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Abstract. In now classic work, David Kendall (1966) recognized that the
Yule process and Poisson process could be related by a (random) time change.
Furthermore, he showed that the Yule population size rescaled by its mean has
an almost sure exponentially distributed limit as t → ∞. In this note we intro-
duce a class of coupled delayed continuous time Yule processes parameterized
by 0 < α ≤ 1 and find a representation of the Poisson process as a delayed
Yule process at delay rate α = 1/2. Moreover we extend Kendall’s limit the-
orem to include a larger class of positive martingales derived from functionals
that gauge the population genealogy. Specifically, the latter is exploited to
uniquely characterize the moment generating functions of distributions of the
limit martingales, generalizing Kendall’s mean one exponential limit. A con-

nection with fixed points of the Holley-Liggett smoothing transformation also
emerges in this context, about which much is known from general theory in
terms of moments, tail decay, and so on.

1. Introduction

The basic Yule process Y = {Yt : t ≥ 0} is a continuous time branching process
starting from a single progenitor in which a particle survives for a mean one, ex-
ponentially distributed time before being replaced by two offspring independently
evolving in the same manner. Yt represents the size of the population of particles
at time t ≥ 0, starting from Y0 = 1. The basic Poisson process N = {Nt : t ≥ 0}
is another continuous time Markov process in which a particle survives for a mean
one, exponentially distributed time before being replaced by a single particle that
evolves in the same manner. The shift Nt+1 represents the number of replacements
that have occurred by time t ≥ 0, N0 = 0. The multiplicative (geometric) growth
of the process Y is in stark contrast to the additive growth of N .

Considerations of evolutionary processes, to be referred to as delayed Yule pro-
cesses, arise somewhat naturally in the probabilistic analysis of quasi-linear evolu-
tion equations such as incompressible Navier-Stokes equations, and complex Burg-
ers equation by probabilistic methods originating with Le Jan and Sznitman [10].
In particular, considerations of non-uniqueness and/or explosion problems in [4]
for this framework prompted the present considerations. However this paper has
a purely probabilistic focus and does not depend on such motivations. In fact,
the probabilistic framework may also be of interest in the context of evolutionary
biological processes.
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The principal results are extensions of the aforementioned theorems of Kendall
(see [9]). In particular, a key result is that the representation of the Poisson process
as a delayed Yule process at delay rate α = 1/2 provides an exact coupling of the
two processes through a binary tree-indexed family of i.i.d. exponential random
variables defined on a probability space (Ω,F , P ). Secondly, complete criteria for
the uniform integrability of positive martingales derived from a family of gauges of
the genealogy of the Yule process, including cardinality, is also given. Once this is
established the exact limit distribution is identified for these uniformly integrable
martingales as unique (mean one) fixed points of the Holley-Liggett smoothing op-
erator [7]. This characterization generalizes Kendall’s mean one exponential limit
in the case the gauge is the cardinality of the population; the latter limit distribu-
tion is the Gamma distributed fixed point solution corresponding to the uniform
(Beta) smoothing factor in [7]. The characterization of the uniformly integrable
martingale limits as fixed points to a smoothing transformation has numerous im-
plications on the more detailed structure of the limit; e.g., see [6], [11] for further
general theory and results on the nature of fixed points of smoothing recursions.
As an illustration, simple conditions are noted for the existence of finite moments
of the limit martingale. From the perspective of delayed Yule processes as contin-
uous time Markov processes it is shown that α = 1/2 is a critical transition value
between bounded and unbounded infinitesimal generators defining the α-delayed
Yule processes for 0 < α ≤ 1.

2. Delayed Yule process

To begin, consider the modification of the Yule process given by successively
halving the previous generation branching frequencies, i.e., doubling the previous
generation mean holding time of particles of each generation. That is, let {Tv :
v ∈ T =

⋃∞
k=0{1, 2}k}, with {1, 2}0 = {θ}, be a binary, tree-indexed family of i.i.d.

mean one exponentially distributed random variables rooted at a single progenitor
θ, and define

V ( 1
2 )(t) =

{
v ∈ T :

|v|−1∑
j=0

(1/2)−jTv|j ≤ t <

|v|∑
j=0

(1/2)−jTv|j

}
, t ≥ 0,

where |θ| = 0, and |v| = | < v1, . . . , vk > | = k denotes the height of vertex v ∈ T.
Also v|j =< v1, . . . , vj > is the restriction of v to generation j ≤ k. Also, by

convention,
∑−1

j=0 = 0.
Observe that

Yt = #V (1)(t) =
{
v ∈ T :

|v|−1∑
j=0

Tv|j ≤ t <

|v|∑
j=0

Tv|j

}
, t ≥ 0,

defines the basic Yule process; throughout #V will denote the cardinality of a set
V .

