PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY.

Volume 146, Number 4, April 2018, Pages 1401-1415
http://dx.doi.org/10.1090/proc/13695

Article electronically published on December 26, 2017

ON THE EQUIVALENCE BETWEEN 0,-SPACES
AND ITERATED SEGAL SPACES

RUNE HAUGSENG

(Communicated by Michael A. Mandell)

ABSTRACT. We give a new proof of the equivalence between two of the main
models for (co,n)-categories, namely the n-fold Segal spaces of Barwick and
the ®,,-spaces of Rezk, by proving that these are algebras for the same monad
on the oo-category of n-globular spaces. The proof works for a broad class of
oo-categories that includes all co-topoi.

1. INTRODUCTION

(00, n)-categories are a homotopical version of n-categories. This means that
they have i-morphisms between (¢ — 1)-morphisms for ¢ = 1,...,n and also ho-
motopies between n-morphisms, homotopies of homotopies, etc. (in other words,
invertible ¢-morphisms for ¢ > n), with composition of ¢-morphisms only associative
up to a coherent choice of higher homotopies. There are now a number of good mod-
els for (0o, n)-categories; the two that have seen the most use so far are n-fold Segal
spaces and ©,,-spaces. Iterated Segal spaces were first defined in Barwick’s thesis
[Bar05], building on Rezk’s work on Segal spaces [Rez01], and were later general-
ized by Lurie [Lur09bl, §1] to the setting of co-topoi; they are presheaves of spaces
on the category A" satisfying iteratively defined “Segal conditions” and constancy
conditions. @,-spaces, which were introduced by Rezk [RezI0] (no doubt influ-
enced by Joyal’s unpublished work on ©,,-sets and Berger’s description of n-fold
loop spaces [Ber(7]), are similarly presheaves of spaces on categories @, that satisfy
certain “Segal conditions”; in this paper we consider their natural generalization to
oo-topoi, which we will refer to as Segal ®,,-objects for clarity.

In [BSP11], Barwick and Schommer-Pries give axioms that characterize the ho-
motopy theory of (0o, n)-categories. They also prove that these axioms are satisfied
in the case of n-fold Segal spaces and @,,-spaces, which implies that these two mod-
els are equivalent. Another comparison, which relates the two models directly in
the setting of model categories, has been given more recently by Bergner and Rezk
[BR14].

The goal of this short paper is to give a new, conceptual proof of this equivalence:
we will show that both models are the oco-categories of algebras for a monad on the
oo-category of n-globular spaces (i.e. presheaves of spaces on the n-globular cate-
gory; cf. Definition [Z3]), and that these two monads are equivalent. This also brings
out the relation between (0o, n)-categories and n-categories: strict n-categories are
the algebras for the analogous monad on the category of n-globular sets.

Received by the editors April 28, 2016 and, in revised form, January 29, 2017.
2010 Mathematics Subject Classification. Primary 18D05, 55U40.

©2017 Rune Haugseng
1401


http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13695

1402 RUNE HAUGSENG

Our proof only makes use of formal properties of the co-category of spaces that
hold for all co-topoi, so we obtain a comparison between iterated Segal objects and
Segal @,,-objects in any oo-topos X. In fact, our comparison works in sufficient
generality to allow us to conclude iteratively that Segal ®,,,+....p,-0bjects in X are
equivalent to Segal @,, X --- x @,, -objects that are reduced (i.e. satisfy certain
constancy conditions).

In this paper we focus on the “algebraic” theory of (oco,n)-categories, i.e. we
do not invert the appropriate class of “fully faithful and essentially surjective mor-
phisms”. However, this localization is given for both n-fold Segal spaces and ©,,-
spaces by restricting to subcategories of complete objects, and our equivalence is
easily seen to restrict to an equivalence between these subcategories.

1.1. Notation. This paper is written in the language of co-categories, and we reuse
some of the terminology and notation of [Lur09al[Lurl4] without comment. More-
over, we use the oo-categorical terminology uniformly, even when the oo-categories
in question are ordinary categories. In particular, for us a cofinal functor F': ¢ — D
between ordinary categories is a functor that is cofinal in the oco-categorical sense
(also called homotopy cofinal). Similarly, we will speak of (co)Cartesian fibrations
between categories rather than Grothendieck (op)fibrations.

If € and X are oo-categories we will write P(C; X) for the co-category Fun(€°P, X)
of presheaves on € valued in X.

2. ©,-OBJECTS AND SEGAL CONDITIONS

In this section we will define our main objects of study in this paper: reduced
Segal ©,,-objects, which are certain presheaves on categories ®,,, whose definition
we will now recall; these categories were originally introduced by Joyal, but here
we make use of the inductive reformulation of the definition due to Berger [Ber(7,
Definition 3.1].

