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GLOBAL ANALYTIC SOLUTIONS AND TRAVELING WAVE

SOLUTIONS OF THE CAUCHY PROBLEM

FOR THE NOVIKOV EQUATION

XINGLONG WU

(Communicated by Joachim Krieger)

Abstract. In this paper, we mainly study the existence and uniqueness of
the analytic solutions for the Novikov equation. We first investigate whether
the equation has analytic solutions which exist globally in time, provided the
initial data satisfies certain sign conditions. We also get the analyticity of the
Cauchy problem for a family of nonlinear wave equations. Finally, we prove

that the Novikov equation has a family of traveling wave solutions.

1. Introduction

This paper is devoted to the analyticity and traveling wave solution for the
following partial differential equation (PDE):

(1.1)

⎧⎨
⎩

ut − utxx + 4u2ux = 3uuxuxx + u2uxxx,
t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

Eq.(1.1) arises as a zero curvature equation Ft − Gx + [F,G] = 0, which is the
compatibility condition for the linear system [23],{

Ψx = FΨ,
Ψt = GΨ,

where y = u− uxx,

F =

⎛
⎝ 0 yλ 1

0 0 yλ
1 0 0

⎞
⎠ , G =

⎛
⎝ 1

3λ2 − uux
ux

λ − u2yλ u2
x

u
λ − 2

3λ2 −ux

λ − u2yλ
−u2 u

λ
1

3λ2 + uux

⎞
⎠ .

Eq.(1.1) was discovered very recently by Novikov in a symmetry classification of
nonlocal PDEs with cubic nonlinearity [32]. The perturbative symmetry approach
[30] yields necessary conditions for a PDE to admit infinitely many symmetries.
Using this approach, Novikov is able to isolate Eq.(1.1) and find its first few sym-
metries. He subsequently finds a scalar Lax pair for it, and also proves that the
equation is integrable. By defining a new dependent variable y, Eq.(1.1) can be
written as

yt + u2yx + 3uuxy = 0, y = u− uxx.
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In 1993, Camassa and Holm [2] obtained the equation

(1.2) yt + uyx + 2uxy = 0, y = u− uxx,

from an asymptotic approximation to the Hamiltonian for the Green–Naghdi equa-
tions in shallow water theory, which approximates to the incompressible Euler equa-
tion at the next order beyond the KdV equation [9]. The Camassa–Holm equation
models the unidirectional propagation of shallow water waves over a flat bottom [2],
and also is a model for the propagation of axially symmetric waves in hyperelastic
rods [12]. It has a bi-Hamiltonian structure [18], a Lax pair based on a linear spec-
tral problem of second order, and is completely integrable [5]. Moreover, Eq.(1.2)
has peakon solitons [3], which are orbital stable [11]. The Camassa–Holm equation
has attracted a lot of interest in the past seventeen years for various reasons; cf.
[1, 6, 7].

The Camassa–Holm equation is not the only integrable PDE of its kind, being a
shallow water equation whose dispersionless version has weak solitons. In 1999, in
order to isolate integrable third order equations using an asymptotic integrability
approach, Degasperis and Procesi [15] derived the Degasperis–Procesi equation

(1.3) yt + uyx + 3uxy = 0, y = u− uxx.

The Degasperis–Procesi equation can be regarded as a model for nonlinear shallow
water dynamics [22]. Degasperis, Holm and Hone [14] study the formal integrability
of Eq.(1.3) by constructing a Lax pair. They also show [14] that it has a bi-
Hamiltonian structure and an infinite sequence of conserved quantities, and admits
exact peakon solutions.

Despite the similarity of the Degasperis–Procesi equation to the Camassa–Holm
equation, it should be emphasized that these two equations are truly different, for
example, the conservation laws of Eq.(1.3) are weaker than those of Eq.(1.2) [16].
One of the important features of Eq.(1.3) is that it has not only peakon solitons
[14], i.e. solutions of the form u(t, x) = ce−|x−ct| and periodic peakon solitons [42],
but also has shock peakons [4, 28] which are given by

u(t, x) = − 1

t+ k
sgn(x)e−|x|, k > 0,

and periodic shock peakons [17],

uc(t, x) =

⎧⎪⎨
⎪⎩

(
cosh 1

2

sinh 1
2

t+ c
)−1 sinh(x−[x]− 1

2 )

sinh 1
2

, x ∈ R/Z, c > 0,

0, x ∈ Z.