Let τk, k = 1, 2, . . . be the increasing sequence of jump times of the 1
2 -delayed

Yule process defined by

Nt = #V ( 1
2 )(t)− 1, t ≥ 0.
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The following calculations provide a warm-up to our basic coupling of the Poisson
and Yule processes. First observe that τ0 = 0, τ1 = Tθ, so that P (τ1 − τ0 > t) =
e−t, t ≥ 0. Next, for k = 2, one has by definition that τ2 − τ1 = 2T1 ∧ 2T2, and
{T1, T2} is independent of Tθ (= τ1). In particular, therefore,

P (τ2 − τ1 > t|σ{τ1 − τ0}) = P (2T1 ∧ 2T2 > t) = e−
t
2 e−

t
2 = e−t.

The independence of inter-arrival times is less obvious in the case k = 3 where one
has

(2.1) τ3 − τ2 =

{
(2T1 − 2T2) ∧ 4T21 ∧ 4T22, if 2T2 < 2T1,

(2T2 − 2T1) ∧ 4T11 ∧ 4T12, if 2T1 < 2T2.

However, using symmetry and the two logical operations: (i) a > b & c > b iff
a ∧ c > b, and (ii) a > b & a > c iff a > b ∨ c, one may easily express the event
[τ3 − τ2 > t3, τ2 − τ1 > t2, τ1 − τ0 > t1] in terms of the underlying i.i.d. Yule times
Tv, v ∈ T. From here a direct computation yields

(2.2) P (τ3 − τ2 > t3, τ2 − τ1 > t2, τ1 − τ0 > t1) = e−t3e−t2e−t1 , t1, t2, t3 > 0.

An inductive extension of this calculation is cumbersome, however the following
essential property that couples the Yule and Poisson processes has a very simple
inductive proof based on the evolutionary structure of the state space E . Namely,
V ∈ E if and only if V is a finite subset of T =

⋃∞
n=0{1, 2}n, such that

(2.3) V =

⎧⎨
⎩

{θ} if #V = 1,
W\{w} ∪ {< w1 >,< w2 >} for some W ∈ E , #W = #V − 1,
w ∈ W, else.

Lemma 2.1 (Key Coupling Lemma). For any V ∈ E one has∑
v∈V

(1/2)|v| = 1.

Proof. The assertion is clear for V = {θ} since |θ| = 0. The induction follows
directly from (2.3). �

Theorem 2.1. The stochastic process Nt = #V ( 1
2 )(t) − 1, t ≥ 0, is a Poisson

process with unit intensity. In particular, τk−τk−1, k = 1, 2, . . . is an i.i.d. sequence
of mean one exponentially distributed random variables.

Proof. By Watanabe’s martingale characterization of the Poisson process, in view
of the unit jump sample path structure of #V ( 1

2 ) it is sufficient to check that

#V ( 1
2 )(t)− t, t ≥ 0, is a martingale with respect to the filtration

Ft = σ{Tv : v ∈ V ( 1
2 )(s) : s ≤ t}, t ≥ 0.

On [Tθ < ∞], an event with probability one, express the process V ( 1
2 )(t), t ≥ 0,

as {θ} for t < Tθ, and for t ≥ Tθ as the disjoint union of two independent sets of

vertices V
( 1
2 )

(j) ( t−Tθ

2 ) rooted at θ = (1), (2), respectively for j = 1, 2. Then, taking

expected values over this representation, one has for μ(t) = E#V ( 1
2 )(t), t ≥ 0,

(2.4) μ(t) = e−t + 2

∫ t

0

e−sμ(
t− s

2
)ds, t > 0, μ(0) = 1.

To see that this equation uniquely determines the non-negative continuous solution
μ consider the difference ν of two solutions, ν(0) = 0.Observe that for any T < log 2,
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the map ν → Lν(t) = 2
∫ t

0
e−sν( t−s

2 )ds, 0 ≤ t ≤ T defines a linear contraction map
on C[0, T ]. In particular ν(0) = 0 implies that ν(t) = 0, 0 ≤ t ≤ T . In view of the
delay, it now follows from the equation for the difference ν that ν = 0 on [T, 2T ]
and, inductively, ν = 0 on [0,∞) for ν(0) = 0. In particular, it follows from (2.4)
that

(2.5) E#V ( 1
2 )(t) = μ(t) = t+ 1, t ≥ 0.