Definition 2.1. The category ©,, is defined inductively as follows: First set @ :=
*. Then define ©,, to be the category with objects [i](I1,..., ;) with [{] € A and
I, € ©,,_y; a morphism [i|(I1,...,I;) — [j](J1,...,J;) is given by a morphism
¢: [i] = [j] in A and morphisms ¥,q: I, — J; in ©,_1 where 0 < p < ¢ and
d(p—1) < ¢ < ¢(p). The composite of (¢, 9pq): [i](L1,..., L) = [§](J1,...,J;) and
(@' Vg): [1(J1s o5 Jj) = [KI(Kq, ... Ky) is (@' 0 ¢,4y),.) where 9] := 1y, 0 9p,
where ¢ is the unique index with ¢(p—1) < ¢ < ¢(p) such that ¢'(g—1) < r < ¢'(q).
If X is an oo-category, we will refer to presheaves @9 — X as @,,-objects in X.

There is a useful factorization system on ®,, given by the inert and active mor-
phisms, in the following sense:

Definition 2.2. A morphism ¢: [n] — [m] in A is inert if it is the inclusion of
a subinterval in [m], i.e. ¢(i) = ¢(0) + ¢ for all i, and active if it preserves the
endpoints, i.e. ¢(0) = 0 and ¢(n) = m. We then inductively say a morphism
(¢, i) in ©,, is inert if ¢ is inert in A and each ;; is inert in ©,,_1, and active if
¢ is active in A and each ;; is active in @,,_;. We write ®,, ; for the subcategory
of ®,, containing only the inert maps and i,,: ®,,; = ©,, for the inclusion.

Every morphism in ®,, can be factored as an active morphism followed by an
inert morphism — moreover, as objects of ®,, have no non-trivial automorphisms,
this factorization is strictly unique. This factorization system seems to have been
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first constructed by Berger — it is a special case of [Ber02, Lemma 1.11] (where the
inert maps are called immersions and the active ones covers). It is also a special
case of [Web(7, Proposition 4.20] and of [Barl3, Lemma 8.3]; moreover, using the
inductive definition of ©,, it is easy to check directly by hand.

The objects of ®,, can be thought of as n-dimensional pasting diagrams for com-
positions in n-categories. We now wish to define the appropriate Segal conditions
for ®,-objects that make their values at such a pasting diagram decompose ap-
propriately as a limit of the values at the basic i-morphisms (i = 0,...,n). These
were originally specified by Rezk [Rez10], but we will use an alternative formula-
tion influenced by the work of Barwick on operator categories [Barl3]; this is also
a special case of the general version of Segal conditions considered in [Web07]. The
definition requires introducing some notation:

Definition 2.3. We define objects C; € ©,, for i = 0,...,n by Cy := [0]() and
C; = [1)(C;-1) for i > 0. (For n = 0, we let Cjy denote the unique object of @ = *.)
Let G,,, the n-globular category, be the full subcategory of ®,; containing the
objects Cy,...,Cp; we write v, for the inclusion G,, — ©,,;. We can informally
depict the category G,, as

Co=Ci=---=20,.

We refer to the object Cy as the k-cell. Given I € ©,,, we will write G,,/; for the
category G, xe@, ; (On,i)/1, and refer to its objects as the cells of I.

Definition 2.4. Suppose X is a presentable co-category. A presheaf F': @P — X
is a Segal ©,-object if its restriction F|ger is the right Kan extension along
Y of its restriction to G2 — in other words, for I in ®, the natural map
F(I) — hmce«;‘“’” F(C) is an equivalence. We write Pgeg(®y; X) for the full sub-
category of P(0,;X) spanned by the Segal ®,-objects, and Pges(Oy, i; X) for the
analogous subcategory of P(0,,;; X); these are accessible localizations of P(0,,; X)
and P(©,, ;; X), respectively.

This is equivalent to the inductive Segal condition given, for example, in [Rez10]:

Proposition 2.5. F € P(0,;X) is a Segal presheaf if and only if the following
conditions hold:

(1) For every object I = [i|(I1,...,I;) (i #0), the natural map
F(I) = F(A](I)) Xr(cy) -+ Xr(ce) FIAIT))

is an equivalence.
(2) The presheaf F([1](-)): Oy, — X is a Segal ©,,_1-object.

It is convenient for us to prove Proposition 25 using a result about general limit
decompositions for Segal objects, which we turn to first.

Definition 2.6. Suppose f: I — J is an active morphism in ®,,. For a: C — [ in
Gpyr,let C ELN Jo 2% J be the (unique) active-inert factorization of foa: C' — J.

Given a factorization of o as C 55 ¢ a—l> I with £ inert, the composite C —
C’" — J, has an active-inert factorization C — X — J,/. Since this also gives an
active-inert factorization of C' — J,» — J we see that X = J,, and so ¢ determines
an inert morphism J, — Jo. We thus get a functor G,,,; — Cat by sending «
to G, s, and a morphism in G, ; to the functor given by composition with the
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associated inert morphism J, — Jor. Let G,/ — G,,/; denote the corresponding
coCartesian fibration. Composition with the inert morphisms J, — J gives a
functor G,y — Gy, .

Proposition 2.7. For any active morphism f: I — J in Oy, the functor G,z —
Gy, is cofinal.

Before we prove this, we make the following simple observation:

Lemma 2.8. Suppose p: € — B is a Cartesian fibration. Then p is cofinal if and
only if the fibres &y, are weakly contractible for all b € B.

