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BILINEAR OPERATORS WITH HOMOGENEOUS SYMBOLS,
SMOOTH MOLECULES, AND KATO-PONCE INEQUALITIES

JOSHUA BRUMMER AND VIRGINIA NAIBO

(Communicated by Svitlana Mayboroda)

ABSTRACT. We present a unifying approach to establish mapping properties
for bilinear pseudodifferential operators with homogeneous symbols in the set-
tings of function spaces that admit a discrete transform and molecular decom-
positions in the sense of Frazier and Jawerth. As an application, we obtain
related Kato-Ponce inequalities.

1. INTRODUCTION AND MAIN RESULTS

As the main purpose of this note we present a unifying approach towards estab-
lishing mapping properties of the form

(1.1) 1o (f, 9)lly S 1Al x Ngll oo + 1171l Loe gl x

where X and Y are function spaces admitting a molecular decomposition and a
@-transform in the sense of Frazier-Jawerth as introduced in [I0,I1], and T, is a
bilinear pseudodifferential operator given by

7.(7,9)0) = |

o(a,&m)f(©)am)e”™ = T dedn Vo € R,
R2n

with a bilinear symbol ¢ in the class BSTl for some m € R, that is, o is such that
for all multiindices «, 8,7 € Nj, it holds

(12) ol as=  sup  [0208050(a,Em)(IE] + o)™ < o
(z,§,m€ER3™\{0}

When m = 0, the z-independent symbols in B.S(l),l constitute the well-known
class of Coifman-Meyer bilinear multipliers. The bilinear forbidden class BSY,
is defined as the family of symbols satisfying (L2) with m = 0 and with |¢] +
1] replaced by 1+ [£] + |n|. Note that if o belongs to BSY ;, then 0 = o1 + 09

where o7 is in BiS(l)ﬁ1 and o9 is a smoothing symbol supported in {(z,£,n) : || +
In|] < 1}. We refer the reader to the work of Coifman and Meyer in [7] and the
references it contains for pioneering work related to such symbols. As we will
describe next, these two classes of symbols possess distinct essential features, and,
as a noteworthy consequence of our Theorem [[.1] below, it will follow that they
share various mapping properties of the form (ITJ).
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Coifman-Meyer bilinear multipliers can be realized as bilinear Calderén-Zygmund
operators. As such, they inherit their mapping properties; for instance, Calderén-
Zygmund operators are bounded in the settings of Lebesgue spaces, BMO, the
Hardy space H' (Grafakos-Torres [15]), and in weighted Lebesgue spaces (Lerner
et al. [21]).

On the other hand, the bilinear forbidden class BSY ; is known to produce bilin-
ear pseudodifferential operators with a bilinear Caldeféanygmund kernel, but, in
general, they are not bilinear Calderén—Zygmund operators (Bényi-Torres [4]). In
particular, they do not always possess mapping properties of the form LP* x [P2 —
L? with 1 < py1,ps < oo and 1/p; + 1/ps = 1/p. Mapping properties for bilinear
pseudodifferential operators with symbols in BS? | have been studied in Bényi [2]
in the setting of Besov spaces, in Bényi-Torres [4] and Bényi-Nahmod-Torres [3] in
the scale of Lebesgue-Sobolev spaces, and in Naibo [23] and Koezuka-Tomita [20]
in the context of Besov and Triebel-Lizorkin spaces.

In our main result, Theorem [T below, we prove molecular estimates on T, with
o€ B.STD when one of its arguments is a fixed function and its other argument is
a smooth molecule.

Theorem 1.1. Given m € R and o € B.S;rfl, there exist o', 0% € B'S;):Ll with
T, =T, + Ty and such that if 1 < r < 00,0 < M < o0, ¥ € S(R™), with "
supported in {£ € R™ : % < |€] < 2}, and v € Ny, it holds that

2% gv(m+lv]) 9 4*
(14 |2vx — k|)M

|07 T (¢u,kag)($)| S HgHLr Vo € R"

and

2% gv(m+ly|) 9 4*
T, v S
‘ 02(f7¢ ,k)(‘r”/\: (1+|2V£C—k|)M

for every v € Z, k € Z" and f,g € S(R™), and where
Yo r(r) =27 (2" — k).