Analogous to the Camassa–Holm equation, the Novikov equation has a bi-
Hamiltonian structure and an infinite sequence of conserved quantities, and admits
exact peakon solutions [23, 38], i.e. solutions of the form

u(t, x) = ±
√
ce−|x−ct−x0|, c > 0, x0 is constant.

Moreover, Eq.(1.1) also has n-peakon solutions [21, 23, 37],

u(t, x) =
n∑

j=1

pj(t) exp(−|x− qj(t)|),
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where the positions qj and amplitudes pj , j = 1, · · · , n, satisfy the system of ODEs,⎧⎨
⎩

q̇j =
∑n

k,l=1 pkpl exp(−|qj − qk| − |qj − ql|),

ṗj = pj
∑n

k,l=1 pkqlsgn(qj − qk) exp(−|qj − qk| − |qj − ql|).

The Novikov equation is similar to the Degasperis–Procesi equation in form,
although, the H1-norm of Eq.(1.1) is a conservation law, which is the same as the
Camassa–Holm equation. Eq.(1.1) has cubic nonlinearity, rather than the quadratic
nonlinearity of Eqs.(1.2) and (1.3). Moreover, Eq.(1.1) itself is not symmetrical,
i.e. (u, x) � (−u,−x); some results of the Novikov equation are truly different
from the Camassa–Holm and Degasperis–Procesi equation [21,23,37,38]. Recently,
the Cauchy problem of the Novikov equation on the line and on the circle was
investigated in [36,38,40], and the global weak solution was obtained as the initial
potential y0(x) satisfies certain sign conditions [39].

The analyticity of solutions for water wave equations has been studied exten-
sively [8, 20, 24]. In this paper, we establish existence and uniqueness of local
analytic solutions to Eq.(1.1) where the initial datum is analyticity. Moreover, the
global analyticity in time is investigated as the initial potential satisfies certain sign
conditions.

The remainder of the paper is organized as follows. In Section 2, we recall several
definitions and theorems, which come from [35]. As in [27], we first prove the
existence and uniqueness of analytic solutions to Eq.(1.1) with the analytic initial
datum. Then we show the existence and uniqueness of global analytic solutions
in time to Eq.(1.1), provided the initial potential satisfies certain sign conditions.
In Section 3, similarly, we get the analyticity of the Cauchy problem for a family
of nonlinear wave equations. In Section 4, we prove that Eq.(1.1) has a family of
traveling wave solutions.

2. Global existence of analytic solutions

2.1. Local analytic solutions (in time). First, applying the operator (1−∂2
x)

−1

on both sides of Eq.(1.1), we can rewrite it as follows:

(2.1)

⎧⎨
⎩

ut + u2ux + (1− ∂2
x)

−1[∂x(
3
2uu

2
x + u3) + 1

2u
3
x] = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

In this subsection, we will establish the existence and uniqueness of analytic solu-
tions to Eq.(1.1) in finite time. For the convenience of the readers, we first recall
the following useful results.

Definition 2.1. H0,ρ is the Banach space of all the functions f(x) such that
(i) f is analytic in D(ρ) = R× (−ρ, ρ) = {x ∈ C : τ̃x ∈ (−ρ, ρ)};
(ii) f ∈ L2(Γ(τ̃x)) for τ̃x ∈ (−ρ, ρ); i.e. if τ̃x ∈ (−ρ, ρ), then f(υ̃x + iτ̃x) is a
square integrable function of υ̃x, where Γ(b) = {x ∈ C : τ̃x = b};
(iii) |f |ρ = supτ̃x∈(−ρ,ρ) ||f(·+ iτ̃x)||L2(Γ(τ̃x)) < ∞.

Definition 2.2. Hk,ρ is the Banach space of all the functions f(x) such that
(i) ∂j

xf ∈ H0,ρ for all 0 ≤ j ≤ k;
(ii) ||f ||k,ρ =

∑
0≤j≤k |∂j

xf |ρ < ∞.
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In view of the Fourier transform, the norm of Hk,ρ is equivalent to

(2.2) ||f ||k,ρ =

(∫
R

e2ρ|ξ|(1 + |ξ|2)k|f̂(ξ)|2dξ
) 1

2

.