Proof. By [Lur09al Theorem 4.1.3.1], the functor p is cofinal if and only if the oco-
categories &,/ := & x5 By, are weakly contractible for all b € B. If p is Cartesian, for
every b € B the functor &, — &,/ is coinitial (i.e. the op’ed functor is cofinal): for an
object e = (e € €, f: b — p(e)) in &, the co-category (€) /. has a terminal object,
given by a Cartesian morphism over f with target e. This functor is therefore in
particular a weak homotopy equivalence by [Lur09al Lemma 4.1.1.3(3)]. O

Proof of Proposition 7. The projection G,,/; — G,,,; is a Cartesian fibration, so
by Lemma 2.8 it suffices to show that for v: C' — J, the fibre (G,,/¢), is weakly
contractible; we will prove this by induction on n. The category (G,,/s), consists
of diagrams

where f, is active and i, is inert. Since inert maps are monomorphisms in @,,, we
may identify this with the full subcategory of G,,/; spanned by those cells a: C" — T
such that ~ factors through i,,.

First consider the case where n = 1. Then ~ is a map [a] — J where a is either
0 or 1. If a = 1, then there is a unique cell a: [1] — I such that ~ factors through
iq, namely that where f(a(0)) < v(0) and f(a(1)) > ~v(1). Thus (Gq/5), = *.
On the other hand, if a = 0, then (G,¢), is the full subcategory of G;,; spanned
by the inert maps «: [0] — I such that f(a(0)) = v(0) and «: [1] — I such that
f(a(0)) < ~(0) and f(a(l)) > ~(0). The nerve of this category is an iterated
pushout of A'’s along inclusions A? — A, and so is weakly contractible, as
required.

Now suppose the result is known for n — 1. The cell C' is either [0]() or [1](C)
where C' is a cell in @,_;. If C = [1)(C), then the underlying diagram in A is
unique and of the form

Thus ¢’ must also be of the form [1](C"). Let J := Jyo1) where J = [f](J1, ..., J5),
let 5 denote the map C' — J induced by v, set I := Ioy1) where I = [i](Iy, ..., 1;),
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and take f to be the induced map I — J. Then the category (G,,/f)~ can be
identified with (G, _, / f~).~y, which is weakly contractible by assumption.

If C = [0](), consider the projection (G )y — (Gi/y,), given by taking the
underlying maps in A. This is a Cartesian fibration, so using Lemma [Z.8 again, it
suffices to show that the fibres (G,,/f),,= at = € (Gy/y, ), are weakly contractible.
The object = is a diagram

[a] ——

[i]
| |0
0] —— [[] — [,

N

where a = 0 or 1. If a = 0, then the fibre is *, and if a = 1 it may be identified

with G,y Lag1y? which is again weakly contractible by assumption. ]
Applying Proposition [Z7] to the unique (active) map f: J — [0]() we get as a

special case:

Corollary 2.9. For each I in ©,, the category G, ; is weakly contractible. ([l

Corollary 2.10. Suppose F' € P(0O,,;X) is a Segal object. Then for any active
morphism f: I — J, the natural map

F(J) = lim F(J.)

op
acG

is an equivalence.

Proof. Using the Segal conditions for J, we have

lim F(J,) ~ lim lim F(C).
op op op
a€GT, a€GP, O I, €6,

By [Haul6l Corollary 5.7] we can rewrite this limit as limCGGop}f F(C), and by
Proposition 2.7 this limit is equivalent to limes_, JEG, F(C), which we know by
the Segal condition for J is equivalent to F'(.J). O

Proof of Proposition 2.5 Fjrst suppose F': @2 — X is a Segal iject. Given I =
[{](I1,...,1;) (i #0), set I := [i](Cp-1,...,Cn_1) and let f: I — I denote the
(active) map given by the identity [i] — [i] and the unique active maps Cp,—1 — I,,.
If A denotes the full subcategory of G, /i containing the i maps C,, — I and the i+1
maps Cy — I, then the inclusion A — G, is cofinal. Together with Corollary 2T0]
this gives an equivalence

F(I) = lim F(Ia) = F(1(I1)) Xr(co) X r(ce) F(AL),

op
aeGn/I-

which is condition (1). Condition (2) holds since the functor G,,_1,; — G,/
induced by [1](-): ©,_1 — ©,, is cofinal.

Now suppose conditions (1) and (2) hold for F; we then wish to show that
F(I)— limcﬁlergI F(C) is an equivalence for any I = [i|(I1,...,I;) € ©,. With
f: I — I as above, Proposition 27l implies that it suffices to prove that the natural
map F(I) — limsz;f F is an equivalence. Using [Haul6, Corollary 5.7] we can
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rewrite this as an iterated limit limaeg, r limg,,, F. But now using the same
cofinal functors as above, we can rewrite this again as

C~)11€Gn,1/11 C*}L‘,G(anl/ji

(coplim | FOIED) iy -+ xm (o FQIED).
which is equivalent to F'(I) by (1) and (2). O

For the co-category 8 of spaces, Pseg (Or; 8) is the co-category underlying Rezk’s
model category of ©,,-spaces from [Rez10]. More generally, if X is, say, an co-topos,
the oco-category Pgeq(®n;X) gives the (algebraic) oo-category of internal (oo, n)-
categories in . We would like to be able to iterate this definition, so that we get a
good definition of Segal ©,,-objects in Pgeg(©,,; X). Just as in Barwick’s definition
of n-fold Segal spaces, this requires forcing some of the images to be constant; to
formalize this notion, it is convenient to introduce the following technical definition:

Definition 2.11. A presentable co-category with good constants is a pair (X, U)
consisting of an oo-category X together with a full subcategory U satisfying the
following requirements:

(a) X and U are both presentable.