Here S(R™) denotes the Schwartz class of smooth rapidly decreasing functions
defined on R™; the notation < means < C, where C is a constant that may depend
on some of the parameters used but not on the functions or variables involved.

£l Vo eR",

1.1. A sample of applications of Theorem[I. Il In the case r = oo, Theorem[I]
implies that, up to uniform multiplicative constants, the functions

27" o1 (Yuk, 9)/ gl e and 277" o2 (f 0w k) / |1 f1| oo

can be regarded as smooth molecules, as introduced in [I0,11] in the settings of
Besov and Triebel-Lizorkin spaces. Since smooth molecules also serve as building
blocks for a variety of other function spaces, Theorem [T will apply to such spaces
as well.

As a concrete application, we will implement Theorem [[L1] in the scales of ho-
mogeneous Besov-type and Triebel-Lizorkin-type spaces. These spaces were in-
troduced and studied in Sawano-Yang-Yuan [25] and Yang-Yuan [28/29] as natural
spaces that extend and unify the scales of homogeneous Besov spaces, homogeneous
Triebel-Lizorkin spaces, and @-spaces. The latter were introduced in Essén et al. [9]
as a refinement of BMO functions. In addition, as proved in [25], the Besov-type
and Triebel-Lizorkin-type spaces also contain or coincide with Besov-Morrey and
Triebel-Lizorkin-Morrey spaces.
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We refer the reader to Section Blfor detailed notation and precise definitions. In
the following, Sp(R™) denotes the closed subspace of functions in S(R™) that have
vanishing moments of all orders; that is, f € Sp(R™) if and only if f € S(R™) and
Jgn ¥ f(x) dz = 0 for all & € Ngj. For 0 < p,q < oo, set

(13) Sp,q =N (m — 1) and Sp =N (m — 1) .
By means of Theorem [I.1] and molecular techniques, we obtain the following map-

ping properties in the scales of homogeneous Besov-type and Triebel-Lizorkin-type
spaces.

Theorem 1.2. Let m € R and o € B.S;'fl. If 0 < p,g < 00, 5, < 5 < 00 and
0 <7<+ %72, it holds that

175(f, 9)]
If0<p<o0,0<qg<0o0, 554 <8<00 and0§7<%+%, it holds that
IT5(f, 9)| E5r < IS o 191l Lo + 11l os ||9||F;j;m~f Vf, g € So(R™).

Theorem can be considered as a bilinear counterpart to Grafakos-Torres [14]
Theorems 1.1 and 1.2] (see also Torres [27]), where boundedness properties in ho-
mogeneous Besov and Triebel-Lizorkin spaces were addressed for linear pseudodif-
ferential operators with symbols in the class S’{’fl, the linear analog to BSTl. In
turn, the (linear) results in [I4] were extended to the setting of Besov-type and
Triebel-Lizorkin-type spaces in [25], Theorem 1.5]. We refer the reader to Hart-
Torres-Wu [17] where very different techniques are used to obtain estimates in the
spirit of those in Theorem in the setting of Sobolev spaces for operators with
z-independent symbols and a limited amount of regularity.

In Remark 4.1l we address Theorem [[2]in the cases corresponding to s < s, and
s < 5,4 and show that analogous estimates are obtained, with a slightly different
range for the parameter 7, if a number of cancellation conditions are imposed on
the first adjoint of 7,1 and on the second adjoint of T2, where o' and o2 are as
in Theorem [Tl In Remark we give a version of Theorem involving the L”
norms of f and g instead of their L°° norms.

The next corollary of Theorem follows from the realization of @)-spaces as
special cases of Triebel-Lizorkin-type spaces (see Section B.I.T]).

syz S gz gl + 1l gl gyome VF. € So(®Y).