The calculation of the conditional expectation proceeds similarly while taking ad-
vantage of (2.5) and the Key Coupling Lemma 2.1: For 0 ≤ s ≤ t,

E{#V ( 1
2 )(t)|Fs} = E{

∑
v∈V ( 1

2
)(s)

#V ( 1
2 )(2−|v|(t− s))|Fs}

=
∑

v∈V ( 1
2
)(s)

{2−|v|(t− s) + 1}

= t− s+#V ( 1
2 )(s).(2.6)

�

Replacing 1
2 by a parameter α ∈ (0, 1] in successive generations of the basic Yule

process defines the α-delayed Yule process. Namely,

V (α)(t) =
{
v ∈ T :

|v|−1∑
j=0

α−jTv|j ≤ t <

|v|∑
j=0

α−jTv|j

}
, t ≥ 0.

Accordingly, V (α) is a continuous time jump Markov process taking value in the
(countable) space E of evolutionary sets defined inductively by (2.3).

Although one may check that V (α) is a Markov process on E , the functional
#V (α) is not generally Markov; exceptions being α = 1

2 , 1. When α = 1, #V (α)

is the classical Yule process, and so it is obviously Markov. Similarly in the case
α = 1

2 , the Markov property is a direct consequence of Theorem 2.1.
In addition to cardinality, letting β > 0, the following functionals serve to gauge

the genealogy of the evolution:

(2.7) aβ(V ) =
∑
v∈V

β|v|, V ∈ E .

By the Key Coupling Lemma 2.1, one has that a1/2(V ) = 1 for all V ∈ E . The
cardinality #V is obtained by taking β = 1, and the following provides a generaliza-
tion of Kendall’s classic limit theorem to other gauges of the genealogical structure
of the Yule process.

Theorem 2.2. For each β ∈ (0, 1], Aβ(t) = e−(2β−1)taβ(V
(1)(t)), t ≥ 0, is a

positive martingale. Moreover, Aβ is uniformly integrable if and only if β ∈ (βc, 1]
where βc ≈ 0.1866823 is the unique solution in (0, 1] to

(2.8) βc lnβc = βc −
1

2
.

Proof. Let mβ(t) = Eaβ(V
(1)(t)), t ≥ 0. First, let us check that

(2.9) mβ(t) = e(2β−1)t, t ≥ 0.
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For this write

(2.10) aβ(V
(1)(t)) = 1[Tθ > t]+1[Tθ ≤ t]β{aβ(V (1)+(t−Tθ))+aβ(V

(1)−(t−Tθ))},
where V (1)±(·) are independent copies of V (1)(·). Taking expected values one has

mβ(t) = e−t + 2β

∫ t

0

e−smβ(t− s)ds, mβ(0) = 1.

The expression (2.9) now follows.
To establish the martingale property, let 0 ≤ s < t and write

aβ(V
(1)(t)) =

∑
w∈V (1)(s)

∑
v∈V (1),w(t−s)

β|w|β|v|,

where V (1),w are the delayed Yule processes rooted at w ∈ V (1)(s). Note that
the respective processes V (1),w, w ∈ V (1)(s), are conditionally independent given
V (1)(s), and therefore

E[e−(2β−1)taβ(V
(1)(t))|Fs] = e−(2β−1)tmβ(t− s)aβ(V

(1)(s))

= e−(2β−1)saβ(V
(1)(s)).

Thus Aβ is a positive martingale. So, by the martingale convergence theorem, it
follows that

Aβ(∞) = lim
t→∞

e−(2β−a)taβ(V
(1)(t)),

exists almost surely. Moreover, from (2.10) one has the distributional recursion

(2.11) Aβ(∞) = βe−(2β−1)Tθ (A+
β (∞) +A−

β (∞)),

where A+
β (∞) and A−

β (∞) are independent copies of Aβ(∞).

Let us first investigate parameters β ∈ (0, 1] such that Aβ(∞) = 0 almost surely.
For this let h ∈ (0, 1) and observe that, since (x + y)h ≤ xh + yh and E(e−δTθ ) =
1/(1 + δ), (2.11) yields

EAh
β(∞) ≤ 2βh 1

1 + (2β − 1)h
EAh

β(∞), 0 < h < 1.

