Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Solving existence problems via $ F$-contractions


Author: Dariusz Wardowski
Journal: Proc. Amer. Math. Soc. 146 (2018), 1585-1598
MSC (2010): Primary 47H10, 47H09, 47H08, 47N20
DOI: https://doi.org/10.1090/proc/13808
Published electronically: December 28, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main results of the paper concern the existence of fixed points of nonlinear $ F$-contraction and the sum of this type of mapping with a compact operator. The results of Krasnosel'skii type are obtained with a usage of the Hausdorff measure of noncompactness and condensing mappings. The presented new tools give the possibility to verify the existence problems of the solutions for some classes of integral equations.


References [Enhancements On Off] (What's this?)

  • [1] Józef Banaś and Kazimierz Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, Inc., New York, 1980. MR 591679
  • [2] T. A. Burton, Integral equations, implicit functions, and fixed points, Proc. Amer. Math. Soc. 124 (1996), no. 8, 2383-2390. MR 1346965, https://doi.org/10.1090/S0002-9939-96-03533-2
  • [3] T. A. Burton and Colleen Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr. 189 (1998), 23-31. MR 1492921, https://doi.org/10.1002/mana.19981890103
  • [4] C. Corduneanu, Integral equations and applications, Cambridge University Press, Cambridge, 1991. MR 1109491
  • [5] Gabriele Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92 (Italian). MR 0070164
  • [6] J. Garcia-Falset, K. Latrach, E. Moreno-Gálvez, and M.-A. Taoudi, Schaefer-Krasnoselskii fixed point theorems using a usual measure of weak noncompactness, J. Differential Equations 252 (2012), no. 5, 3436-3452. MR 2876659, https://doi.org/10.1016/j.jde.2011.11.012
  • [7] Nawab Hussain, Abdul Latif, and Iram Iqbal, Fixed point results for generalized $ F$-contractions in modular metric and fuzzy metric spaces, Fixed Point Theory Appl., 2015:158, 20 pp.. MR 3392555, https://doi.org/10.1186/s13663-015-0407-1
  • [8] N. Hussain and P. Salimi, Suzuki-Wardowski type fixed point theorems for $ \alpha$-GF-contractions, Taiwanese J. Math. 18 (2014), no. 6, 1879-1895. MR 3284036, https://doi.org/10.11650/tjm.18.2014.4462
  • [9] Iram Iqbal and Nawab Hussain, Fixed point theorems for generalized multivalued nonlinear $ \mathbb{F}$-contractions, J. Nonlinear Sci. Appl. 9 (2016), no. 11, 5870-5893. MR 3584046
  • [10] I. Iqbal, N. Hussain, and N. Sultana, Fixed points of multivalued non-linear $ F$-contractions with application to solution of matrix equations, Filomat 31 (2017), no. 11, 3319-3333.
  • [11] Jacek R. Jachymski, Equivalence of some contractivity properties over metrical structures, Proc. Amer. Math. Soc. 125 (1997), no. 8, 2327-2335. MR 1389524, https://doi.org/10.1090/S0002-9939-97-03853-7
  • [12] Jacek Jachymski, Equivalent conditions for generalized contractions on (ordered) metric spaces, Nonlinear Anal. 74 (2011), no. 3, 768-774. MR 2738628, https://doi.org/10.1016/j.na.2010.09.025
  • [13] W. A. Kirk, Contraction mappings and extensions, Handbook of metric fixed point theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 1-34. MR 1904272
  • [14] Dorota Klim and Dariusz Wardowski, Fixed points of dynamic processes of set-valued $ F$-contractions and application to functional equations, Fixed Point Theory Appl., 2015:22, 9 pp.. MR 3311515, https://doi.org/10.1186/s13663-015-0272-y
  • [15] M. A. Krasnosel'skiĭ, Some problems of nonlinear analysis, American Mathematical Society Translations, Ser. 2, Vol. 10, American Mathematical Society, Providence, R.I., 1958, pp. 345-409. MR 0094731
  • [16] Wojciech Kryszewski and Jarosław Mederski, Fixed point index for Krasnosel'skii-type set-valued maps on complete ANRs, Topol. Methods Nonlinear Anal. 28 (2006), no. 2, 335-384. MR 2289691
  • [17] Yicheng Liu and Zhixiang Li, Krasnoselskii type fixed point theorems and applications, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1213-1220. MR 2367095, https://doi.org/10.1090/S0002-9939-07-09190-3