Corollary 1.3. Let s,s+m € (0,1) and o € B'S’Tl. If1 <q<p<ooandq+# oo,
it holds that

ITo(fs Dl gze S Wfllggrma 1l + fll oo lgllggrma Vs g € So(R™).

1.2. Applications to Kato-Ponce inequalities. As a consequence of Theorem
[Tl in the case ¢ = 1, given a function space X that admits a molecular rep-
resentation and a ¢-transform, we obtain the following fractional Leibniz rule or
Kato-Ponce inequality:

(1.4) 1Fallx S UFIx Ngllpoe + 1F 1 poe N9l -

Inequalities of the form ([4)) were proved by Kato-Ponce [I§] in the case where
X is the Sobolev space W*P(R™), with 1 < p < oo and 0 < s < oo, in relation
to Cauchy problems for the Euler and Navier-Stokes equations; prior work due
to Strichartz [26] treats the range n/p < s < 1, while the case of s € N can be
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obtained from the Leibniz rule and the Gagliardo-Nirenberg inequality. Later on,
Gulisashvili-Kon [16] showed (4 for the homogeneous space X = WP (R"), for
the same range of parameters, in connection with the study of smoothing proper-
ties of Schrédinger semigroups. The estimates (L)) also hold true in the settings of
Besov and Triebel-Lizorkin spaces and have applications to partial differential equa-
tions (see, for instance, Bahouri-Chemin-Danchin [I], Chae [5], Runst-Sickel [24]
and the references they contain). In particular, all such estimates imply that
X N L*(R™) is an algebra under pointwise multiplication. Closely related ver-
sions to (4] were given by Christ-Weinstein [6] and Kenig-Ponce-Vega [19], in the
contexts of Korteweg-de Vries equations, and by Gulisashvili-Kon [16]. Extensions
to the cases of indices below 1 appear in Grafakos-Oh [13] and Muscalu-Schlag [22],
and versions in weighted and variable exponent space settings were proved in Cruz-
Uribe-Naibo [§].

In particular, in the scales of Besov-type and Triebel-Lizorkin-type spaces, The-
orem yields the following new Kato-Ponce inequalities.

Corollary 1.4. If0<p,g< 00,5, <s<ooand 0 <1< zla + %, it holds that
If9llgsz < NIF gz Vg € So(RY).
IfO<p<00,0<g<00, 854 <s5<00and0 <7< 14 =2, it holds that
19l gor S Ul gz 19l oo + 1l oo Ngllger VS, g € So(R™).
If0<s<1,1<qg<p<ooandq# oo, it holds that
1fallgze S 1 lose gl + 17 lgllose  VF.g € So(R™).

The article is organized as follows. In Section 2l we prove Theorem [l Section[3]
contains the definitions of Besov-type and Triebel-Lizorkin-type spaces, smooth
molecules, and the -transform. The proof of Theorem and several closing
remarks are given in Section Ml

a7 19l e +[1F 1 2o llg]

2. PROOF oF THEOREM [[L1]

Our first step towards the proof of Theorem [T will be obtaining a representation
of a bilinear pseudodifferential operator with a symbol in BSTl as a superposition
of paraproduct-like operators. Such representations can be traced back to the pio-
neering work of Coifman and Meyer; Lemma 2] gives a version of a decomposition
suited for our purposes, and its proof follows ideas inspired from [7, pp. 154-155].
We then state and prove Lemma [2.2] which procures a formula for the derivatives
of the building blocks, appropriately evaluated, given by Lemma 2.1l We close this
section with the proof of Theorem [l

The Fourier transform of a tempered distribution f € §’(R™) will be denoted by
J: in particular, we use the formula f(£) = Jgn f(@)e™ 2™ 8 dy for f € S(R™).

