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DERIVED EQUIVALENCE, ALBANESE VARIETIES,

AND THE ZETA FUNCTIONS OF 3–DIMENSIONAL VARIETIES

KATRINA HONIGS, WITH AN APPENDIX BY JEFFREY D. ACHTER,
SEBASTIAN CASALAINA-MARTIN, KATRINA HONIGS, AND CHARLES VIAL

(Communicated by Lev Borisov)

Abstract. We show that any derived equivalent smooth, projective varieties
of dimension 3 over a finite field Fq have equal zeta functions. This result is
an application of the extension to smooth, projective varieties over any field of
Popa and Schnell’s proof that derived equivalent smooth, projective varieties
over C have isogenous Albanese torsors; this result is proven in an appendix

by Achter, Casalaina-Martin, Honigs and Vial.

The problem of characterizing the bounded derived category of coherent sheaves
of a variety has connections to birational geometry, the minimal model program,
mirror symmetry (in particular, the conjecture of Kontsevich [12]), and motivic
questions.

Orlov has conjectured that derived equivalent smooth, projective varieties have
isomorphic motives [13]. This conjecture predicts that smooth, projective varieties
over a finite field that are derived equivalent have equal zeta functions. The predic-
tion holds in the case of curves since derived equivalent smooth, projective curves
over a finite field are isomorphic: proof in the genus 1 case is given by Antieau,
Krashen and Ward [2, Example 2.8], and proof in all other cases is a consequence
of Bondal and Orlov [3, Theorem 2.5], which shows that derived equivalent vari-
eties with ample or anti-ample canonical bundle must be isomorphic. In [8], it was
verified that derived equivalent smooth, projective varieties over a finite field that
are abelian or of dimension 2 have equal zeta functions.

In this paper, we prove the following extension of these results:

Theorem A. Let X,Y/Fq be derived equivalent smooth, projective varieties of
dimension 3, where Fq is a finite field with q elements. Then ζ(X) = ζ(Y ).

The proof of Theorem A is similar to the argument in [8] proving that derived
equivalent smooth, projective surfaces over any finite field have equal zeta func-
tions: it is accomplished by comparing the eigenvalues of the geometric Frobenius
morphism acting on the �-adic étale cohomology groups of the varieties in question.
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The crucial ingredient for making this comparison between the point-counts of
3-dimensional varieties is the following theorem, proven in Appendix A, which has
as a corollary that if X and Y are derived equivalent smooth, projective varieties
over a finite field Fq and X, Y are their base changes to Fq, then there is an
isomorphism

H1
ét(X,Q�) ∼= H1

ét(Y ,Q�)

that is compatible with the action of the q-th power geometric Frobenius morphism:

Theorem B. Derived equivalent smooth, projective varieties X and Y over an
arbitrary field k have isogenous Albanese varieties.

The strategy of the proof of Theorem B is similar to Popa and Schnell’s proof
for the case k = C [15]. However, to work over an arbitrary base field, we account
for some pathologies concerning non-reduced group schemes and use the Albanese
torsor to circumvent the selection of a rational point.

An alternate proof of Theorem B over C has been obtained by R. Abuaf in his
Theorem 3.0.14 of [1]. It is conceivable that similar methods to those in loc. cit.
can be used over algebraically closed fields of arbitrary characteristic.

1. Background

We take a variety to be a separated, integral scheme of finite type over a field.
In this section, X and Y denote smooth, projective varieties.

Definition 1.1. An exact functor F between derived categories Db(X) and Db(Y )
is a Fourier–Mukai transform if there exists an object P ∈ Db(X × Y ), called a
Fourier–Mukai kernel, such that

(1) F ∼= pY ∗(p
∗
X(−)⊗ P ) =: ΦP ,

where pX and pY are the projectionsX×Y → X andX×Y → Y . A Fourier–Mukai
transform that is an equivalence of categories is called a Fourier–Mukai equivalence.
The pushforward, pullback, and tensor in (1) are all in their derived versions, but
the notation is suppressed.

A derived equivalence is an exact equivalence between derived categories; vari-
eties are said to be derived equivalent if their associated bounded derived categories
are exact equivalent. By the following theorem, in the context of this paper, derived
equivalence and Fourier–Mukai equivalence are synonymous.

