δ → Ω of the form f(ζ) = (eiθζ, f2(ζ)),
for some θ ∈ R, is an (infinitesimal) complex geodesic of Ω.

In particular we consider, as in [5], the disc f t(ζ) = (ζ, tζ2) for t ≥ 0 small
enough. Then the disc f t is an (infinitesimal) complex geodesic of Ω. We also note
that, due to Lemma 2.1, we have

Lemma 2.2. Any holomorphic disc f : Δ → C2 of the form

f(ζ) = (eiθζ, e2iθζ(a1 + a2ζ + a1ζ
2)),

where a1 ∈ C, a2 ∈ R, θ ∈ [0, 2π) are such that 2|a1| + |a2| <
1

4(1 + ε)3
, is an

(infinitesimal) complex geodesic of Ω.

Proof. We only need to prove that f(Δ) ⊂ Ω when a1 ∈ C and a2 ∈ R are small
enough. For ζ ∈ ∂Δ, we have

ρ(f(ζ)) = |ζ|2 + |ζ(a1 + a2ζ + a1ζ
2)|2 −�e

(
ζ̄4ζ2(a1 + a2ζ + a1ζ

2)2
)
− 1

= |a1 + a2ζ + a1ζ
2|2 −�e

(
ζ̄2(a1 + a2ζ + a1ζ

2)2
)
= 0.

By the maximum principle, f(Δ) ⊂ Ω provided that a1 and a2 are small enough. �
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Our main result is the following.

Theorem 1. Fix z0 ∈ Δ \ {0} and write x0 = e−iθ0z0 ∈ (0, 1), θ0 ∈ [0, 2π).

(i) Let z1 ∈ C be such that |z1| <
|z0|2

4(1 + ε)3
. Complex geodesics f of Ω such that

f(0) = (0, 0) and f(r0) = (z0, z1) for some 0 < r0 < 1 are exactly of the form
(2.3)

f(ζ) =

(
eiθ0ζ, ei2θ0ζ

(
x0

(
−b+ bx2

0

)
+

(
(1− x4

0)b+
z1
z20

)
ζ + x0

(
−b+ bx2

0

)
ζ2
))

for some b ∈ Δε1 where ε1 =
1

5

(
1

4(1 + ε)3
−
∣∣∣∣ z1z20

∣∣∣∣
)

> 0. In particular r0 =

x0.
(ii) The set of complex geodesics f contained in Ω such that f(0) = (0, 0) and such

that f(x0) = (z0, z1), with |z1| <
|z0|2

4(1 + ε)3
, forms a smooth real manifold of

dimension three.

(iii) Let c ∈ R be such that 0 ≤ c <
1

16(1 + ε)3
. Then any infinitesimal extremal

disc for the pair ((0, 0), (1, cz0)) is an (infinitesimal) complex geodesic.

(iv) Let z1 ∈ C be such that |z1| <
|z0|2

4(1 + ε)3
. Then any extremal disc for the

points (0, 0) and (z0, z1) is an (infinitesimal) complex geodesic.

Proof. We start with point (i). First note that due to Lemma 2.2, any disc of the
form (2.3) is a complex geodesics of Ω. Moreover, it is immediate that for such
discs we have f(0) = (0, 0) and f(x0) = (z0, z1). Conversely, let f = (f1, f2) be a
complex geodesic with f(0) = (0, 0) and f(r0) = (z0, z1) for some 0 < r0 < 1 . We
have

dΔ(0, r0) = dΩ(f(0), f(r0)) = dΩ((0, 0), (z0, z1)) = dΩ(ϕ(0), ϕ(x0))

where ϕ : Δ → Ω is any complex geodesic of the form (2.3). Hence

dΔ(0, r0) = dΔ(0, x0) = dΔ(0, z0) = dΔ(0, f1(r0)).

It follows that f1 : Δ → Δ is a complex geodesic of the Poincaré disc given by
f1(ζ) = eiθζ for some θ ∈ [0, 2π). Note that since f1(r0) = z0, we have θ = θ0 and
r0 = x0. In order to determine f2, we write for ζ ∈ Δ,

|f1|2 + |f2|2 −�e
(
f̄4
1 f

2
2

)
− 1 = |ζ|2 + |f2|2 −�e

(
ζ̄4(e−i2θ0f2)

2
)
− 1 < 0.

As |ζ| tends to 1, we obtain

|f2(ζ)|2 ≤ �e
(
ζ̄4(e−i2θ0f2(ζ))

2
)
, for every ζ ∈ ∂Δ.

Consider the Fourier expansion of f2(ζ) =
∑
n≥1

anζ
n = ζh(ζ) and set h̃ = e−i2θ0h.

We have

(2.4) |h̃|2(ζ) ≤ �e
(
ζh̃(ζ)

)2

for ζ ∈ ∂Δ. Setting g(ζ) = ζh̃(ζ), equation (2.4) becomes |g|2 ≤ �eg2 on ∂Δ. This
implies that g(ζ) is real-valued for ζ ∈ ∂Δ and hence of the form

g(ζ) = a1ζ + a2 + a1ζ, for every ζ ∈ ∂Δ,
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with a2 ∈ R. Therefore f2 is given for every ζ ∈ Δ by

f2(ζ) = ei2θ0ζ(a1 + a2ζ + a1ζ
2).