It is not difficult to check the following properties:
(1) For any 0 < ρ1 ≤ ρ2, H

k,ρ2 ⊆ Hk,ρ1 and || · ||k,ρ1
≤ || · ||k,ρ2

;

(2) H1,ρ ⊂ Hk, ∀k ≥ 0 and ||∂x(u− v)||1,ρ ≤ c
||u−v||1,ρ1

ρ1−ρ , 0 < ρ < ρ1;

(3) If u, v ∈ H1,ρ1 , ρ < ρ1, then ||u∂xu− v∂xv||1,ρ ≤ c
||u−v||1,ρ1

ρ1−ρ .

Now, we state the main result in this subsection.

Theorem 2.1. Assume u0(x) ∈ H1,ρ0 . Then there exists β > 0, such that for any
0 < ρ < ρ0 and for a unique continuously differential (w.r.t. time) solution with
the initial datum u0(x) to Eq.(1.1). Moreover, we have

u(t, ·) ∈ H1,ρ and ∂tu(t, ·) ∈ H1,ρ, if t ∈
[
0,

ρ0 − ρ

β

]
.

Let F (t, u) = u0 −
∫ t

0

[
u2ux + (1− ∂2

x)
−1(∂x(

3
2uu

2
x + u3) + 1

2u
3
x)
]
(s, x)ds. We

can transform Eq.(2.1) into the following form:

(2.3)

⎧⎨
⎩

u = F (t, u), t > 0,

u(0, x) = u0(x).

We now state the Abstract Cauchy Kovalevskaya (ACK) Theorem in another form
as given by Safonov in [35]. Then Theorem 2.1 is a straightforward consequence of
the following result.

Proposition 2.1 ([27,35]). Consider the problem: u = F (t, u). Let ∃R > 0, ρ0 > 0
and β0 > 0 such that if 0 < t ≤ ρ0

β0
, F (t, u) satisfies the following conditions:

(i) For any 0 < ρ1 < ρ ≤ ρ0 and u ∈ {u ∈ Xρ : sup0≤t≤T |u(t)|ρ ≤ R}, the
function F (t, u) : [0, T ] �→ Xρ1

is continuous.
(ii) For any 0 < ρ < ρ0, the function

F (t, u) : [0, ρ0/β0] �→ {u ∈ Xρ : sup
0≤t≤T

|u(t)|ρ ≤ R}

is continuous and satisfies

|F (t, 0)|ρ ≤ R0 < R.

(iii) For any 0 < ρ1 < ρ(s) < ρ0 and u, v ∈ {u ∈ Xρ : sup0≤t≤T |u(t)|ρ−β0t ≤ R},

|F (t, u)− F (t, v)|ρ1
≤ C

∫ t

0

|u− v|ρ(s)
ρ(s)− ρ1

ds.

Then ∃β > β0 such that for any 0 < ρ < ρ0, u = F (t, u) has a unique solution
u(t) ∈ Xρ with 0 ≤ t ≤ (ρ0 − ρ)/β. Moreover,

sup
ρ<ρ0−βt

|u(t)|ρ ≤ R.

It is easy to check the conditions (i) and (ii) to Eq.(2.3). To get the result of
Theorem 2.1, we only need to show the following result.
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Lemma 2.1. Let R > 0. For any 0 < ρ1 < ρ(s) < ρ0 and u, v ∈ {u ∈ H1,ρ :
sup0≤t≤T ||u(t)||1,ρ−β0t ≤ R}, there exists a constant C > 0 such that

||F (t, u)− F (t, v)||1,ρ1
≤ C

∫ t

0

||u− v||1,ρ(s)
ρ(s)− ρ1

ds,

where the constant C depends on ||u||1,ρ, ||v||1,ρ.
Proof. Using the equivalent norm of H1,ρ (2.2), for any 0 < ρ1 < ρ, we have

||∂x(u3 − v3)||1,ρ1
≤ c||∂x(u− v)||1,ρ1

≤ c||u− v||1,ρ
ρ− ρ1

,

||u3 − v3||1,ρ1
≤ c||u− v||1,ρ1

≤ c||u− v||1,ρ
ρ− ρ1

,

||u3
x − v3x||1,ρ1

≤ c||∂x(u− v)||1,ρ1
≤ c||u− v||1,ρ

ρ− ρ1
,

||uu2
x − vv2x||1,ρ1

≤ c(||u− v||1,ρ1
+ ||u2

x − v2x||1,ρ1
) ≤ c||u− v||1,ρ

ρ− ρ1
.