Thus, if Aβ(∞) > 0 with positive probability, then

(2.12)
2βh

1 + (2β − 1)h
≥ 1, 0 < h < 1.

By comparing the functions φ(h) = 2βh and ψ(h) = 1 + (2β − 1)h on h ∈ [0, 1], it
follows that (2.12) holds if and only if

βc ≤ β ≤ 1,

where βc ≈ 0.1866823 is the unique solution in (0, 1] to the equation 2βc lnβc =
(2βc − 1). To see this equivalence, note that for β > 0, φ(0) = 2 > ψ(0) = 1, and
φ(1) = ψ(1) = 2β. Now, if (i) β > 1, then, since ψ is increasing, convex, φ must be
a secant line for ψ on [0, 1] and, therefore, (2.12) fails. On the other hand, if (ii)
1
2 ≤ β ≤ 1, then φ is decreasing, ψ is increasing, and φ(1) = ψ(1), so that (2.12)

holds. Finally, if (iii) β < 1
2 , then φ is decreasing, convex, and ψ decreases linearly

to meet φ at h = 1. That is, ψ is a secant line to φ on [0, 1] and, therefore, (2.12)
fails unless φ′(1) ≥ ψ′(1), i.e., unless 2β lnβ ≥ 2β−1. This makes β > βc necessary
in order for (2.12) to hold. Conversely, if βc ≤ β < 1/2, then φ′(1) ≥ ψ′(1), so that
(2.12) holds.
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Now, β < βc implies Aβ(∞) = 0 almost surely. For the converse, i.e., uniform
integrability of the positive martingale {Aβ(t) : t ≥ 0}, we will use an inequality
from [12], attributed there to B. Chauvin and J. Neveu, especially suited for such
problems. For present purposes, if 1 < p ≤ 2, and X1, X2 ∈ Lp(Ω,F , P ) are
independent, positive random variables, then

(2.13) vp(X1 +X2) ≤ vp(X1) + vp(X2),

where vp(Xj) = EXp
j − (EXj)

p, j = 1, 2.

By the basic recursion (2.10), one has

(2.14) EAp
β(t) = e−[(2β−1)p+1]t+βp

∫ t

0

e−[(2β−1)p+1]s
E(A+

β (t−s)+EA−
β (t−s))pds.

Applying (2.13) and using the submartingale property EAp
β(t − s) ≤ EAp

β(t), 0 ≤
s ≤ t together with the fact that EAβ(t− s) = 1, we estimate

E(A+
β (t− s) +A−

β (t− s))p

= vp(A
+
β (t− s) +A−

β (t− s)) + (EA+
β (t− s) + EA−

β (t− s))p

≤ vp(A
+
β (t− s)) + vp(A

−
β (t− s)) + 2p(E(Aβ(t− s)))p

≤ 2EAp
β(t− s) + 2p ≤ 2EAp

β(t) + 2p.

Thus, (2.14) yields

EAp
β(t) ≤ e−[(2β−1)p+1]t +

(2EAp
β(t) + 2p)βp

(2β − 1)p+ 1
,

which implies

(2β − 1)p+ 1− 2βp

(2β − 1)p+ 1
EAp

β(t) ≤ e−[(2β−1)p+1]t +
(2β)p

(2β − 1)p+ 1
, t ≥ 0.

In particular, uniform integrability follows under the condition that for some p ∈
(1, 2],

(2β − 1)p+ 1− 2βp > 0.

Equivalently, β > βc where, as before, βc denotes the solution of (2.8).
To complete the proof requires consideration of the case β = βc. If, for the sake

of contradiction, one assumes uniform integrability, then, as is elaborated in the
proof of Proposition 2.1 below, the distribution of Aβc

(∞) provides a mean one
fixed point to the Holley-Liggett smoothing map, see [7], where it is shown that
there is not a mean one fixed point at βc. �

For β ∈ [0, 1], define the moment generating function

ϕβ(r) = Ee−rAβ(∞), r ≥ 0,

where Aβ(∞) = limt→∞ Aβ(t). Note that by Theorem 2.2 and its proof,

ϕ′
β(0) = 0 if β < βc and ϕ′

β(0) = −1 if β > βc.