Since

ei2θ0x0(a1 + a2x0 + a1x
2
0) = z1

a straightforward computation gives a1 = x0

(
−b+ bx2

0

)
and a2 = (1 − x4

0)b +
z1
z20

,

where b ∈ C is small enough.

We now prove point (ii). Denote by G0 the set of complex geodesics of Ω centered
at the origin and by A the set of holomorphic discs in C2 continuous up to ∂Δ.
Define the following set:

Uz0 =

{
(z1, b) ∈ C

2 | 5|b|+
∣∣∣∣ z1z20

∣∣∣∣ < 1

4(1 + ε)3
and (1− x4

0)b+
z1
z20

∈ R

}
.

Consider the map F : C2 → A defined by

F(z1, b)(ζ)

=

(
eiθ0ζ, ei2θ0ζ

(
x0

(
−b+ bx2

0

)
+

(
(1− x4

0)b+
z1
z20

)
ζ + x0

(
−b+ bx2

0

)
ζ2
))

.

The map F is smooth, one-to-one, and, by point (i), the set F(Uz0) is included in
G0. Note that the map H : A → C2 defined by

H(f) =

(
f2(z0),

−1

1− x4
o

(
f ′
2(0)e

−iθ0

z0
+ f ′

2(0)e
iθ0z0

))

is smooth and satisfies F ◦ H(f) = f for f ∈ F(Uz0). Moreover for (z1, b) ∈ Uz0 ,
the differential map d(z1,b)F of F at (z1, b) is given, for every (Z1, B) ∈ T(z1,b)Uz0 ,
by

d(z1,b)F(Z1, B)(ζ)

=

(
0, ei2θ0ζ

(
x0

(
−B +Bx2

0

)
+

(
(1− x4

0)B +
Z1

z20

)
ζ + x0

(
−B +Bx2

0

)
ζ2
))

.

Note that d(z1,b)F is one-to-one. Therefore the map F is a smooth diffeomorphism
onto its image. It follows that the set F(Uz0) is a smooth real manifold of dimension
three in G0.

We prove point (iii). Let f = (f1, f2) : Δ → Ω be an infinitesimal extremal disc
for the pair ((0, 0), (1, cz0)) and let λ > 0 be such that f ′(0) = λ(1, cz0). Consider
the disc g : Δ → Ω:

g(ζ) =
(
ζ, cζ(z0 − (1 + |z0|2)ζ + z0ζ

2)
)
.

Note that g(0) = (0, 0) and g′(0) = (1, cz0). Since f is an infinitesimal extremal
disc, we have

1 ≤ λ = f ′
1(0).

Moreover since f1 : Δ → Δ satisfies f1(0) = 0, by the Schwarz Lemma we have
|f ′

1(0)| ≤ 1. This proves that f1(ζ) = ζ and therefore, by Lemma 2.1, f is an
(infinitesimal) complex geodesic.
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Finally, we prove point (iv). Let f = (f1, f2) : Δ → Ω be an extremal disc for
the points (0, 0) and (z0, z1). Let ζ0 ∈ Δ be such that f(ζ0) = (z0, z1). Consider
an arbitrary disc g : Δ → Ω of the form (2.3). Since g(0) = (0, 0), g(x0) = (z0, z1)
and f is an extremal disc we have

|ζ0| ≤ x0 = |z0| = |f1(ζ0)|.

The Schwarz Lemma implies that f1(ζ) = eiθζ for some θ ∈ R, and therefore f is
a complex geodesic by Lemma 2.1. �

Remark 2.1. Note that according to Theorem 1 point (i), there are infinitely many
(ranges of) complex geodesics centered at zero and passing through any point of

the form (z0, z1) where z0 ∈ Δ \ {0} and |z1| <
|z0|2

4(1 + ε)3
.

3. Stationary discs for deformations of Ω

Let λ ≥ 0. Following [5], we consider the domain Ωλ defined near Δ× {0} by

ρλ = |z|2 + |w|2 − λ�e
(
z̄4w2

)
− 1 < 0.

Note that for every λ ≥ 0, the disc f0(ζ) = (ζ, 0) is stationary, with lift f0 =
(ζ, 0, 1, 0) to the cotangent bundle. For λ � 1, Ωλ is a small C2 deformation of the
unit ball in a neighborhood of Δ× {0}, and Ω = Ω1. We recall that in the case of
the unit ball, lifts of stationary discs that are close to the lift f0(ζ) = (ζ, 0, 1, 0) of
f0 form a smooth manifold of real dimension eight. It might be natural to expect
the same result for Ωλ, at least for λ � 1. The following theorem gives the result
for the whole family, except at the domain Ω.

Theorem 2. Assume that λ = 1. The set of lifts of stationary discs for ∂Ωλ close
to the lift f0 forms a smooth real manifold of dimension eight.