(b) The inclusion U < X preserves all limits and colimits (and hence, by the
adjoint functor theorem, has both a left and a right adjoint).

(¢) Coproducts in U are disjoint, i.e. for any two objects U, U’ € U, the com-
mutative square

) ——U

L

U —unv

is Cartesian.

(d) Coproducts over U are universal, i.e. for any morphism f: X — U in X with
U € U, the functor f*: X,; — X, x, given by pullback along f, preserves
the initial object and arbitrary coproducts.

Example 2.12. If X is an oco-topos, then (X, X) is a presentable co-category with
good constants by [Lur(9al Theorem 6.1.0.6].

Remark 2.13. Since we are requiring pullbacks over U to preserve all coproducts in
X, not just coproducts in U, a distributor in the sense of Lurie [Lur09bl Definition
1.2.1] is not necessarily a presentable oo-category with good constants. However,
the key examples — oo-topoi and iterated ©,-objects in oco-topoi — are both
distributors and presentable co-categories with good constants.

Definition 2.14. Suppose (X, U) is a presentable co-category with good constants.
We say a presheaf X € P(G,;X) is reduced if X(C;) is in U for all i < n; we write
Pr(Gp; X, U) for the full subcategory of P(G,,; X) spanned by the reduced objects.
A Segal object X in Pgeg (O i3 X) or Pgeg(©,,;X) is then called reduced if X|ger is
reduced; we write Prgeg(@,; X, U) and Prgeg (O i; X, U) for the full subcategories
of P(0,,;X) and P(O,,;; X), respectively, spanned by the reduced Segal objects.
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Proposition 2.15. Suppose (X,U) is a presentable co-category with good constants.
(i) The co-category Prges(On; X, U) is presentable, and the inclusion
Prgeg(@n; X, U) = P(O,; X)
admits a left adjoint L.,.
(i) The functor c¢*: U — P(O,;X) that takes an object in U to the constant
presheaf with that value is fully faithful and takes values in Prges(@pn; X, U).
(i11) The pair (Prgeg(On; X, U), W), with U viewed as the full subcategory of con-
stant presheaves, is a presentable co-category with good constants.

Before we give the proof of this proposition, we need some technical lemmas:

Lemma 2.16. Let (X,U) be a presentable co-category with good constants. Suppose
given maps of sets f: A — B and g: C — B, objects X, € X fora € A, Y, € X for
ceC, U, €U forbe B, and morphisms ¢po: Xo = Usq) and e: Yo — Uy(ey in X
for alla € A and c € C. Then the natural map

T Xexu Y- (H Xa> (Len U <H Y)
(a,b,c)eAxC a€cA ceC
is an equivalence in X.

Proof. For b € B, let A, and C} denote the fibres of f and g at b. Then condition
(d) in Definition [ZTT] gives equivalences

T Xexove ]I ]I XaxUmeH(HXa)xUb(HYc),

(a,b,c)eAXBC beB (a,c)eApxCh beB \acA, ceCy

%) <o (100) = 11 (11 % I v

(H HbeB ¢ HbeB ) ¢
acA ceC b,b""eB \a€Ay ceCyn

Let X'b = I,eca,Xq and f’b = ¢eq, Ye; then it remains to show that

5 0, V£
) }/b// ~ { ~ ~ #

Xy % / "
Xy XUy Yb/, v =10".

(]—IbeB Us
Since Xb/ X(L[beB ) fﬁ,w ~ X’b/ Xy, Up % (Iyep U0) Uy xu,, }7},// and pullbacks over

objects in U preserve the initial object, it is enough to show that
0, ¥£Y,
Ub/ X(HbeB Ub) Ub” B {Ub/; v ="
To see this we observe that, setting V' := ][, U, for b’ # b" we have
Uy X(Hbes Ub) Uy >~ Uy XU, 11V V xy Upr =~ ] Xy Upr =~ (D,

using that coproducts in U are disjoint and pullbacks in U preserve the initial object.
For ¢ = 5 we have

Uy ~ Uy xy,,uv (Upy IIV) =~ (Uy x v, uv Uy ) U (Uy xu, uv V) ~ Uy Xy, uv Uy O

Lemma 2.17. Given a set S and objects Y; € Pigeg(@n; X, U) for i € S, the

coproduct Y := [],c 4 Yi in P(©,;X) is a reduced Segal ©,,-object.
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Proof. Since U is closed under colimits in X, the object Y is reduced. Applying
Lemma [2-T6 we see that for I = [i]([1, ..., I;) the natural map