Also define a probability measure νβ on Sβ where Sβ = [0, β] for β > 1/2, and
Sβ = [β,∞) for 0 < β < 1/2, and

(2.15) ν 1
2
(ds) = δ 1

2
(ds), νβ(ds) =

(s/β)
1

2β−1

|2β − 1|
ds

s
, β �= 1

2
.
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Proposition 2.1. For β > βc, ϕβ is uniquely determined within the class of prob-
ability distributions on [0,∞) whose moment generating function satisfies

(2.16) ϕβ(r) =

∫
Sβ

ϕ2
β(rs)νβ(ds), r ≥ 0,

such that ϕβ(0) = 1, ϕ′
β(0) = −EAβ(∞). Equivalently, ϕβ is uniquely determined

by the delayed differential equation

(2.17) ϕ′
β(r) =

1

r

1

2β − 1
ϕ2
β(βr)−

1

r

1

2β − 1
ϕβ(r), β ∈ [0, 1] \

{1

2

}
,

and the given initial conditions.

Proof. First we will show that (2.16) holds for β ∈ [0, 1]. When β = 1/2, by (2.11),

(2.18) ϕ 1
2
(r) = ϕ2

1
2
(r/2),

and thus (2.16) holds with ν1/2 – the Dirac measure as in (2.15). For β �= 1/2,
using the stochastic recursion (2.11), we obtain:

ϕβ(r) = E
(
e−rAβ(∞)

)
= E

(
exp

[
−rβe−(2β−1)Tθ

(
A+

β (∞)) +A−
β (∞)

)])

=

∞∫
0

e−t
E exp

[
−rβe−(2β−1)t

(
A+

β (∞)) +A−
β (∞)

)]
dt

=

∞∫
0

e−tϕ2
β

(
rβe−(2β−1)t

)
dt.

Now (2.16) follows by the change of variables s = βe−(2β−1)t.
For β > βc, in view of the uniform integrality (see Theorem 2.2) one has

EAβ(∞) = 1, and we may use early results of [7] on smoothing transforma-
tions. Specifically, it is simple to check that for βc < β ≤ 1, the random variable
Wβ = 2βe−(2β−1)Tθ has mean one (in fact, 1

2Wβ is a re-scaling of the distribution
νβ), while the recursion (2.11) takes the form

Aβ(∞) = Wβ

(1
2
A+

β (∞) +
1

2
A−

β (∞)
)
,

of a Holley-Liggett smoothing transformation within the framework of Theorem
7.1 in [7]. Accordingly, the distribution of Aβ(∞) is the unique positive mean one
solution to the stochastic recursion provided

E(Wβ lnWβ) < ln 2.

A direct calculation shows that E(Wβ lnWβ) = ln(2β) − 2β−1
2β , and thus the in-

equality above is satisfied if and only if β > βc.
To establish (2.17) we may use (2.16), as follows (noting that the implied differen-

tiability is a property of a moment generating function of a probability distribution
on [0,∞)):

ϕ′
β(r) =

∫
Sβ

d

dr
ϕ2
β(rs)νβ(ds) =

1

r

∫
Sβ

d

ds
ϕ2
β(rs) s νβ(ds).
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Now use (2.15) and integrate by parts. In the case β < 1/2 we get:

ϕ′
β(r) =

1

r

∞∫
β

d

ds
ϕ2
β(rs)

(s/β)
1

2β−1

1− 2β
ds

=
1

r
ϕ2
β(rs)

(s/β)
1

2β−1

1− 2β

∣∣∣∣∣
∞

s=β

+
1

r

∞∫
β

ϕ2
β(rs)

(s/β)
1

2β−1

(1− 2β)2
ds

s

= −1

r

1

1− 2β
ϕ2
β(βr) +

1

r

1

1− 2β
ϕβ(r),

which implies (2.17) for β ∈ [0, 1/2). The case β ∈ (1/2, 1] is treated analogously.
�

Remark 2.1. While the martingale limit is clearly a fixed point of the Holley-Liggett
smoothing transformation for any β ∈ (0, 1], the proof of uniform integrability is
essential to the identification of the critical parameter βc for a positive martingale
limit since the fixed point uniqueness theorem is within the class of mean one
probability distributions on [0,∞). Once this is achieved then the existing theory of
fixed points of smoothing transformations as given in [7], [11], among others, can be
applied to discern more about the non-exponential cases of the limit distributions.
As noted in [7] for particular Beta distributions of W , the fixed point distribution is
a Gamma distribution. This includes the case of Kendall’s theorem, [9], for β = 1 in
which W is uniform on (0, 1) and the martingale limit has a mean one exponential
distribution as given below.