In view of the above relations and Proposition 2.1, one has that

||F (t, u)− F (t, v)||1,ρ1

≤
∫ t

0

1

3

(
||∂x(u3 − v3)||1,ρ1

+
1

2
||(1− ∂2

x)
−1(u3

x − v3x)||1,ρ1

)
ds

+

∫ t

0

∥∥∥∥(1− ∂2
x)

−1∂x

(
3

2
(uu2

x − vv2x) + (u3 − v3)

)∥∥∥∥
1,ρ1

ds

≤ C

∫ t

0

||u− v||1,ρ(s)
ρ(s)− ρ1

ds.

This completes the proof of Lemma 2.1. �
Remark 2.1. Similar to the proof of Theorem 2.1, we also obtain the kind of analytic
solutions of the Cauchy problem for the periodic Novikov equation.

2.2. Global analytic solutions (in time). Based on the local existence of ana-
lytic solutions in Section 2.1, in this subsection we will establish the global analytic
solution of Eq.(1.1), by dealing with the space Hs,ρ, s > 3

2 , ρ > 0, with the

norm (2.2). Consider G1 of the Gevrey function space of index 1 [25]; we have
G1 =

⋃
ρ>0 H

s,ρ.
In order to obtain the global analytic solution, we first present the following

useful lemmas.

Lemma 2.2 ([38]). Assume that u0(x) ∈ Hs(R), s > 3
2 . If the initial potential

y0 = (1 −Δ)u0 does not change sign on R, then Eq.(1.1) is globally well-posed in
C(R+;H

s(R)) ∩ C1(R+;H
s−1(R)). Moreover, we have

‖ux‖L∞ ≤ ‖u‖L∞ ≤
√
2

2
‖u‖H1 =

√
2

2
‖u0‖H1 .

Lemma 2.3. Let u ∈ D(T1) = {u : T1u ∈ L2(R)}, s > 3
2 and ‖ux‖L∞ ≤ ‖u‖L∞ .

Then we obtain

(a) |〈T (u2ux), Tu〉| ≤ c‖u‖2Hs(‖u‖2Hs + 2ρ‖u‖2s+ 1
2 ,ρ

);

(b) |〈T (1−Δ)−1u3
x, Tu〉| ≤ c‖u‖2Hs(‖u‖2Hs + 2ρ‖u‖2s+ 1

2 ,ρ
);
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(c)

∣∣∣∣
〈
T (1−Δ)−1∂x

(
3

2
uu2

x + u3

)
, Tu

〉∣∣∣∣ ≤ c‖u‖2Hs(‖u‖2Hs + 2ρ‖u‖2s+ 1
2 ,ρ

),

where the operator Tu = (1−Δ)
s
2 eρ

√
−Δu and T1u = (1−Δ)

s
2+

1
4 eρ

√
−Δu.

Proof. First, we prove (a). Using the definition of T and Fourier transform, we
have

|〈T (u2ux), Tu〉| = |〈(1−Δ)
s
2 eρ

√
−Δ(u2ux), (1−Δ)

s
2 eρ

√
−Δu〉|

= |〈u2ux, (1−Δ)se2ρ
√
−Δu〉|

≤ ‖u‖2L∞ |〈Tu, Tu〉|
≤ c‖u‖2Hs |〈(1 + |ξ|2) s

2 eρ|ξ|û, (1 + |ξ|2) s
2 eρ|ξ|û〉|

= c‖u‖2Hs

∫
R

(1 + |ξ|2)se2ρ|ξ||û|2dξ

≤ c‖u‖2Hs

∫
R

(1 + |ξ|2)s(1 + 2ρ|ξ|e2ρ|ξ|)|û|2dξ

≤ c‖u‖2Hs

(∫
R

(1 + |ξ|2)s|û|2 + 2ρ(1 + |ξ|2)s+ 1
2 e2ρ|ξ||û|2dξ

)

= c‖u‖2Hs

(
‖u‖2Hs + 2ρ‖u‖2s+ 1

2 ,ρ

)
,

(2.4)

where we have applied the fact that ex ≤ (1 + xex), as x ≥ 0.
Similarly, we can get the result of (b). Finally, we will show (c) as∣∣∣∣

〈
T (1−Δ)−1∂x

(
3

2
uu2

x + u3

)
, Tu

〉∣∣∣∣
≤ c‖u‖2Hs |〈u, (1−Δ)s−1∂xe

2ρ
√
−Δu〉|

≤ c‖u‖2Hs

∫
R

(1 + |ξ|2)se2ρ|ξ||û|2dξ

≤ c‖u‖2Hs

∫
R

(1 + |ξ|2)s(1 + 2ρ|ξ|e2ρ|ξ|)|û|2dξ

≤ c‖u‖2Hs

(∫
R

(1 + |ξ|2)s|û|2 + 2ρ(1 + |ξ|2)s+ 1
2 e2ρ|ξ||û|2dξ

)
≤ c‖u‖2Hs(‖u‖2Hs + 2ρ‖u‖2s+ 1

2 ,ρ
).