Let 6 be a real-valued infinitely differentiable function supported on (—2,2) and
such that 0(t) + 6(1/t) =1 for every ¢ > 0. For o € B'S;'jl, m € R, define

0%%§n%:0ﬁm&nW(%D and Uaaén%ZOﬁm&nW(%) Vz,§,neR™.

Simple computations show that o', 0% € B.Szrjl with

for v,a, 8 € Ny and d = 1,2,

lol a5 S sup ol a
<oB<B

Va8
as
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where the implicit constant depends only on v, a, 8 and 6, and we have

T5(f,9) =Tor(f,9) + To2(f,9), Vf,g € So(R").

Endowing Sp(R™) with the topology inherited from S(R™), a standard argument
using integration by parts allows one to conclude that T,: is continuous from
So(R™) x S(R™) to S(R™) and T2 is continuous from S(R") x So(R™) to S(R™). Let
U, o e S(R") be such that U and & are real-valued, supp(¥ ) c{¢:3<¢l <2},
djez |\I/(2 IE)|2 =1 for every £ £ 0, d =1 for |€] < 4 and ® =0 for |§| > 10.

Lemma 2.1. Leto € B.Sﬂfl. With the notation introduced above and given N > n,
there exist sequences of functions {mj(x,u,v)}jez and {m3(x,u,v)};cz defined for
x,u,v € R™ such that if v € Ny, then

(2.5) sup  |07m(z,u,v)| S 2D i€z, d=1,2,

z,u,vER™

and, if f € So(R™), g € S(R™) and x € R™, it holds that

o ) A " dudv
26)  To(f.g)) /R% o) A @) S}(0) T
and
. ; dudv
(2.7) Ty2(g, f)(z /RMZm (z,u,v) S}g(w) Aj f()(1+|u|2—|—|v|2)N

JEZL

o~

where A¥(€) = TU(279€)f(€) with V" (z) = U(x+u) and Sjg(¢) = $*(279E)3(E)
with ®¥(x) := ®(x +v).

Proof. We will prove (Z8]), with the proof of (271 following analogously. Since the
support of |W(277¢)|%0! (2, &, n) is contained in {(x,&,7n) : |n| < 2/¢] and 2771 <
€| < 2771 € {(=,&,m) : |n| <2772} and ®(277n) =1 for |n| < 2772 we have

U276 Pot (@, &) = (22 PRI o  (2,6,m) Ve, &neR,j € L.
From this, the fact that } ., (W(279¢)|2 = 1 for £ # 0 and Fubini’s theorem, it

follows that if f € So(R™) and g € S(R™), then
(2.8)

Toi(f.g)@) =) / (2,277, 27 m) W (27 )D(2 ) F(£)a(n) €™+ dgdn,
JEL n
where ol (2, €, ) := U(€)D(n)o” (x, 27¢, 277).
leen multiindices 7, a, 8 € N{j, the Leibniz rule implies that 8;8?85 0]1- can be
written as a linear combination of terms of the form

(2.9)

0™ ()M () (9708207 0 ) (w,27¢, 2721242 oy g = a, By + B2 = B.
Since o' € B'Sfbl, the absolute value of each term (29) can be bounded by a
multiple of

0P B (OB ()71 (20g] + [l 2D g € R

where we have used that 8“1\/1\1(5)8&(/15(77) is supported in {(¢,7) : 3 < [¢|+|n] < 12},
and the implicit constant is independent of j.
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Define m}(z,u,v) := (14 |ul® + [v[*)No 1(30 )(u,v); by the above we have

|07m (x u, )|

=l o) | [ oot e

(1 _ Agm)Nef%ri(u-{Jrvn)
(1 + 4m2|ul? + 4n2|v|2)N

dﬁdn‘

< 9i(m+I)

~

/ (1= Ae)N (07 0)) (@, & m)e 2w etv ) dep
<[|¢]+Inl<12

Finally, using that

dudv
(L+ [ul? + o)V

0]1, (5137 273‘5, 2*]'77) — / m}(L u, ,U)627ri(u-2*j§+v~2*jn)
R2n

in ([28)), after interchanging summation and integral signs justified by Fubini’s
theorem, we get (2.6)). O

For each u,v € R", set

(x,&,m) Zm Z, U, v \I'“( jf)@@*jn);

JEZL

then T,1 (f,9)(x) = dezm (z,u,v) AY f(z) SYg(z). Similarly define o7 ,,. In our
next lemma we look at derivatives of Tos ,(Yuk, 9) and Toz  (f, Yu,k).

