Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Self-accessible states for linear systems on time scales


Authors: Hernán R. Henríquez and Jaqueline G. Mesquita
Journal: Proc. Amer. Math. Soc. 146 (2018), 1257-1269
MSC (2010): Primary 93B05; Secondary 34N05
DOI: https://doi.org/10.1090/proc/13853
Published electronically: October 10, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we are concerned with linear control systems on time scales. We show that, under appropriate hypotheses, the self-accessible trajectories have diameter greater than or equal to a certain fixed positive number.


References [Enhancements On Off] (What's this?)

  • [1] Ferhan M. Atici, Daniel C. Biles, and Alex Lebedinsky, An application of time scales to economics, Math. Comput. Modelling 43 (2006), no. 7-8, 718-726. MR 2218315, https://doi.org/10.1016/j.mcm.2005.08.014
  • [2] A. Bacciotti, Auto-accessibilité par familles symetriques de champs de vecteurs, Ricerche di Automatica 7 (1976), 189-197.
  • [3] A. Bacciotti and G. Stefani, Self-accessibility of a set with respect to a multivalued field, J. Optim. Theory Appl. 31 (1980), no. 4, 535-552. MR 600203, https://doi.org/10.1007/BF00934476
  • [4] Zbigniew Bartosiewicz and Ewa Pawłuszewicz, Realizations of linear control systems on time scales, Control Cybernet. 35 (2006), no. 4, 769-786. MR 2323260
  • [5] V. I. Blagodatskih, Sufficient optimality conditions for differential inclusions, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 615-624 (Russian). MR 0355741
  • [6] Martin Bohner and Allan Peterson, Dynamic equations on time scales, An introduction with applications, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1843232
  • [7] Martin Bohner and Allan Peterson (eds.), Advances in dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2003. MR 1962542
  • [8] Martin Bohner and Gusein Sh. Guseinov, Multiple integration on time scales, Dynam. Systems Appl. 14 (2005), no. 3-4, 579-606. MR 2179167
  • [9] Martin Bohner and Nick Wintz, Controllability and observability of time-invariant linear dynamic systems, Math. Bohem. 137 (2012), no. 2, 149-163. MR 2978261
  • [10] Martin Bohner and Nick Wintz, The linear quadratic regulator on time scales, Int. J. Difference Equ. 5 (2010), no. 2, 149-174. MR 2771323
  • [11] Martin Bohner and Nick Wintz, The linear quadratic tracker on time scales, Int. J. Dyn. Syst. Differ. Equ. 3 (2011), no. 4, 423-447. MR 2846390, https://doi.org/10.1504/IJDSDE.2011.042939
  • [12] V. G. Boltjanskiĭ, A linear optimal control problem, Differencialnye Uravnenija 5 (1969), 783-799 (Russian). MR 0247554
  • [13] Damiano Brigo and Fabio Mercurio, Option pricing impact of alternative continuous-time dynamics for discretely-observed stock prices, Finance Stoch. 4 (2000), no. 2, 147-159. MR 1780324, https://doi.org/10.1007/s007800050009
  • [14] F. B. Christiansen and T. M. Fenchel, Theories of populations in biological communities, Lect. Notes in Ecological Studies, 20, Springer-Verlag, Berlin, 1977.
  • [15] John M. Davis, Ian A. Gravagne, Billy J. Jackson, and Robert J. Marks II, Controllability, observability, realizability, and stability of dynamic linear systems, Electron. J. Differential Equations (2009), No. 37, 32 pp. MR 2495842
  • [16] Abdulkadir Dogan, John R. Graef, and Lingju Kong, Higher-order singular multi-point boundary-value problems on time scales, Proc. Edinb. Math. Soc. (2) 54 (2011), no. 2, 345-361. MR 2794658, https://doi.org/10.1017/S0013091509001643
  • [17] Laurene V. Fausett and Kanuri N. Murty, Controllability, observability and realizability criteria on time scale dynamical systems, Nonlinear Stud. 11 (2004), no. 4, 627-638. MR 2100755
  • [18] Hernán R. Henríquez, Genaro Castillo, and Alvaro Rodriguez, A geometric property of control systems with states in a Banach space, Systems Control Lett. 8 (1987), no. 3, 225-229. MR 877089, https://doi.org/10.1016/0167-6911(87)90031-4
  • [19] H. R. Henríquez, Auto-acessibilidade de sistemas de controle lineares em Espaços de Banach, Anais do $ 1^\circ $ Congresso Latino-Americano de Automática, Campina Grande, Brasil, 1984, vol. III, pp. 860-865.
  • [20] H. R. Henríquez, Asymptotic stability properties of self-accessible control systems, Lect. Notes on Control and Inform. Sciences, Proceedings IFIP Working Conference 1986, pp. 142-147.
  • [21] S. Keller, Asymptotisches Verhalten invarianter Faserbündel bei Diskretisierung und Mittelwertbildung in Rahmen der Analysis auf Zeitskalen, PhD thesis, Universität Augsburg, 1999.
  • [22] I. Klapper and H. Qian, Remarks on discrete and continuous large-scale models of DNA dynamics, Biophysical Journal 74 (1998), 2504-2514.
  • [23] Hisato Kobayashi and Etsujiro Shimemura, Note on a property of linear control systems, Internat. J. Control 33 (1981), no. 6, 1171-1176. MR 624180, https://doi.org/10.1080/00207178108922985
  • [24] Vasile Lupulescu and Awais Younus, On controllability and observability for a class of linear impulsive dynamic systems on time scales, Math. Comput. Modelling 54 (2011), no. 5-6, 1300-1310. MR 2812155, https://doi.org/10.1016/j.mcm.2011.04.001
  • [25] Christopher C. Tisdell and Atiya Zaidi, Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling, Nonlinear Anal. 68 (2008), no. 11, 3504-3524. MR 2401364, https://doi.org/10.1016/j.na.2007.03.043

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 93B05, 34N05

Retrieve articles in all journals with MSC (2010): 93B05, 34N05


Additional Information

Hernán R. Henríquez
Affiliation: Departamento de Matemática, Universidad de Santiago, USACH, Casilla 307, Correo 2, Santiago, Chile
Email: hernan.henriquez@usach.cl

Jaqueline G. Mesquita
Affiliation: Departamento de Matemática, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte 70910-900, Brasília-DF, Brazil
Email: jgmesquita@unb.br

DOI: https://doi.org/10.1090/proc/13853
Keywords: Dynamic equations on time scales, abstract Cauchy problem on time scales, control systems on time scales, controllability, self-accessible states.
Received by editor(s): April 24, 2017
Published electronically: October 10, 2017
Additional Notes: The first author was supported in part by CONICYT under grant FONDECYT 1130144 and DICYT-USACH
The second author was supported by FAPESP grant 2013/17104-3 and FAPESP grant 2014/15250-5.
Communicated by: Mourad Ismail
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society