(2.5)

Therefore, the results of Lemma 2.3 are derived. �

Next, we will establish the global analytic solutions for Eq.(1.1).

Theorem 2.2. Let u0(x) ∈ Hs,ρ, s > 3
2 , ρ > 0. If the initial potential (1 −Δ)u0

does not change sign on R and the function ρ(t) satisfies

ρ(t) ≤ ρ(0) exp(−6‖u‖2Hst),

then the solution u(t, x) of Eq.(1.1) with the initial datum u0(x) belongs to G1

globally in time.



SOLUTIONS OF THE CAUCHY PROBLEM FOR THE NOVIKOV EQUATION 1543

Proof. By virtue of the definition of operator T , the norm of Hs,ρ (2.2), Eq.(2.1),
and Lemma 2.3, one has that

1

2

d

dt
‖u‖2s,ρ =

1

2

d

dt
〈Tu, Tu〉

= 〈∂tTu, Tu〉 =
〈
∂t[(1−Δ)

s
2 eρ

√
−Δu], Tu

〉
= ρ̇〈T

√
−Δu, Tu〉 − 〈T (u2ux), Tu〉 −

1

2
〈T (1−Δ)−1u3

x, Tu〉

−
〈
T (1−Δ)−1∂x

(
3

2
uu2

x + u3

)
, Tu

〉

≤ ρ̇‖u‖2s+ 1
2 ,ρ

+ 3c‖u‖2Hs

(
‖u‖2Hs + 2ρ‖u‖2s+ 1

2 ,ρ

)
= c(ρ̇+ 6ρ‖u‖2Hs)‖u‖2s+ 1

2 ,ρ
+ 3c‖u‖4Hs ,

(2.6)

where Tu = (1−Δ)
s
2 eρ

√
−Δu and ρ̇ denotes the time derivative of ρ.

Due to ρ(t) ≤ ρ(0) exp(−6‖u‖2Hst), we obtain

(2.7) ρ̇+ 6ρ‖u‖2Hs ≤ 0.

In view of (2.6) and (2.7), it follows that

(2.8)
d

dt
‖u‖2s,ρ ≤ 6c‖u‖4Hs .

By virtue of Lemma 2.2, there exists a functionR(t), with ‖u‖Hs ≤ R(t). Moreover,
for any Tu0

, there exists M(Tu0
) > 0 such that∫ t

0

R4(s)ds ≤ M(Tu0
), ∀t ∈ [0, Tu0

].

Solving inequality (2.8) yields that

‖u‖2s,ρ ≤ ‖u0‖2s,ρ + 6cM(Tu0
),

which concludes the proof of Theorem 2.2. �

3. Analytic solutions for some other equations

In this section, we study the analytic solutions to the following family of third
order dispersive PDE conservation laws[15]:

(3.1) ut + c0ux + γuxxx − α2utxx = (c1u
2 + c2u

2
x + c3uuxx)x, t > 0, x ∈ R,

where α, c0, c1, c2, and c3 are real constants and subscripts denote partial deriva-
tives.

When c1 = − 3
2 , c3 = 2c2 = α2, Eq.(3.1) becomes the D–G–H equation [13],

(3.2)

⎧⎨
⎩

ut − α2utxx + c0ux + 3uux + γuxxx = α2(2uuxx + uuxxx),
t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

where the constant α2 and γ/c0 are squares of length scales, and the constant
c0 =

√
gh > 0 is the critical shallow water speed for undisturbed water at rest at

spatial infinity, where h is the mean fluid depth and g = 9.8 m/s2 is the gravitation
constant.
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Since α2 > 0, we can rewrite Eq.(3.2) in the following form:

(3.3)

⎧⎪⎨
⎪⎩

ut + uux − γ
α2 ux = −∂x(1− ∂2

x)
−1

(
u2 + α2

2 u2
x +

(
c0 +

γ
α2

)
u
)
,

t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,

where u0(x) ∈ H1,ρ0 , ρ0 > 0.
Similarly to Section 2.1, it is not difficult to obtain the unique local analytic

solutions in time of Eq.(3.3). In view of the following lemma, analogous to Section
2.2, we also can get the global analytic solutions in time of Eq.(3.3).