Corollary 2.1 (Kendall’s theorem). A1(t) = e−t Yt, t ≥ 0, is a uniformly integrable
martingale, and A1(∞) = limt→∞ A1(t) is exponentially distributed with mean one.

Proof. It is easy to see that the mean one exponential moment generating function
1/(1+ r) satisfies (2.16) in case β = 1. Now the fact that the exponential is indeed
the distribution of A1(∞) follows from the uniqueness statement of Proposition
2.1. �

Remark 2.2. One can also obtain Kendall’s result directly from (2.17). Indeed,
when β = 1 we have

(rϕ1(r))
′ = ϕ2

1(r), ϕ1(0) = 1, ϕ′
1(0) = −1.

The non-zero solutions of the equation above can be obtained explicitly as

ϕ1(r) =
1

1 + c0r
,

while by the initial data, c0 = 1, proving that the mean one exponential moment
generating function is the only solution, and thus implying Kendall’s theorem stated
in Corollary 2.1.

The following result shows that for βc < β < 1/2, Aβ(∞) has heavy tails. As
remarked earlier, this and more on the nature of the martingale limit distribution
are also available from general theory, e.g., see [11]. However one may also give the
following self-contained argument based on (2.17).

Proposition 2.2. For any β ∈ (βc, 1/2), there exists pβ ≥ 2 such that E(Ap
β(∞)) =

∞ for all p ≥ pβ.
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Proof. Note that the finite moments of order k ∈ N satisfy:

mk = (−1)kϕ
(k)
β (0),

and consequently, using (2.17) and the fact that m0 = m1 = 1 we obtain

(
(2β − 1)k − 2βk + 1

) mk

k!
= βk

k−1∑
j=1

mj

j!

mk−j

(k − j)!
, k ≥ 2.

Since Yβ(∞) ≥ 0, we have mk > 0 for all k, and thus

(2β − 1)k − 2βk + 1 > 0 for all k ≥ 2.

Note that the above condition fails for large enough k if β < 1/2, implying that the
higher-order moments of Yβ must be infinite. �

3. Infinitesimal generator and another critical value

for the delayed Yule process

Give E the discrete topology and let C0(E) denote the space of (continuous)
real-valued functions f : E → R that vanish at infinity; i.e., given ε > 0, one has
|f(V )| < ε for all but finitely many V ∈ E . The subspace C00(E) ⊂ C0(E) ⊂ L

∞
(E)

of functions with compact (finite) support is clearly dense in C0(E) for the uniform
norm.

The construction at the outset of the coupled stochastic processes V (α), 0 < α ≤
1, provides corresponding semigroups of positive linear contractions {T (α)

t : t ≥ 0}
defined by

Ttf(V ) = EV f(V
(α)(t)), t ≥ 0, f ∈ C0(E),

with the usual branching process convention that given V (α)(0) = V ∈ E , V (α)(t)
is the total progeny independently produced by single progenitors at each v ∈ V .
In fact, one may consider the semigroup as defined on L

∞
(E) ⊃ C0(E).

The usual considerations imply that the infinitesimal generator (L(α),Dα) of
V (α) is given on C00(E) via

L(α)f(V ) =
∑
v∈V

α|v|{f(V v)− f(V )}, f ∈ C00(E),

where

V v = V \{v} ∪ {< v1, v2 >}, v ∈ V.

One may naturally pursue the computation of a core for L(α), however for the
present purposes the above is sufficient to establish the following distinct role of
α = 1

2 as a critical parameter.

Proposition 3.1. (L(α),Dα), Dα ⊂ L
∞
(E) – the domain of L(α), is a bounded

linear operator if and only if α ≤ 1
2 .

Proof. The sufficiency follows from the Key Coupling Lemma 2.1, since for α ≤ 1
2

one has the bound
∑

v∈V α|v| ≤
∑

v∈V 2−|v| = 1, V ∈ E . In particular, for f ∈
C0(E),

|L(α)f(V )| ≤ 2 sup
W∈E

|f(W )|, V ∈ E .

On the other hand, for α > 1
2 , define a sequence of functions fn ∈ C00(E) by

fn(V ) = h(V )1[h(V )≤n], n = 1, 2, . . . ,
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where h(V ) = max{|v| : v ∈ V }, V ∈ E . Then for full binary branching h(V ) =
n, |V | = 2n. Thus ‖fn‖∞ = n, and for such V ,

|L(α)fn(V )| =
∑
v∈V

αn = (2α)n.