Theorem 1.2 (Orlov [14, Theorem 3.2.1]). Let X and Y be smooth projective
varieties and F : Db(X) → Db(Y ) an exact equivalence. Then there is an object
E ∈ Db(X × Y ) such that F is isomorphic to the functor ΦE , and the object E is
determined uniquely up to isomorphism.

The full statement of [14, Theorem 3.2.1] is stronger than what is given here,
but the statement in Theorem 1.2 is sufficient for the purposes of this paper.

1.3. Let X and Y be smooth, projective varieties over a perfect field. Any Fourier–
Mukai transform gives a map on Chow groups: The functor ΦE induces a map

ΦCH
E = pY ∗(v(E) ∪ p∗X(−)) : CH(X)Q → CH(Y )Q

where v(E) := ch(E).
√
td(X × Y ) is the Mukai vector of E (see for instance [10,

Definition 5.28]). Since ΦE is an equivalence, ΦE is a bijection (cf. [10, Remark
5.25, Proposition 5.33]).
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Similarly, the cycle class of v(E) inside any Weil cohomology theory H (i.e.,
de Rham, singular, crystalline or �-adic étale) induces a map ΦH

E = pY ∗(cl(v(E)) ∪
p∗X(−)) that factors through the above map on Chow rings with rational coefficients.
This map on cohomology does not necessarily preserve degree, and, in the case of
�-adic étale cohomology of varieties over finite fields, Tate twists must be accounted
for the map to be compatible with the action of geometric Frobenius, so care must
be taken with the domain and codomain of ΦH

E . The map ΦH
E gives the following

isomorphisms compatible with the action of geometric Frobenius ϕ between the
even and odd Mukai–Hodge structures [8,9], ofX and Y , where d denotes dim(X)(=
dim(Y )):

d⊕
i=0

H2i(X)(i) ∼=
d⊕

i=0

H2i(Y )(i),(2)

d⊕
i=1

H2i−1(X)(i) ∼=
d⊕

i=1

H2i−1(Y )(i).(3)

2. Zeta functions

Theorem A. Let X,Y/Fq be derived equivalent smooth, projective varieties of
dimension 3, where Fq is a finite field with q elements. Then ζ(X) = ζ(Y ).

Proof. Let X, Y be the base changes of X and Y to the algebraic closure Fq of Fq.
Fix � ∈ Z+ prime such that (q, �) = 1.

By the Lefschetz fixed-point formula for Weil cohomologies (see Proposition 1.3.6
and Section 4 of Kleiman [11]), to prove this theorem it is sufficient to show that
for any n ∈ N, the traces of the geometric qn-th power Frobenius map ϕn acting
on Hi(X,Q�) and Hi(Y ,Q�) are the same for each 0 ≤ i ≤ 6.

Let ϕ be the (q-th power) geometric Frobenius morphism. By Theorem 1.2,
the derived equivalence Db(X) ∼= Db(Y ) is isomorphic to a Fourier–Mukai functor
ΦE := pY ∗(p

∗
X(−)⊗E) for some E ∈ Db(X × Y ). Taking the traces of the action of

ϕ∗ on the equations (2), (3), and using the fact that the presence of a Tate twist
(j) has the effect of multiplying the eigenvalues of the action of ϕ∗ on cohomology
by 1

qj , we have:

3∑
i=0

1

qi
Tr(ϕ∗|H2i(X,Q�)) =

3∑
i=0

1

qi
Tr(ϕ∗|H2i(Y ,Q�)),(4)

3∑
i=1

1

qi
Tr(ϕ∗|H2i−1(X,Q�)) =

3∑
i=1

1

qi
Tr(ϕ∗|H2i−1(Y ,Q�)).(5)

The values Tr(ϕ∗|Hi(X,Q�)) and Tr(ϕ∗|Hi(Y ,Q�)) are trivially equal for i = 0, 6,
so (4) reduces to

1
q Tr(ϕ

∗|H2(X,Q�)) +
1
q2 Tr(ϕ

∗|H4(X,Q�))