Proof. For all ζ ∈ ∂Δ the submanifold N∂Ωλ(ζ) (see equation (1.1)) of real dimen-
sion four may be defined near f0(ζ) = (ζ, 0, 1, 0) by four real defining functions

ρ̃λ = (ρλ1 , . . . , ρ
λ
4 ) given explicitly by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρλ1 (ζ)(z, w) = |z|2 + |w|2 − λ�e
(
z̄4w2

)
− 1,

ρλ2 (ζ)(z, w) =
iz̃

ζ(z − 2λz3w2)
− iζz̃

z − 2λz3w2
,

ρλ3 (ζ)(z, w) = w̃ − z̃(w − λz4w)

z − 2λz3w2 + w̃ − z̃(w − λz4w)

z − 2λz3w2
,

ρλ4 (ζ)(z, w) = iw̃ − iz̃(w − λz4w)

z − 2λz3w2 − iw̃ +
iz̃(w − λz4w)

z − 2λz3w2
.

It follows that a holomorphic disc f is stationary for ∂Ωλ and admits a lift f = (f, f̃)
close to f0 = (ζ, 0, 1, 0) if and only if for all ζ ∈ ∂Δ,

ρ̃λ(ζ)(f̃(ζ)) = 0.

In order to solve this nonlinear Riemann-Hilbert problem, we need to evaluate the
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partial indices and Maslov index of the linearized problem along the disc f0 =
(ζ, 0, 1, 0), namely of the map f �→ 2�e(Gf), where G(ζ) is the following 4 × 4
invertible matrix:

G(ζ) =
(
(ρλ)z(f

0(ζ)), (ρλ)w(f
0(ζ)), (ρλ)z̃(f

0(ζ)), (ρλ)w̃(f
0(ζ))

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ 0 0 0

−iζ 0 −i 0

0 −ζ + λζ3 0 1

0 −iζ − iλζ3 0 −i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

According to J. Globevnik [2], we need to prove that the partial indices of −G−1G
are greater than or equal to −1. Since permutations of rows and columns change
neither the partial indices nor the Maslov index, we work with the following matrix:

G1(ζ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i −iζ 0 0

0 ζ 0 0

0 0 −ζ + λζ3 1

0 0 −iζ − iλζ3 −i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A direct computation gives

G1(ζ)
−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i −1 0 0

0 ζ 0 0

0 0 −ζ

2

iζ

2

0 0
1

2
+

λζ2

2

i

2
− iλζ2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G1(ζ)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i −1 0 0

0 ζ 0 0

0 0 −ζ

2
− iζ

2

0 0
1

2
+

λζ
2

2
− i

2
+

iλζ
2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and thus

−G1(ζ)−1G1(ζ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2ζ 0 0

0 −ζ2 0 0

0 0 λζ4 ζ

0 0 ζ(1− λ2) −λζ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let κ1 ≥ · · · ≥ κ4 be the partial indices of −G−1
1 G1, and let Λ be the diagonal

matrix with entries ζκ1 , . . . , ζκ4 . According to [9], there exists a smooth map Θ :
Δ → GL4(C), where GL4(C) denotes the general linear group, holomorphic on Δ
and such that on ∂Δ,

−ΘG−1
1 G1 = ΛΘ.

We denoted by l = (l1, . . . , l4) the last row of the matrix map Θ. In particular we
obtain the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1(ζ) = ζκ4 l1(ζ),

2ζl1(ζ)− ζ2l2(ζ) = ζκ4 l2(ζ),

λζ4l3(ζ) + ζ(1− λ2)l4(ζ) = ζκ4 l3(ζ),

ζl3(ζ) + λζ2l4(ζ) = ζκ4 l4(ζ).

In case l1 = 0 we get κ4 ≥ 0 by holomorphy of l1. If l1 = 0 the second line leads
to κ4 ≥ 0 unless l2 = 0. Now if l1 = l2 = l3 = 0 we also get l4 = 0 by the third
line, which contradicts the fact that Θ(ζ) is invertible. Finally, if l1 = l2 = 0, by
holomorphy of l3 and l4, the third line leads to κ4 ≥ 0. This proves that all partial
indices are non-negative.

Moreover the Maslov index κ = κ1 + · · · + κ4 is the winding number of
det(−G1(ζ)−1G1(ζ)), that is,

κ =
1

2iπ

∫
bΔ

(
det(−G1(ζ)−1G1(ζ))

)′

det(−G1(ζ)−1G1(ζ)(ζ))
dζ = 4.

Finally, this proves that the set of lifts of stationary discs for ∂Ωλ close to the
lift f0 forms a smooth real manifold of dimension κ+ dimC C4 = 8. �

Remark 3.1. The previous proof illustrates a discontinuous behaviour of (lifts of)
stationary discs at λ = 1. More precisely, the previous method fails for λ = 1 since,
in that case, one of the partial indices is −2. Note that M.-Y. Pang [5] already
showed a discontinuous behaviour of extremal discs at λ = 1. Moreover, a direct
computation shows that geodesics of Lemma 2.2 are stationary for ∂Ω. It follows
that the set of stationary discs for λ = 1 centered at the origin forms a variety of
real dimension at least four. Recall that in the case of the unit ball, and so for
λ � 1, such discs form a variety of real dimension three.
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