Y(I) = Y([1(11)) Xy (co) -+ Xv(co) Y ([1(1:))

is an equivalence. By Proposition this implies by induction on n that Y is a
Segal object. |

Proof of Proposition [ZIH. The co-category Pigeg(®n;X,U) fits in a commutative
diagram

?rch(Gn; xv u) — :Pch((-)n; x)

| |

(Pr(Gn; X, u) — (P(Gn; x)

l l

P(Gp-1;U) —— P(Gp—1; X),

where both squares are Cartesian. Moreover, the bottom horizontal and the two
right vertical functors are right adjoints between presentable oo-categories. By
[Lur09al, Theorem 5.5.3.18] limits in the co-category Pr® of presentable co-categ-
ories and right adjoints are computed in that of large co-categories, hence all co-
categories in this diagram are presentable and all functors are right adjoints. This
proves (i).

Since ©,, is weakly contractible (as it has a terminal object) the image of the
constant presheaf functor ¢*: U — P(O,; U) — P(O,,; X) is fully faithful. Constant
presheaves on objects in U satisfy the Segal condition by Corollary 2.9 so this
functor factors through Prgeq(O5; X, U), which gives (ii).

For (iii), we already know conditions (a) and (c) in Definition XTIl Limits
in Prgeg(@r; X, U) are computed in P(O,;X), i.e. objectwise, and colimits are
given by the localizations of the corresponding colimits in P(©,,;X); since con-
stant presheaves on objects in U are already local, this implies condition (b). It
remains to check condition (d), i.e. given maps Y; — ¢*U for i € S we need to show
that the natural map

[IX xevYi= X xev [TV

is an equivalence. By Lemma 2-T7] these coproducts can be computed in P(©,,; X),
so it suffices to show that for I € ®,, we have that

X XUY XU Y
[ LI

is an equivalence, which is true since U is in U. O

Definition 2.18. For (X,U) a presentable co-category with good constants, we
write Prgeg (@ X Oy ; X, U) for the full subcategory of P(®,, x ©,,; X) corresponding
t0 Prseg (On; Prseg (Om; X, U), U). Similarly, we define Prgeg (O, X -+ X Opy; X, U)
and Pigeg(Op, i X -+ X O, ;; X, U) by induction.

Example 2.19. The oco-category Prges(A™;8) is the co-category of Barwick’s n-
fold Segal spaces [Bar05]. More generally, Prgeq(A™; X, U) gives Lurie’s n-fold U-
Segal spaces from [Lur09b).
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3. THE FREE REDUCED SEGAL ©,,-OBJECT MONAD

Our goal in this section is to show that the co-category Pigeq(@n;X,U) is the
oo-category of algebras for a monad on P,(G,; X, U), and to understand this monad
explicitly. This is closely related to the arguments used by Berger in the proof of
[Ber02, Theorem 1.12]. Before we state our precise result, we must introduce some
notation:

Definition 3.1. For I € ©,,, let Act(I) denote the set of active morphisms I — J
in ®,. A morphism f: I’ — I determines a map of sets f*: Act(I) — Act(I’)
by taking ¢: I — J to the active morphism ¢': I’ — J’ that gives the (unique)
active-inert factorization of I’ — I — J. Since this factorization is unique, it is
easy to see that this determines a functor Act: @ — Set.

Definition 3.2. Define ¢,,: ©,,_1 — ©,, inductively by taking ¢1: x = @y — @1 =
A to be the inclusion of [0] and setting

tn([m](I1, ... Im)) = [M)(tn—1(11), -y tn—1(Tm))-
Notice that ¢y, is fully faithful. We write ¢} := ¢, 0 -0 tpp1: Op = O,

Proposition 3.3. Let (X,U) be a presentable co-category with good constants.
(i) The functor i} : Prgeg(@n; X, U) = Prgeg(Orni; X, U) has a left adjoint F,.
(i) The adjunction F,, =i} is monadic.
(1ii) The monad T, =i} F,, on Prgeg (O i3 X, U) satisfies

X~ [ X
I—JeAct(I)

In particular,

X(C) =~ [T X
JEO
The proof relies on a simple description of the left Kan extension functor i, ,
which we prove first:

Lemma 3.4. The functor iy : P(O,;;X) = P(O,;X) can be described explicitly
as
i FI)~ J[  F.

I—JeAct(I)
In particular, in F'(Ck) ~ [[;eqp @, F (R (1))

Proof. We first show that the inclusion Act(I) — (@2%) /1 := O xgop (OFP) /1 is
cofinal. By [Lur09al Theorem 4.1.3.1] this is equivalent to the category (Act([)), x
being weakly contractible for each X = (J, f: I — J) in (®,,;);,. But this category
consists of active-inert factorizations of f, and so is contractible as this factorization
is unique. Hence the left Kan extension i, F is indeed given by

G F (1) ~ colim F(J)~ F(J).
W U= NE®@%)/1 ) Iﬁcht(I) )

If I = C}, then the only objects of ®,, that admit an active map from C, are those
in the image of the fully faithful functor (7 : ®, — ©,, (and these active maps are
unique), which gives the expression for i, 1F(C;). O



1410 RUNE HAUGSENG

‘We need one more observation:
Lemma 3.5. The functor Act: @ — Set is a Segal ©,,-object.