Lemma 2.2. If’y eNG,ve Z, keZ" uveR” ge SR and ¢ € S(R™) is
such that supp(¢) C {€ € R™: 1 < ¢l <2}, then

8’YTU,L,U (wv,kvg)(l')
v+1
= 2% Z C’Y17’Y27’73 2 W Wll avl (SE u U)

j=r—1
Y1+v2+7v3="

X ()2 xg(277))(2"x + 2V ~Iy) e (2% —k+ 2v=iy),

v

where @) ., W - € S(R™) are independent of g and v, k() = 2% 2"z — k). An

l/]7

analogous formula holds for T, (f,yk) with f € S(R™).
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Proof. In view of the supports of 15 and \/I\l, the supports of 12(2*’4) and (1\1(2*37)
only intersect if v — 1 < j < v+ 1. We then have

Taiyv(wu,kag)(q’.)
v+1 L o

= 3 i) [ THEIOTE NGOG dedy
j=v—1 "
v+1

= Z mjl-(x,u,vﬂ*%
j=r—1
. / W27 )@ (2T p)e PTG (27 )G ()™ T de dn
R2n
v+1
= Z Q%m}(x,u,v)
j=r—1

< ([ 2maemmeiner o) ([ Fesigioene ).
Denoting
Fy(x)

= | 2@ e e ) [ T g deene )

n n

and given a multiindex v € Njj, we have

a’YFJ (‘T) = Z C’Yl,’YZ,’Y% az m (il?, u, /U)

Yi+v2+v3=v

% (/ ovn (21/ )2V|72\nw2@(zufjn)e%m?"x-n d77>
% (/ 2V|’Y3‘§'Y3@(2V*j§){b\(§)62ﬂi(zum*k)‘f df)

= Y Crmm 20 m)(,u,v)

Yit+v2+v3="Y

g (/ 2/ G2 )P B (2 T2 e dn)
X (/ é"Ys{I\,(zu—jf),L/p\(é-)eZﬂi(Q"x—k—&-Z”*ju),E d§>
S oy 21 B ) (@02 % (2 )2 4 2 )

Y1+v2+y3="
x U (2"r —k+ 2" Iy),

where &2 (n) = 1 ®(2~9n) and V)7 (€) = £ T (2" I€)D(€). Since

v+1
Ny (b, 9)(@) = 2% 07 Fj(2),

j=r—1

we get the desired result. (Il
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Proof of Theorem [L1l. Let o € B'Szll, 1<r<oo0,0< M < oo, e SR"™) such

that ¢ is supported in {¢eR": L < |¢] <2} and g € S(R"). With the notation
used above, Lemma 2.2 and ([23) imply

]
v+1
< Z%QV(m-H’YD Z H(I)’Yz )
j=r—1
Y1i+y2+y3=y
v+1 . (1+ ’2V_‘]U‘)M

SoFormibh ST e || - (1+ |2va — k)M
j=v—1

Y1+v2+y3="
(1+[2va k|)M L

where in the second inequality we have used that ¥)* ; € S(R"™). Since

dudv
To(f.0)@) = [ Ty (L)) s e

.‘hx\wﬁjaﬂx—k+2”ﬂuﬂ

< 9%t gu(m+Iyl) g5t

by choosing N sufficiently large so that [p., a +|1uT2‘i||)v dudv < oo, we obtain the
desired estimate for 07T,1 (9, i, g)(z). Analogous reasoning leads to the estimate
for 715> (f, k) (). U

3. FUNCTION SPACES

We recall that So(R™) denotes the closed subspace of functions in S(R™) that
have vanishing moments of all orders and we endow Sp(R™) with the topology
inherited from S(R™). The dual space of Sp(R™), S;(R™), can be identified with the
space of tempered distributions modulo polynomials, S'(R™)/P(R™).