  • [18] Gülhan Mınak, Asuman Helvacı, and Ishak Altun, Ćirić type generalized $ F$-contractions on complete metric spaces and fixed point results, Filomat 28 (2014), no. 6, 1143-1151. MR 3360088, https://doi.org/10.2298/FIL1406143M
  • [19] Daniela Paesano and Calogero Vetro, Multi-valued $ F$-contractions in 0-complete partial metric spaces with application to Volterra type integral equation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108 (2014), no. 2, 1005-1020. MR 3249990, https://doi.org/10.1007/s13398-013-0157-z
  • [20] Hossein Piri and Poom Kumam, Some fixed point theorems concerning $ F$-contraction in complete metric spaces, Fixed Point Theory Appl., 2014:210, 11 pp.. MR 3357360, https://doi.org/10.1186/1687-1812-2014-210
  • [21] Bogdan Przeradzki, A generalization of Krasnosel'skii fixed point theorem for sums of compact and contractible maps with application, Cent. Eur. J. Math. 10 (2012), no. 6, 2012-2018. MR 2983143, https://doi.org/10.2478/s11533-012-0102-y
  • [22] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290. MR 0433430, https://doi.org/10.2307/1997954
  • [23] B. N. Sadovskiĭ, Limit-compact and condensing operators, Uspehi Mat. Nauk 27 (1972), no. 1(163), 81-146 (Russian). MR 0428132
  • [24] Helmut Schaefer, Über die Methode der a priori-Schranken, Math. Ann. 129 (1955), 415-416 (German). MR 0071723, https://doi.org/10.1007/BF01362380
  • [25] N. A. Secelean, Weak $ F$-contractions and some fixed point results, Bull. Iranian Math. Soc. 42 (2016), no. 3, 779-798. MR 3518218
  • [26] Nicolae-Adrian Secelean, Generalized $ F$-iterated function systems on product of metric spaces, J. Fixed Point Theory Appl. 17 (2015), no. 3, 575-595. MR 3411806, https://doi.org/10.1007/s11784-015-0235-2
  • [27] Nicolae-Adrian Secelean, Iterated function systems consisting of $ F$-contractions, Fixed Point Theory Appl., 2013:277, 13 pp.. MR 3213104, https://doi.org/10.1186/1687-1812-2013-277
  • [28] N.A. Secelean and D. Wardowski, New fixed point tools in non-metrizable spaces, Results. Math. (2017), DOI: 10.1007/s00025-017-0688-2.
  • [29] Nicolae-Adrian Secelean and Dariusz Wardowski, $ \psi F$-contractions: not necessarily nonexpansive Picard operators, Results Math. 70 (2016), no. 3-4, 415-431. MR 3544869, https://doi.org/10.1007/s00025-016-0570-7
  • [30] Margherita Sgroi and Calogero Vetro, Multi-valued $ F$-contractions and the solution of certain functional and integral equations, Filomat 27 (2013), no. 7, 1259-1268. MR 3243997, https://doi.org/10.2298/FIL1307259S
  • [31] Tomonari Suzuki, Discussion of several contractions by Jachymski's approach, Fixed Point Theory Appl., 2016:91, 11 pp.. MR 3548683, https://doi.org/10.1186/s13663-016-0581-9
  • [32] M. Turinici, Wardowski implicit contractions in metric spaces, (2013) arXiv:1212.3164v2 [Math.GN].
  • [33] Xavier Udo-utun, On inclusion of $ F$-contractions in $ (\delta,k)$-weak contractions, Fixed Point Theory Appl. , posted on (2013), 2014:65, 6 pp.. MR 3345452, https://doi.org/10.1186/1687-1812-2014-65
  • [34] D. Wardowski and N. Van Dung, Fixed points of $ F$-weak contractions on complete metric spaces, Demonstr. Math. 47 (2014), no. 1, 146-155. MR 3200192, https://doi.org/10.2478/dema-2014-0012
  • [35] Dariusz Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012:94, 6 pp.. MR 2949666, https://doi.org/10.1186/1687-1812-2012-94
  • [36] Kazimierz Włodarczyk, Periodic and fixed points of the Leader-type contractions in quasi-triangular spaces, Fixed Point Theory Appl., 2016:85, 28 pp.. MR 3538658, https://doi.org/10.1186/s13663-016-0575-7

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47H10, 47H09, 47H08, 47N20

Retrieve articles in all journals with MSC (2010): 47H10, 47H09, 47H08, 47N20


Additional Information

Dariusz Wardowski
Affiliation: Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland
Email: wardd@math.uni.lodz.pl

DOI: https://doi.org/10.1090/proc/13808
Keywords: Fixed point, nonlinear $F$-contraction, compact operator, condensing mapping, integral equation
Received by editor(s): February 2, 2017
Received by editor(s) in revised form: May 4, 2017
Published electronically: December 28, 2017
Communicated by: Wenxian Shen
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society