Proof. We prove this by induction on n, using the criterion of Proposition For
I = [i|(I1,...,I;) € O, the definition of active morphisms in ©,, immediately
implies that Act(I) = Act([1](I1)) x -+ - x Act([1](I;)) and Act(Cp) = *, which gives
condition (1). To prove (2), suppose I = [1](J) for some J € ©,_;. Then it is
immediate from the definition of active maps in ©,, that

Act(I) = [ ] Act'(J)*
1=0

(where for clarity we write Act’ for the ©,,_;j-version of Act). By assumption we
have Act’(J) = lime_, yegor O Act’(C), hence as limits commute and coproducts

in Set commute with connected limits, we have isomorphisms

Act(I) = ﬁ < lim Act’(C’)) = lim (ﬁ Act/(C’)Xi>

op op
- CaJeGn_l/J CHJEGH_UJ i—0

li Act([1)(C
o i, A1)

which is condition (2). O

Proof of Proposition B3l Let L,, denote the localization functor from P(0,,;X) to
Prseg(On; X, U); then Lyiy, clearly restricts to a left adjoint to ¢}, which gives (i).

To see that the adjunction is monadic it suffices by [Lurl4l Theorem 4.7.4.5] to
prove that i) detects equivalences and that colimits of ¢} -split simplicial objects
exist in Prges(@y; X, U) and are preserved by . Since ©,,; is a subcategory of
©®,, containing all the objects it is clear that ¢}, detects equivalences. Suppose we
have an 4} -split simplicial object Xo in Prges(@n; X, U), ie. i} X, extends to a
split simplicial object X, : A% — Pigeg(Opi; X, U) (where A_ is as in [Lurld]
Definition 4.7.3.1]). If we consider X, as a diagram in P(0,;X) with colimit X,
then this colimit is preserved by i : P(@,,;X) — P(0O,,;; X) (since this functor is a
left adjoint). But by [Lurl4, Remark 4.7.3.3], the diagram X is a colimit diagram
also when viewed as a diagram in P(©,,;;X), so i, X ~ X’ . This means that X
is a reduced Segal ®,,-object, and so it is also the colimit of X4 in Pigeq(@n; X, U),
and its image in Prgee (@ 53 X, U) is X', as required. This proves (ii).

To prove (iii), we will show that if X € Prgeg(@p i; X, U), then 4,1 X is a reduced
Segal ©,,-space, hence F,, X is just given by the left Kan extension %, X:

To see that i, is reduced, we observe that for ¢ < n the expression for i, 1F(C;)
in Lemma [3.4] is a coproduct of limits of objects in U, and hence is also in U since
this is closed in X under all limits and colimits.

Now since X is a Segal ®,, ;-object we have, using Proposition 2.7

XD~ [ x~ ]I lim X (J,).

OCGG,,/I
I—JeAct(I) I—JeAct(I)

These limits over G,/ can be rewritten as iterated pullbacks over objects in U,
and by Lemma we have that Act(I) is equivalent to lim,. ¢—req, ,, Act(C).

n/I
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Applying Lemma [2.16] iteratively we can then conclude that the natural map
lim X(J,) — li X(J
I e XU =g T X0
I—sJeAct(I) C—Ja

is an equivalence. Here the target is equivalent to lim,. c—rec,, in 1 X(C), ie.
in1 X satisfies the Segal condition. The expression for F, X (C;) is then immediate
from Lemma [3.4] O

4. COMPARISON

Our goal in this section is to prove our comparison result. More precisely, we
will show:

Theorem 4.1. Let 71,: A X ©,, = O, 11 be the functor determined by sending
([n], I) to [n](L,...,I). Then composition with 11, induces, for (X,U) a presentable
oo-category with good constants, an equivalence

T 0t Prseg(@ng1; X, U) = Prseg(A x ©,; X, U).
Iterating this result, we get:

Corollary 4.2. Let 1, p: AF x O, — O,k be defined inductively as

idAXTe—1,n

AF x @O, AXO,ip 1 N O,
Then for (X,U) any presentable co-category with good constants the functor
T]:’»n: fPrSeg(Ak X ®na x7 u) — TrSeg((-)n-i-k; x7 u)
is an equivalence. O

In particular, taking X to be an oo-topos and n = 0 we get an equivalence be-
tween the co-category Prgeq(AF; X) of k-fold Segal spaces in X and the oco-category
Pseg(Or; X) of Segal Oy-objects in X.