Let D be the collection of dyadic cubes in R™. That is, D = {Q, k}vez kezn
where

Qy’k ZZ{{EERHij§2y$j<kj+1,j:17...,’n}.

We denote the edge length of @, by {(Q, x) and set g = x, 1 := 27"k where
Q= Qu,k:~

We will consider functions ¢, ¢ € S(R™) such that
(3.10)  supp(@),supp(¥)) C {E € R": § < [¢] < 2},
(3.11) 1B(E)], [9(€)| > ¢ for all £ such that 3 < |¢] < 2 and some ¢ > 0,
(312) > P2IOY2IE) =1 for £ £0.

JEL

See [12, Lemma 6.9] for a construction of ¢ given that ¢ satisfies (BI0) and BIT)).

If p € S(R") satisfies BI0) and BII), v € Z and k € Z", we recall that ¢,

denotes the L?-normalized function ¢, i (7) = 2% @(2¥x —k) = 2% (2" (x — 2, 1))-
If ¢ € S(R™) verifies (BI0), 311 and (BI2), then it follows that

f = Z <f7 (pu,k>wu,k7

vEL KELN
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where the series converges for f € L2(R") in the topology of L?(R"), for f € Sy(R")
in the topology of S(R™) and for f € §'(R") in &’'(R™) modulo polynomials (see
[TOLTT] for details).

1. Homogeneous Besov-type and Triebel-Lizorkin-type spaces. Let ¢ €
S(R™) satisfy conditions (BI0) and @BII), and set p;(x) := 29"p(2/x) for z € R
and j € Z. Fix s,7 € Rand 0 < ¢ < o0. For 0 < p < oo, the Besov-type space
B;:;(R”) is defined as the set of all f € S{(R™) such that

o0 q/p Y

1l g7 == Sup ‘Pl‘ | > M(Qism*f(x))z)dx < 0.

j=—log, (¢(P))

For 0 < p < oo, the Triebel-Lizorkin-type space F";;;' (R™) is defined as the set of
all f € S{(R™) such that

p/q 1/p

_ YEIPP q
sl LY @@ dep <o

j=—log,(¢(P))

These spaces are independent of the choice of ¢ (see [29, Corollary 3.1]). As in [29],
we will use A7 (R™) to denote either By:7 (R™) or F:7(R"), excluding p = oo in
the latter case.

3.1.1. Special cases of As 7 (R™). We refer the reader to [28, Section 3] and [29
Proposition 3.1] regardlng the following statements:

(i) 0 < p,g<o0,s€Rand —oo < 7 < 0, then A;:g(R") equals the equivalence
class of all polynomials on R"; if 0 < 7 < oo, they are quasi-Banach spaces
and contain Sp(R"™).

(ii) If 0 < p,qg < 00, s € R and 7 = 0, then BEZS(RH) coincides with the homoge-
neous Besov space B,  (R"), with equivalent norms.

(iii) 0 <p < o0, 0<qg< 00,8 €Rand 7 =0, then F;”Q(R”) coincides with
the homogeneous Triebel-Lizorkin space Fqu(R"), with equivalent norms. In
turn, F; 5 (R") coincides with the Sobolev space W*P?(R") for 1 < p < oo and
0 < s < oo, with equivalent norms.