Lemma 3.1 ([26]). Let γ = −c0α
2. Assume the initial datum u0 ∈ Hs(R), s > 3

2 ,

and y0(x) = u0(x)− α2u0,xx(x) satisfies y0(x) ≤ 0 for x ∈ (−∞, x0], but y0(x) ≥ 0
for x ∈ [x0,∞) for some point x0 ∈ R, and y0 changes sign. Then there exists a
unique global solution u(t, x) with the corresponding initial datum u0(x) to Eq.(3.3)
that satisfies u(t, x) ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs(R)). Moreover,

ux(t, x) ≥ − 1

|α| |u(t, x)|.

When c0 = γ = 0, α = c3 = 1 and c1 + c2 = −1, 2c2 + 1 = b, Eq.(3.1) becomes
the b-family of equations

(3.4) ut − utxx + c0ux + (b+ 1)uux = buxuxx + uuxxx, t > 0, x ∈ R,

where b is a balance or bifurcation parameter.
Note that Eq.(3.4) is equivalent to the following form:

(3.5)

⎧⎨
⎩

ut + uux + ∂x(1− ∂2
x)

−1
(
b
2u

2 + 3−b
2 u2

x

)
= 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

where u0(x) ∈ H1,ρ0 , ρ0 > 0.
Similar to the method used in Section 2, by virtue of the following lemma, it is

not difficult to derive the global analytic solutions in time of Eq.(3.5).

Lemma 3.2 ([19]). Let b ≥ 1. Suppose that u0(x) ∈ Hs(R), s > 3
2 , and y0(x) =

u0(x) − u0,xx(x) does not change sign. Then the corresponding solution u(t, x) to
Eq.(3.5) exists globally.

Remark 3.1. The b-family equations (3.4) can be considered as the family of asymp-
totically equivalent shallow water wave equations that emerge at quadratic order
accuracy for any b �= 1 by an appropriate Kodama transformation. Two classical
water wave equations as the special cases of Eq.(3.4) are as follows:
(a) If b = 2, Eq.(3.4) becomes the Camassa–Holm equation; the analytic solutions
were obtained in [20, 27].
(b) If b = 3, Eq.(3.4) becomes the Degasperis–Procesi equation.

4. Traveling wave solutions

In this section, we will prove that Eq.(1.1) has a family of traveling wave solu-
tions. First, we present two definitions.

Definition 4.1. A solution u(t, x) to Eq.(1.1) is x-symmetric if there exists a
function b(t) ∈ C1(R+) such that

u(t, x) = u(t, 2b(t)− x), ∀t ∈ [0,∞),
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for almost every x ∈ R. We say that b(t) is the symmetric axis of u(t, x).

Definition 4.2. Assume that u(t, x) ∈ X(R) and satisfies

(4.1)

∫∫
R+×R

[
u(1− ∂2

x)ϕt −
1

2
u3
xϕ+ (

4

3
u3 +

1

2
uu2

x)ϕx − u3

3
ϕxxx

]
dtdx = 0,

for all ϕ ∈ C∞
0 (R+ × R). Then u(t, x) is a weak solution to the Novikov equation,

where X(R) = {u : u ∈ C(R+, H
1(R)), ux ∈ L3

loc(R)}.

Remark 4.1. Since C∞
0 (R+ × R) is dense in C1

0 (R+, C
3
0 (R)), by the density argu-

ment, we can consider the test functions belonging to C1
0 (R+, C

3
0 (R)). Using the

〈·, ·〉 notation for distributions, we can rewrite (4.1) as follows:

(4.2)
〈
u, (1− ∂2

x)ϕt

〉
−

〈
u3
x

2
, ϕ

〉
+

〈
4

3
u3 +

1

2
uu2

x, ϕx

〉
−

〈
u3

3
, ϕxxx

〉
= 0.

Lemma 4.1. Assume that U(x) ∈ X(R) and satisfies

(4.3)

∫
R

[
−cU(1− ∂2

x)φx − 1

2
U3
xφ+ (

4

3
U3 +

1

2
UU2

x)φx − U3

3
φxxx

]
dx = 0,

for all φ ∈ C∞
0 (R). Then u, given by

(4.4) u(t, x) = U(x− c(t− t0)),

is a weak solution of Eq.(1.1), for any fixed t0 ∈ R.