In particular

|L(α)fn(V )|
‖fn‖∞

=
(2α)n

n
→ ∞ as n → ∞ for α >

1

2
.

�

Remark 3.1. Although aβ /∈ C0(E) for any β ∈ (0, 1], the following formal calcula-
tion for α ∈ (0, 1],

L(α)aβ(V ) = (2β − 1)aαβ(V ), V ∈ E ,
is intriguing from the perspective of precise identification of the generator. In par-
ticular, aβ is formally a positive eigenfunction of L(1) with non-positive eigenvalue
2β − 1 < 0 for β < 1

2 as required for a contraction semigroup of positive linear op-
erators. To make this formal calculation rigorous obviously requires a modification
of the function space beyond the standard choice C0(E).

Finally let us conclude by noting a closely related evolution that takes place in
sequence space that may be of interest in other contexts. For V ∈ E , let

gk(V ) = #{v ∈ V : |v| = k}, k = 0, 1, 2, . . . .

Also define an equivalence relation on E by V ∼ W , V,W ∈ E , if and only if
gk(V ) = gk(W ) for all k. Then the space of equivalence classes E/ ∼ is in one-to-
one correspondence with a subset of the sequence space c00(Z+) ⊂ 1(Z+) defined
inductively as follows: n = (n0, n1, . . . ) ∈ c00(Z+) belongs to the space E0 of
evolutionary sequences if either n = (1, 0, . . . ) or, otherwise, there is an m ∈ E0 ⊂
c00(Z+) such that m = n(k) := (n0, n1, . . . , nk − 1, nk+1 + 2, nk+2, . . . ) for some
k ≥ 0 such that nk ≥ 1. Note that

∑∞
j=0 nj =

∑∞
j=0mj − 1. For 0 < α ≤ 1, the

equivalence relation induces N (α) = {N (α)(t) : t ≥ 0} as the continuous time jump
Markov process on E0 with generator given for f ∈ C00(E0) by

L̃(α)f(n) =

∞∑
k=0

nkα
k(f(n(k))− f(n)), n ∈ E0.

4. Connections with other work

(a) After this article was recommended for publication the authors learned from
David Aldous about [1], and related references, [2], [3], that analyze processes of
the same type as here, but from different perspectives and objectives. That model
is one of a large class of random tree-growth models studied within the probabilistic
analysis of algorithms; see [8]. In [1] the primary focus is on limiting properties of
a class of trees that grow randomly, one node at a time [in discrete time], in con-
nection with Ziv’s entropy estimation algorithm and various models from physics
and computer science. As a “standard trick in probability”, the authors also con-
sider the continuous time model that would correspond to a 1

c -delayed Yule process
(c > 1) in sequence space. The main results are a strong law of large numbers and
a central limit theorem. The authors note in passing (Section 7, page 539) that the
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case c = 2 corresponds to a Poisson process, and they remark that the relative slow-
ing (c > 2), and speeding (c < 2) of the process are artifacts of the continuous-time
formulation and have no direct interpretations for their problem. As shown in the
present paper, α−1 = c = 2 is a critical parameter with respect to the boundedness
of the infinitesimal generator. In [5], where the continuous parameter models are
the essential structures, this criticality together with certain monotonicities with
respect to α play an essential role in the analysis of the complex Burgers equation.

(b) In [1] the authors single out a special value of the parameter of the form

α−1 = c = 2
1
2 for its (conjectured) role in a Gaussian central limit theorem. A

non-Gaussian limit is conjectured for c < 2
1
2 , and is partially confirmed to them

through privately communicated results of H. Kesten. In [5], special roles for this

and other parameters in the general form c−1 = α = 2−
k
2 , k = 1, 2, . . . are shown

to correspond to polynomial mean numbers of offspring at (continuous) time t.
(c) In [2] the focus is on a process that is termed a “discounted branching random

walk”for which α > 1. The question concerns the unique determination of the
distribution of the position of the rightmost particle via an ordinary differential
equation. Although mentioned as a possibility, the author remarks that this case
α < 1 is not dealt with in [2].

(d) In [3] the authors refer to the model in the case α = 1
2 as “directed diffusion-

limited aggregation”. The authors obtain some limit results on the tree height of
the type in [1], but weaker.
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