(iv) If 0 < p < 00,0 < ¢ < o0 and s € R, then F;)’q% (R™) coincides with the
homogeneous Triebel Lizorkin space F3, ,(R"), with equivalent norms. In

particular, F (R”) BMO(R™), with equivalent norms.

e o .
(v) f0<p<oo,1<g<ooand 0<s<1,then Fyqi 7 (R™) coincides with the
Q-space Q;7(R™), with equivalent norms. Here f € Q,9(R") if and only if
f € S§(R™) with f(z) — f(y) measurable on R” x R™ and
_ q 1/q
earmns 1= sup |I|V/P~1/4 {/ Md dx} < 00,

I ggeqan = sup [ [P
where I ranges over all cubes of R™ with dyadic edge lengths. In particular,

g i _s .
Qs(R™) = QH/S(R") = F7 "(R"). For 0 < s <1lifn>2 orfor0 <

s<i 5 if n = 1, the spaces Qs(R"™) constitute a decreasing family of nontrivial
subspaces of BMO; see [9].
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(vi) Further special cases of the spaces A;:g(R”) involving homogeneous Besov-
Morrey and Triebel-Lizorkin-Morrey spaces can be found in [25 Theorem
1.1].

3.1.2. Molecules. Based on the pioneering work from [I0,[I1], it was proved in [29]
Theorem 3.1] that the spaces A;:; (R™) can be characterized in terms of the so-called
p-transform defined by S, (f) = {(f, ev.k) vk for f € S{(R™), where ¢ € S(R™)
satisfies (B.I0) and (BII). More precisely, if 0 < p,qg < 00, s € Rand 0 < 7 < o0,
then

(813)  fllgsr ~ 1 puidboillyer  and 1 FlLprr ~ 1@ bl o

5 ; refer to the following spaces of sequences: For 0 < p < oo,

where bS 7 and
the space bs T(R") is defined as the collection of all sequences t = {tg}gep C C,

indexed by the dyadic cubes, such that

P q/pY M4
1 - —S/n—
szt Y X e et |
rep j=—tog(e(P)) ["F \1@=2-s
< o0.
For 0 < p < o0, the space ; 7 (R™) is defined as the collection of all sequences

t = {tg}toep C C, indexed by the dyadic cubes, such that
p/a p

1 —s/n—
gr = s s [ QI P glla))t| dey <o

QCP

I¢]

As before, we will use a7 (R") to denote either 5;:;(R") or f;; (R™), excluding the
case p = oo in the latter case.

Let 0 < p,g < o0, s € R, 0 <7 < o0 and s* := s — [s], where [s] denotes the
largest integer smaller than or equal to s. Set

gl stn if AST(R")
Spq+mn if AS (R

B ),
FS,T (R’ﬂ)

P,q

where s, and sy 4 are as in ([L3). We say that {mq}gep, where mg : R — C,
is a family of smooth synthesis molecules for AJ7 (R™) if there exist § and M with
max{s*, (s +n7)*} <4 <1and J < M < oo such that

mg(x)z?de =0 if |y| <max{[J —n —s],—1},
R’!L

—1/2
imo(@)] < 9 .
[+ 1Q) r — g max(TT=—5]

Vr € R,

< |Q|—1/2 [vl/n
T (AU —wo)M

10"mg(z) Vz € R" and |vy| < [s + nr1],
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07 me(x) — 3'mg(y)|
< QA= gy

1 n
S THIQ) e = —agy Ty SR and =l

It casily follows that {¢,, k},,ez kezn and {¥, i tvez kezn are families of smooth
synthesis molecules for any AS 7 (R™) with parameters 0 = 1 and any M > J.

Through analogous ideas on almost-diagonal operators used to prove [I1, The-
orem 3.5] it follows that if 0 < p,¢ < o0, s € R, max{s*,(s +n7)*} < § <1,
J<M<o0,0<7< min{% + Mz;'],l—lj + 1_(‘;_3)*} if max{[J —n —s],—1} >0,
0<r< mm{ + =L 11] + ==IY if max{[J — n — ], —1} < 0, and {mq}gep is
a family of syntheSAS molecules for As o (R™) with parameters 6 and M, then

(3.14) Z tomg

QeD

ayr Vt={tQ}qep € a7,

ALG

where the implicit constant does not depend on the family of molecules (29, The-
orem 4.2]).