Remark 4.3. Similarly, applying Theorem [ Tlinductively we get for any sequence of
positive integers (n1,...,n;) an equivalence between Prgeg (@, X -+ x O, ; X, U)
and TrSeg(®n1+-~~+nk; DC, U)

To prove Theorem [£.] we will use the following analogue of Proposition [3.3t

Proposition 4.4.
(i) Let i1y =11 X ipn: Aj X Op; = A X O,,. The functor
i1 00 Prseg(A X O3 X, U) = Prseg(Af X O 5 X, U)

has a left adjoint F ,,.
(ii) The adjunction I, i, is monadic.
(iii) The monad Ty =47 , F1n on Prseg(Al X O, 5; X, U) satisfies

T, X ([0], Cp) =~ X ([0], Co),

T1,n X ([1],Cr) = [ ] FuX(Cr) X x((01,00) X x((0],C0) FnX (Ci),

—

7=0

where X := X ([1], -) and the factor F,X(Cy) occurs j times.



1412 RUNE HAUGSENG

For the proof we need the following observations:

Lemma 4.5. Suppose L : C = D : R is an adjunction. Then for any d € D there
is an adjunction

Ld : G/Rd = D/d : Rd,

where Ly(x — Rd) is the composite Lv — LRd — d wusing the counit, and
Ri(y — d) is Ry — Rd.

Proof. Let n: LR — id be the counit for the adjunction. This determines a natural
transformation n4: LyRy — id, and the map

Mape ., (%, Ray) = Mapy, . (Lax, LaRay) = Mapy, , (Laz, y)

is the map on fibres at * — Rd of the commutative square

Map@ (‘r7 Ry) — Map@ (an y)

Mape (2, Rd) —— Mapq, (Lz, d)

induced by 7. Here both horizontal maps are equivalences, since 7 is the counit of
the adjunction L - R, hence so is the map on fibres. The natural transformation ny
is therefore the counit of an adjunction Ly 4 Ry by [Lur09al, Proposition 5.2.2.8].

|

Lemma 4.6. If C is an oco-category with finite products, then for all x € C there is
a pullback square

C/zxe — Fun(Gi®,C)

! |

{z} — €

where the right vertical map is given by evaluation at Cy.

Proof. Let A denote the category 0 — oo < 1, i.e. {0,1}*. Then for z,y € C we
have by [Haul4l Lemma 8.4] a pullback square

C/axy — Fun(A°P,€)

!

{z,y} — C x €,

where the right vertical map is given by evaluation at 0 and 1. Now G can be
identified with the pushout A Il 1) *, so we also have a pullback square

Fun(Gj”, €) — Fun(A°P,C)

l l

C— 5 CxC,

where the bottom horizontal map is the diagonal map. Putting these two squares
together gives the result. (|
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Proof of Proposition 4l The functor i1,: A; X @,; — A x O, factors as the
composite of inclusions 4 ,, 1= id X ip: Aj X O3 — A x O, and i}, = iy X
id: Aj x ©®, = A x @,. Here (i{,)* is just i] applied to the presentable oo-
category with good constants (Pigeg(®r; X, U),U), so by Proposition B3] it has a
left adjoint, given by i1,. To prove (i) it therefore suffices to show that (i} ,)* has
a left adjoint.

Let Prgeg(G1 X ©,,; X, U) denote the full subcategory of P(G; x ©,,; X, U) spanned
by those presheaves X such that X(Cj) is a constant presheaf valued in U and
X(Ch) is in Prgeg(®,; X, U). Then right Kan extension along 7 x id gives an
equivalence between Piges(G1 X @,; X, U) and Prgeg(A; x O,; X, U). Similarly,
Prgeg(Ai x ©,,5; X, U) is equivalent to the analogous full subcategory Pigeq(G1 X
©,,1; X, U) of P(Gy x ©,,;X,U). Under these equivalences (i} ,,)* corresponds to
the functor j* where j :=idg, X in: G1 X Oy ; = G X O,

We then have a commutative triangle

Preses(G1 X O3 X, U) —— Prseg(Gy x O, 55X, 1)

\/

u,

where the diagonal morphisms are given by evaluation at Cy, since this takes values
in the constant presheaves on @,, valued in U.
By Lemma .6 we can identify the morphism on fibres at U € U with the functor

j)rSeg((an; x> u)/UXU — jj1"Seg((")'rz,i; xa u)/UXU

given by composing with i,,, where U x U denotes the constant presheaf with this
value. Lemma therefore implies that the functor j* has a left adjoint on the
fibre over each U € U, given by applying F;,, and composing with the counit map
to the constant presheaf. By [Lurl4, Proposition 7.3.2.6] this implies that (i} ,)*
has a left adjoint, provided the two diagonal functors are Cartesian fibrations and
j* preserves Cartesian morphisms.

The functor eve, : Prseg(G1 X O3 X, U) — U has a right adjoint R, taking U € U
to the right Kan extension along {Cy} < G; of the constant presheaf on U. (Thus
R(U)(Ch) is the constant presheaf on U x U.) To prove that evg, is a Cartesian
fibration we can therefore apply the criterion of [Haul7, Corollary 4.52]: We must
show that given X € Piges(G1 x ©,; X, U) and a morphism f: U — X (Cp) in U, if
we define X’ as the pullback of X — R(X(Cy)) along R(U) — R(X(Cy)), then the
morphism X'(Cy) — R(U)(Cy) ~ U is an equivalence; this is clear since pullbacks
in Prgeg(G1 x Op; X, U) are computed objectwise. The map X’ — X is a Cartesian
morphism over f with target X; the same argument shows that the other functor is
likewise a Cartesian fibration, and j* preserves Cartesian morphisms as it preserves
pullbacks. This completes the proof of (i).