= 1
q Tr(ϕ

∗|H2(Y ,Q�)) +
1
q2 Tr(ϕ

∗|H4(Y ,Q�)).(6)

By Deligne’s Hard Lefschetz Theorem for �-adic étale cohomology [6, Théorème
4.1.1], or by Poincaré duality, we have the following lemma:

Lemma 2.1 ([8, Lemma 4.2]). Let V/Fq be a smooth, projective variety of di-

mension d. If the multiset of eigenvalues of ϕ∗ acting on Hi
ét(V ,Q�), 0 ≤ i < d,
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are {α1, . . . , αn}, then the set of eigenvalues of ϕ∗ acting on H2d−i
ét (V ,Q�) are

{qd−iα1, . . . , q
d−iαn}.

By Lemma 2.1, (6) implies that Tr(ϕ∗|H2
ét(X,Q�)) = Tr(ϕ∗|H2

ét(Y ,Q�)) and

Tr(ϕ∗|H4
ét(X,Q�)) = Tr(ϕ∗|H4

ét(Y ,Q�)).
By Lemma 2.1, (5) implies that

2
q Tr(ϕ

∗|H1
ét(X,Q�)) +

1
q2 Tr(ϕ

∗|H3
ét(X,Q�))

= 2
q Tr(ϕ

∗|H1
ét(Y ,Q�)) +

1
q2 Tr(ϕ

∗|H3
ét(Y ,Q�)).(7)

By Corollary A.4,

Tr(ϕ∗|H1
ét(X,Q�)) = Tr(ϕ∗|H1

ét(Y ,Q�)).

So, by Lemma 2.1, we have Tr(ϕ∗|H5
ét(X,Q�)) = Tr(ϕ∗|H5

ét(Y ,Q�)).
Since (2) and (3) are compatible with the action of ϕ∗, they are compatible with

the action of ϕn∗, and hence the above statements comparing the traces of the
action of ϕ∗ also hold true if ϕ∗ is replaced by ϕn∗. In particular, by (7), we have

Tr(ϕn∗|H3
ét(X,Q�)) = Tr(ϕn∗|H3

ét(Y ,Q�)),

and now we have demonstrated that Tr(ϕn∗|Hi
ét(X,Q�)) = Tr(ϕn∗|Hi

ét(Y ,Q�)) for
all 0 ≤ i ≤ 6, as required. �

Acknowledgments

Thanks to Aaron Bertram, Christopher Hacon, Daniel Litt, Luigi Lombardi,
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Appendix A. Derived equivalent varieties

have isogenous Picard varieties

Although Popa and Schnell only claim [15, Theorem A] that derived equivalent
complex varieties have isogenous Picard varieties, their result (and its proof) is
valid, with minimal changes, over an arbitrary field. Our goal in this appendix is
to explain:

Theorem A.1. Let X and Y be smooth projective varieties over a field K. If X
and Y are derived equivalent, then Pic0(X)red and Pic0(Y )red are isogenous (over
K).

In outline, the proof of Theorem A.1 in [15] for varieties over an algebraically
closed field k proceeds as follows. A theorem of Rouquier implies that there is an
isomorphism of group schemes

(8) F : (Aut0X/k)red × (Pic0X/k)red
∼−→ (Aut0Y/k)red × (Pic0Y/k)red.

Unfortunately, F need not preserve the given decompositions of the source and
target schemes. Using F , Popa and Schnell identify distinguished subgroups (actu-
ally, abelian varieties) AX ⊆ (Aut0X/k)red and AY ⊆ (Aut0Y/k)red, and show that F
induces an isomorphism

AX × (Pic0X/k)red
∼−→ AY × (Pic0Y/k)red.
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By Poincaré reducibility, it now suffices to show that AX and AY are isogenous.
For this, they construct a homomorphism

π : AX × (Pic0X/k)red −→ AX ×AY × ÂX × ÂY

and show that Im(π) is isogenous via the projections p13 and p24 to both AX×k ÂX

and AY ×k ÂY .
If we now consider varieties over an arbitrary (perfect) field K, since the forma-

tion of automorphism and Picard schemes commutes with base extension, it makes
sense to descend F (and subsequent constructions) from K toK. This goes through
without incident, except that the construction of π detailed in [15] involves a choice
of point in the support of the kernel of the Mukai transform. We circumvent this
appeal to the existence of rational points on X and Y by invoking the Albanese
torsor.