4. PROOF OF THEOREM AND CLOSING REMARKS

Proof of Theorem [L2 Let ¢,¢ € S(R™) satisty B.I0), BII) and BI2). Since
T,1 and T,2, as given by Theorem [[I] are continuous from So(R™) x Sp(R™) to

S(R™) and h = 3",y pczn (b, Qv k)Puk for h € So(R™) with convergence in So(R™)
(see Section [3)), we have

Ijo'1 (fv g) = Z <f7 ¢V7k>T0'1 (wu,k;g) Vfag S SO(Rn)a

VEL KELN

Ta2 (fa g) = Z <ga SOVJC>T02 (f, ¢u,k) Vfa g€ SO(Rn)ﬂ

VETLKEL
where the convergence is in S(R™).
Theorem [[Timplies that there are constants ¢; and ¢y such that if f, g € So(R"™),
then

{clz_ymTal ('(/)mkag) } and {622_VmT02 (fa wu,k:) }
lgll 1, veT.kenn 11 poe VEL KELN

are families of smooth synthesis molecules for any AS w(R™) i 0 < p,g < oo, s>
J—nand 0 <7 < oo (with § =1 and any M > J note that the zero moment
condition is void since J —n — s < 0). If, in addition, 0 < 7 < % + W, we can

apply (314) and (BI3) to get

1T (£ 9) Lz < 1427 (s i) g gl
= {0 o) g Nl o = I e Nl

1Ty (F, ) Lz < 1027 (g 0 g 1 e
— {9, eva)}

s [l = ]
from which the desired estimates follow. O

e 1 e
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Remark 4.1. Let m € R and o € B'Szll. The estimates in Theorem hold true

inA;:; for 0 < p,g<oo,s<J—mand 0 <7< %—l—#ifthefollowing

cancellation conditions are satisfied:
T (2",9) =T3(f,27) =0 VYf,ge€So(R™), |y <[J—n—s].

We recall that if T is a bilinear operator continuous from Sp(R™) x Sp(R™) to
S(R™), T*! and T*? denote the adjoint operators of T defined from S’(R") x Sp(R"™)
to S{(R™) and from Sp(R™) x S'(R™) to SH(R™), respectively, as (h,T(f,g)) =
<T*1(h’ 9),f)= <T*2(f’ h),g).

The proof of the estimates in this case is the same as above, with the only thing
left to check being the zero moment conditions for T,1 (¢, k,9) and T,2(f, Yo k)
(note that the range assumed for 7 comes from the assumptions for the validity of
BI4)). We have, for |y| < [J —n — ],

/n x’YTal (T/Ju,mQ) dx = <.’[’Y,T01 (¢u,k,9)> = <T;11($7,g),1/1u,k> =0 Vg € SO(Rn),

and similarly for T2 (f, ¥y k).

Remark 4.2. Let 1 < r < oo and m, o, p, ¢, s and 7 be as in the hypothesis of
Theorem [[2] or Remark [l By the same reasoning as in the proof of Theorem [[.2]
and Remark [.1], we also obtain

1o (fs Dl Ay S NN jotmen gl + gl joemrznr [ F1lLr -
P,q P,q

Remark 4.3. The implicit constants in the inequalities of Theorem [[.T] and Theo-
rem [[.2] depend linearly on ||o|| ; for some K, L € N, where

lollg = suwp ol .5-
[VI<K,|o+B|<L

From the proofs, it follows that the implicit constants in the inequalities of The-
orem [[T] are multiples of [0, 55, with N € N, N > M + n and where 7 and
M are as in the statement of the theorem. In turn, this implies that the im-
plicit constants in Theorem [[.2 can be taken to be multiples of [|o| ;141 2x With
N > max{J +n,2(s +n) — J +n}. The latter is also true for the inequalities from
Remark ATl with N > J +n+2(1 — (J — s)*).
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