(ii) now follows by the same argument as in the proof of Proposition B3|ii),

and (iii) by Proposition [3.3] and our description of the left adjoints to (i} ,)* and
(W,)". 0

Proof of Theorem L1l The functor 77, takes reduced Segal ®,i-objects to re-
duced Segal A x ©,-objects: condition (1) in Proposition implies the Segal
condition in the A-coordinate, and condition (2) implies it in the ®,,-coordinate;
since 71, ([0],~) is constant at [0](), we see that 77, also preserves reducedness.
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We then have a commutative diagram

Prses(Ona1: X, U) — Prgen(A x ©,5 X, )

ii; 1 lii,n
T n,i
fPrSeg(Gn-i-l,i; X, u) — :PrSeg(Ai X en,i; X, u)
[ [
By,
tPr(((}n+1; xu u) E— UJr((Gl X GnJrl; xa u)u
where v1 5, := ¥1 X, and 8 is the restriction of 7 5, to a functor : G; xG,, = Gy
(this sends (Cy, C;) to Cp and (Cq,C;) to Ciqq).

We will now prove that the functor 77, ; is an equivalence. Observe that the ver-
tical morphisms in the bottom square are equivalences, since the Segal presheaves
on ©,1; and A; X ©,,; are precisely those presheaves that are right Kan exten-
sions along ~v,4+1 and 1 X v, of presheaves on G,; and G; x G, respectively.
It therefore suffices to show that the functor () is an equivalence. The reduced
presheaves on G; x G,,41 are precisely those that are in the image under 3 of
Pr(Gry1; X, U), so to see this it is enough to prove that 5 is fully faithful. Con-
sider the left adjoint 3,,1: P(G1 X Gp; X) = P(Gy41; X), given by left Kan extension
along 3°P: G¥ x GP — G5 ;. The category (G}* x G9P) ¢, has a terminal object

for every k = 0,...,n+ 1, namely ((C1,C;-1),8(C1,C;-1) 1, C;) for i > 0 and
(Co, Cy), B(Cq, Co) d, Cy) for i = 0. Thus for F € P(G; x G,,; X) we have

F(Cl, Cl;l), 7> 0,
F(Co,Co),  i=0.

The counit £8* — id is therefore an equivalence, which implies that 8* is fully
faithful, as required.

The vertical maps in the top square above are monadic right adjoints by Propo-
sition B.3] and Proposition 4l To see that 77, is an equivalence it then suf-
fices, by [Lurld, Corollary 4.7.4.16], to show that for every X € P,(Gp41; X, U) ~
Prseg (Ong1,i3 X, U) the unit map X — 4 Fpq ~ i} 5 T1 nFny1 induces an equiv-

BiF(C;) ~ {

alence Fy , X = T Fny1 X, or (since 47, detects equivalences) the induced map
(F1,,X)(Ck) = (Fr41X)(Ck) is an equivalence for k =0,...,n+ 1.

To prove this we will rewrite our expression for (F,4+1X)(C)) from Proposi-
tion B3] which says

FonX(Co)~ ] "X
I€ob Oy

Let (ob ®); denote the subset of ob @, consisting of objects of the form [4](- - -).

By Proposition 25 we get for every object I = [i](I1, ..., I;) in ®; an equivalence

n+1,% n+1,% n %
Lk+ ’ X(I) ~ Lk+ ’ X(kal) XLZ"H’*X(CO) s XLZ"H‘*X(CO) Lk+1 X(Uk_[i),

where oy ©p_1 — Oy is the functor [1](-). There is a bijection (ob®y); =
(ob®j_1)*(~1D and since coproducts over U are universal we can rewrite our
expression for F, X (C}) as

oo

H H LZJrl,*X(O_kIl) X X(Co) " XX (Co) H LZJrL*X(O_in)
i=0 \[1€O®;_, I,€@
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Hak = Opt1lp_q1, We have equivalences

[T & X))~ [ aiiona X)I) = Fulo 1 X)(Cron).
1'e®f_4 1I'e®y

n
Here, as ¢,

Comparing this to the expression for F; , in Proposition [£4] then completes the
proof. O

Remark 4.7. Let E™ denote the nerve of the (contractible) category with n objects
and a unique morphism between any two objects, viewed as a Segal space. Then a
Segal space is complete if it is local with respect to the map E' — E°. We can then
inductively define a Segal A x ©,,-space X to be complete if X (—, Cp) is a complete
Segal space and X ([1],-) is a complete Segal @,-space, where a Segal ©,,-space
Y is complete if 77, ;Y is a complete A X @,,_;-space. Expanding this out, it is
easy to see that it recovers Rezk’s definition of complete ©,,-spaces, and that under
our equivalence Prgeg(A™) =~ Pgeg(©,,) the complete ©,,-spaces correspond to the
complete n-fold Segal spaces as defined by Barwick.
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