A.1. Preliminaries. For an arbitrary group scheme G over a field, the maximal
reduced subscheme Gred need not be a group scheme; but this does not happen
for the Picard scheme [7, VI.3]. For a smooth projective variety X/K, let P(X) =
Pic0(X)red and G(X) = Aut0(X)red. Then P(X) is an abelian variety; and we
will only work with G(X) when the base field is perfect, in which case G(X) is an
irreducible group scheme.

LetX/K be a geometrically reduced variety overK. ThenX admits an (abelian)

Albanese variety Alb(X)/K, a torsor Alb1(X), and a morphism X → Alb1(X)
which is universal for morphisms from X into torsors under abelian varieties (see,
e.g., [17, §2]).

If P ∈ X(K) is a point, then there is a pointed morphism (X,P ) → (Alb(X),O)
which is universal for pointed morphisms from X to abelian varieties. We will
sometimes denote Alb(X), together with this morphism, as Alb(X,P ).

Let G(X) = Aut0(X)red. If P ∈ X(K) is a base point, Popa and Schnell compute
[15, Lemma 2.2] a canonical morphism

Alb(G(X))
f(X,P) �� Alb(X,P ).

Lemma A.2. Let X/K be a variety over a perfect field.

(a) There is a canonical action Alb(G(X))×Alb1(X) → Alb1(X) which induces
a canonical morphism

Alb(G(X))
gX �� Alb(X).

(b) If P ∈ X(K) is a point, then the trivialization Alb(X,P )
∼→ Alb1(X) makes

the following diagram commute:

Alb(G(X))

=

��

f(X,P ) �� Alb(X,P )

∼
��

Alb(G(X)) gX
�� Alb1(X).

Proof. By the universal property of the Albanese, the composition G(X) × X →
X → Alb1(X) factors through Alb1(G(X) × X) ∼= Alb1(G(X)) × Alb1(X).
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Since G(X) admits a K-rational point, its Albanese torsor coincides with its Al-
banese variety, and we obtain an action

Alb(G(X))×Alb1(X) �� Alb1(X).

In particular, Alb(G(X)) acts as a connected group scheme of automorphisms of
Alb1(X); by Lemma A.3, we obtain a morphism gX : Alb(G(X)) → Alb(X).

Popa and Schnell construct f(X,P ) in a similar way, except that they work with
the Albanese varieties of the pointed varieties (G(X), id) and (X,P ). Part (b)
then follows from the universality of X → Alb1(X) into abelian torsors and of
X → Alb(X,P ) into abelian varieties. �

Lemma A.3. Let A/K be an abelian variety, and let T/K be a torsor under A.
Then Aut(T )0 ∼= A.

Proof. Over an algebraic closure, we have Aut(T )0
K

∼= Aut(A)0
K

∼= AK . There-

fore, the inclusion A ↪→ Aut(T )0 induced by the faithful action of A on T is an
isomorphism. �

A.2. Proof of the Popa–Schnell theorem. Having dispatched these prelimi-
naries, we now explain how to adapt the proof of the complex version of Theorem
A.1 in [15] to account for an arbitrary base field. At each stage, we will see that the
morphisms used in [15], a priori defined over an algebraically closed field, actually
descend to a field of definition.

Let K be an algebraic closure of K; for a variety Z/K, let Z = ZK .

Proof of Theorem A.1. By Chow rigidity [5, Thm. 3.19], two abelian varieties over
K are isogenous if and only if they are isogenous over the perfect closure of K.
Consequently, to prove the theorem we may and do assume that K is perfect.
Since K is perfect, we have that if G and H are group schemes over K, then Gred

and Hred are group schemes, and (G×H)red ∼= Gred ×Hred.
Moreover, we have G(Z) ∼= G(Z)K and P(Z) = P(Z)K .

Let Φ : Db(X) → Db(Y ) be an equivalence of categories. A fundamental theorem

of Orlov (Theorem 1.2) asserts that there is an object E ∈ Db(X × Y ) such that Φ
is given by

Φ = ΦE : M• � �� pY ∗(p
∗
XM• ⊗ E) .