Proof. Without loss of generality, we can assume t0 = 0. For all η ∈ C∞
0 (R+ ×R),

let ηc = η(t, x+ ct); it follows that

(4.5)

⎧⎨
⎩

∂x(ηc) = (ηx)c,

∂t(ηc) = (ηt)c + c(ηx)c.

Assume u(t, x) = U(x− c(t− t0)). One can easily check that

(4.6)

⎧⎨
⎩

〈u, η〉 = 〈U, ηc〉, 〈u3, η〉 = 〈U3, ηc〉,

〈uu2
x, η〉 = 〈UU2

x , ηc〉, 〈u3
x, η〉 = 〈U3

x , ηc〉,

where U = U(x). In view of (4.5) and (4.6), we have

〈
u, (1− ∂2

x)ηt
〉
−

〈
1

2
u3
x, η

〉
=

〈
U, ((1− ∂2

x)ηt)c
〉
−

〈
1

2
U3
x , ηc

〉

=
〈
U, (1− ∂2

x)(∂tηc − c∂xηc)
〉
−

〈
1

2
U3
x , ηc

〉(4.7)

and

〈
4

3
u3 +

1

2
uu2

x, ηx

〉
−

〈
u3

3
, ηxxx

〉
=

〈
4

3
U3 +

1

2
UU2

x , (ηx)c

〉
−

〈
U3

3
, (ηxxx)c

〉

=

〈
4

3
U3 +

1

2
UU2

x , ∂xηc

〉
−

〈
U3

3
, ∂3

xηc

〉
.

(4.8)
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Note that U is independent of time, and for T large enough such that it does not
belong to the support of ηc, we deduce that〈

U, (1− ∂2
x)∂tηc

〉
=

∫
R

U(x)

∫
R+

∂t(1− ∂2
x)ηcdtdx

=

∫
R

U(x)[(1− ∂2
x)ηc(T, x)− (1− ∂2

x)ηc(0, x)]dx = 0.

(4.9)

Combining (4.7), (4.8) with (4.9), it follows that

〈
u, (1− ∂2

x)ηt
〉
−

〈
u3
x

2
, η

〉
+

〈
4

3
u3 +

1

2
uu2

x, ηx

〉
−

〈
u3

3
, ηxxx

〉

=
〈
U,−c(1− ∂2

x)∂xηc
〉
−

〈
U3
x

2
, ηc

〉
+

〈
4

3
U3 +

1

2
UU2

x , ∂xηc

〉
−

〈
U3

3
, ∂3

xηc

〉

=

∫
R+

∫
R

[
−cU(1− ∂2

x)∂xηc −
U3
x

2
ηc + (

4

3
U3 +

1

2
UU2

x)∂xηc −
U3

3
∂3
xηc

]
dxdt

= 0,

where we have used (4.3) with φ(x) = ηc(t, x), which belongs to C∞
0 (R), for every

given t ≥ 0. This concludes the proof of Lemma 4.1. �

Finally, for the x-symmetric solutions of Eq.(1.1), the following theorem holds.

Theorem 4.1. Let u(t, x) be x-symmetric. If u(t, x) is a unique weak solution of
Eq.(1.1), then u(t, x) is a traveling wave solution.

Proof. In view of Remark 4.1, we can assume that ϕ ∈ C1
0 (R+, C

3
0 (R)). Let

ϕb(t, x) = ϕ(t, 2b(t)− x), b(t) ∈ C1(R).

Then we obtain that (ϕb)b = ϕ and

(4.10)

⎧⎨
⎩

∂xub = −(∂xu)b, ∂xϕb = −(∂xϕ)b,

∂tϕb = (∂tϕ)b + 2ḃ(∂xϕ)b.

Moreover,

(4.11)

⎧⎨
⎩

〈ub, ϕ〉 = 〈u, ϕb〉, 〈u3
b , ϕ〉 = 〈u3, ϕb〉,

〈ub(∂xub)
2, ϕ〉 = 〈u(∂xu)2, ϕb〉, 〈(∂xub)

3, ϕ〉 = 〈−(∂xu)
3, ϕb〉,

where ḃ denotes the time derivative of b.
Since u is x-symmetric, by virtue of (4.10) and (4.11), one has that

〈u, (1− ∂2
x)∂tϕ〉 −

〈
(∂xu)

3

2
, ϕ

〉
= 〈u, ((1− ∂2

x)∂tϕ)b〉+
〈
(∂xu)

3

2
, ϕb

〉

= 〈u, (1− ∂2
x)(∂tϕb + 2ḃ∂xϕb)〉+

〈
(∂xu)

3

2
, ϕb

〉
and 〈

4

3
u3 +

u

2
(∂xu)

2, ∂xϕ

〉
−

〈
u3

3
, ∂3

xϕ

〉

=

〈
4

3
u3 +

u

2
(∂xu)

2,−∂xϕb

〉
−

〈
u3

3
,−∂3

xϕb

〉
.
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Then (4.2) and the above relations yield

〈
u, (1− ∂2

x)ϕt

〉
−

〈
u3
x

2
, ϕ

〉
+

〈
4

3
u3 +

1

2
uu2

x, ϕx

〉
−

〈
u3

3
, ϕxxx

〉

= 〈u, (1− ∂2
x)(∂tϕb + 2ḃ∂xϕb)〉+

〈
(∂xu)

3

2
, ϕb

〉

+

〈
4

3
u3 +

u

2
(∂xu)

2,−∂xϕb

〉
+

〈
u3

3
, ∂3

xϕb

〉
= 0.

(4.12)

Thus, using ϕ in place of ϕb in (4.12), as (ϕb)b = ϕ, we can get

〈u, (1− ∂2
x)(∂tϕ+ 2ḃ∂xϕ)〉+

〈
(∂xu)

3

2
, ϕ

〉

+

〈
4

3
u3 +

u

2
(∂xu)

2,−∂xϕ

〉
+

〈
u3

3
, ∂3

xϕ

〉
= 0.

(4.13)

Subtracting (4.13) from (4.2), we obtain
(4.14)

〈u,−2ḃ(1− ∂2
x)∂xϕ〉 −

〈
(∂xu)

3, ϕ
〉
+

〈
8

3
u3 + u(∂xu)

2, ∂xϕ

〉
−

〈
2u3

3
, ∂3

xϕ

〉
= 0.

For any φ ∈ C∞
0 (R), let ϕε(t, x) = φ(x)ρε(t), where ρε ∈ C∞

0 (R+) is a mollifier
with the property that ρε → δ(t− t0), the Dirac mass at t0, as ε → 0. From (4.14),
by using the test function ϕε(t, x), we have∫

R

(
−2(1− ∂2

x)∂xφ

∫
R+

ḃuρε(t)dt

)
dx−

∫
R

(
φ

∫
R+

(∂xu)
3ρε(t)dt

)
dx

+

∫
R

(
∂xφ

∫
R+

(
8

3
u3 + u(∂xu)

2

)
ρε(t)dt

)
dx

−
∫
R

(
2

3
∂3
xφ

∫
R+

u3ρε(t)dt

)
dx = 0.

(4.15)

Note that

lim
ε→0

∫
R+

ḃuρε(t)dt = ḃ(t0)u(t0, x) in L2(R),

lim
ε→0

∫
R+

((∂xu)
3ρε(t) + u3ρε(t))dt = (∂xu(t0, x))

3 + u3(t0, x),

and

lim
ε→0

∫
R+

(
8

3
u3 + u(∂xu)

2

)
ρε(t)dt =

8

3
u3(t0, x) + u(∂xu)

2(t0, x),

in L1(R). Therefore, letting ε → 0, (4.15) implies that∫
R

(
−ḃ(t0)u(t0, x)(1− ∂2

x)∂xφ− 1

2
(∂xu(t0, x))

3φ

)
dx

+

∫
R

(
(
4

3
u3(t0, x) + (u(∂xu)

2)(t0, x))∂xφ− 1

3
u3(t0, x)∂

3
xφ

)
dx = 0.

(4.16)

Thus, we deduce that u(t0, x) satisfies (4.3) for c = ḃ(t0). Applying Lemma 4.1, we

can get that ũ(t, x) = u(t0, x− ḃ(t0)(t− t0)) is a traveling wave solution of Eq.(1.1).
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Since ũ(t0, x) = u(t0, x), by the uniqueness of the solution of Eq.(1.1), we obtain
ũ(t, x) = u(t, x), for all time t. This completes the proof of Theorem 4.1. �

Remark 4.1. Theorem 2.1 in [38] and Theorem 4.1 in [39] ensure the existence and
uniqueness of the solution u(t, x) to Eq.(1.1). In both cases, one can consider the
traveling wave solution. Moreover, we get the result of Theorem 4.1.
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