Over K, a theorem of Rouquier [16, Thm. 4.18] shows that Φ induces an isomor-
phism

Aut0(X)× Pic0(X) �� Aut0(Y )× Pic0(Y ).

This induces an isomorphism on reduced subschemes which we denote F :

(9) G(X)K × P(X)K
F �� G(Y )K × P(Y )K .
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(Note that G(X)(K) = Aut0(X)(K), etc.) On points, F is characterized by the
fact that

F (φ,L) = (ψ,M) ⇐⇒ p∗XL ⊗ (φ× id)∗E ∼= p∗Y M⊗ (ψ × id)∗E .
Since E is defined over K, the graph of this relation in G(X)K×P(X)K×G(X)K×
P(X)K is stable under Aut(K/K), and so isomorphism (9) descends to an isomor-
phism

G(X)× P(X)
F �� G(Y )× P(Y )

of connected, reduced group schemes over K.
Using the projections pG(Y ) and pG(X), we obtain K-rational morphisms

P(X)
αY = pG(Y ) ◦ F
−−−−−−−−−−−→ G(Y )

P(Y )
αX=pG(X)◦F−1

−−−−−−−−−−−→ G(X);

let AX = αX(P(Y )) ⊆ G(X) and AY = αY (P(X)) ⊆ G(Y ). (Note that, since
the formation of kernels commutes with base change, AX

∼= AX .) The pointwise
argument of [15], combined with the fact that F admits an inverse, shows that F
induces an isomorphism

AX × P(X) −→ AY × P(Y )

of abelian varieties over K. By Poincaré reducibility, it now suffices to show that
AX and AY are isogenous.

Over an algebraically closed field, Popa and Schnell choose a point (P,Q) ∈
(X × Y )(K) in the support of E , and use it to define morphisms of varieties over
K:

AX ×AY
f=fX×fY−−−−−−−→ X × Y

(φ, ψ) �−→ (φ(P ), ψ(Q)).

The dual map f
∗
: P(X)× P(Y ) → ÂX × ÂY is surjective.

Working now over a field which is only assumed to be perfect, Lemma A.2
supplies a canonical morphism gX : Alb(G(X)) → Alb1(X) whose base change to
K is gX,K

∼= fX . In particular, by [15, Lemma 2.2], which depends only on [4]
and is valid in any characteristic, HX := ker gX is a finite group scheme. Similarly,
there is a canonical morphism gY : Alb(G(Y )) → Alb(Y ) with finite kernel HY ,

and gY,K
∼= fY . We obtain a surjection g∗ : P(X)× P(Y ) → ÂX × ÂY of abelian

varieties over K which is an isogeny onto its image.
Consider the morphism

AX ×AY
τ=(τ1,τ2π2)−−−−−−−−→ (AX ×AY )× (ÂX × ÂY )

of abelian varieties over K, where

τ1 = (idAX
, pG(Y ) ◦ F ),

τ2 = (g∗X ◦ ι, g∗Y ◦ pP(Y ) ◦ F ),

and ι denotes the inversion map on the abelian variety ÂX . Let p13 (respectively,
p24) denote the projection of the codomain of τ onto the first and third (respectively,
second and fourth) components.
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After base change to K, the morphisms τ1, τ2 and τ coincide, respectively, with
the morphisms π1, π2 and π constructed in [15, p. 533]. In particular p13 ◦ τ and
p24 ◦ τ , and therefore p13 ◦ τ and p24 ◦ τ , are isogenies. By Poincaré reducibility,
AX and AY are isogenous. �

Corollary A.4. Let X and Y be smooth projective varieties over a field K. If X
and Y are derived equivalent, then H1(XK ,Q�) ∼= H1(YK ,Q�) and H2d−1(XK ,Q�)
∼= H2d−1(YK ,Q�) as representations of Gal(K/K), where d = dimX = dimY and
� is invertible in K.

Proof. The claim for cohomology in degree one follows from Theorem A.1 and the
canonical identifications Pic0(X)[�n](K) ∼= H1(XK , μ�n) provided by the Kummer
sequence. The second claim now follows from Poincaré duality. �
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