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ASYMPTOTIC LIPSCHITZ REGULARITY OF VISCOSITY

SOLUTIONS OF HAMILTON-JACOBI EQUATIONS

XIA LI AND LIN WANG

(Communicated by Yingfei Yi)

Abstract. For each continuous initial data ϕ(x) ∈ C(M,R), we obtain the
asymptotic Lipschitz regularity of the viscosity solution of the following evo-
lutionary Hamilton-Jacobi equation with convex and coercive Hamiltonians:{

∂tu(x, t) +H(x, ∂xu(x, t)) = 0,

u(x, 0) = ϕ(x).

1. Introduction and main result

Let M be an n-dimensional connected and closed smooth manifold. We are
concerned with a Hamiltonian H : T ∗M → R satisfying the following assumptions:

(H1) Smoothness: H(x, p) is a C2 function;
(H2) Convexity: H(x, p) is strictly convex with respect to p;
(H3) Coercivity: for each x ∈ M , H(x, p) → ∞ uniformly as |p| → ∞.

(H3) is equivalent to the topological statement that for each c ∈ R, the set {(x, p) ∈
T ∗M |x ∈ K,H(x, p) ≤ c} is compact.

We consider the following Hamilton-Jacobi equation under the assumptions (H1)-
(H3):

(1.1)

{
∂tu(x, t) +H(x, ∂xu(x, t)) = 0,

u(x, 0) = ϕ(x),

where (x, t) ∈ M × [0,∞) and ϕ(x) ∈ C(M,R).
We recall the Mañé critical value of H(x, p) denoted by c[0]. By [3], one has

(1.2) c[0] = inf
u∈C1(M,R)

max
x∈M

H(x, ∂xu).

Let u(x, t) be the viscosity solution of (1.1). It was shown by [4] that the limit
v(x) := limt→∞(u(x, t) + c[0]t) is a Lipschitz weak KAM solution of

(1.3) H(x, ∂xu) = c[0].
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Recently, a convergence result for more general contact Hamilton-Jacobi equations
was established in [7]. Note that the limit v(x) is a Lipschitz function, while the
initial data ϕ(x) is only continuous. A question is:

When does the Lipschitz regularity of the viscosity solution of (1.1) emerge?
If H(x, p) is superlinear with respect to p, then the Lipschitz regularity emerges

after an arbitrarily small time, which is basically from the celebrated Fleming’s
lemma [5, Theorem 4.4.3]. Unfortunately, if H(x, p) is coercive, the Fleming’s
lemma does not hold anymore. Then it is natural to ask

Will the Lipschitz regularity of the viscosity solution of (1.1) emerge after a
finite time (asymptotic Lipschitz regularity) or an infinite time (limit Lipschitz
regularity)?

In this note, we clarify that the asymptotic Lipschitz regularity of the viscosity
solution of (1.1) is true. More precisely, we have:

Theorem 1.1. Let u(x, t) be a viscosity solution of (1.1) with continuous initial
data ϕ ∈ C(M,R). Then there exists t0 > 0 such that for t > t0, u(x, t) is ι-
Lipschitz continuous, where t0, ι = ι(t0) are independent of ϕ.

This note is outlined as follows. In Section 2, some properties of viscosity so-
lutions are introduced as preliminaries. In Section 3, by introducing a modified
Hamiltonian, the Mañé critical value and action minimizing orbits are located.
The proof of Theorem 1.1 is completed in Section 4.

2. Preliminaries

In this section, we introduce some properties of the viscosity solutions in our
settings. First of all, we introduce the notion of semiconcave functions.

Definition 2.1 (Semiconcavity on R
n). Let U be an open convex subset of Rn

and let u : U → R be a function. u is called a semiconcave function with linear
modulus if there exists a finite constant K and for each x ∈ U there exists a linear
form θx : Rn → R such that for any y ∈ U ,

(2.1) u(y)− u(x) ≤ θx(y − x) +K|y − x|2.

For the sake of simplicity, we only consider the semiconcave functions with linear
modulus defined as above. See [2] for a more general definition. In this context,
the notion “semiconcave” means “semiconcave with a linear modulus”.

Definition 2.2 (Semiconcavity on a manifold). A function u : M → R defined on
the Cr (r ≥ 2) differential k-dimensional manifold M is locally semiconcave if for
each x ∈ M there exists a Cr (r ≥ 2) coordinate chart ψ : U → R

n with x ∈ U
such that u ◦ ψ−1 : U → R is semiconcave.

Consider the stationary equation

(2.2) H(x, ∂xu) = 0

and the evolutionary equation

(2.3) ∂tu+H(x, ∂xu) = 0.

Based on [2, Theorem 5.3.1. and Theorem 5.3.6], we have the following results.
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Proposition 2.3. Letting H ∈ C2(T ∗M,R), we have the following properties.

(a) Let u be a semiconcave function satisfying the equations (2.2) (resp. (2.3))
almost everywhere. If H(x, p) is convex with respect to p, then u is a
viscosity solution of the equations (2.2) (resp. (2.3)).

(b) Let u be a Lipschitz viscosity solution of the equations (2.2) (resp. (2.3)).
If H(x, p) is strictly convex with respect to p, then u is locally semiconcave
on M (resp. M × (0,+∞)).

Let us recall the notion of upper differentials (see [2, 5] for instance).

Definition 2.4 (Upper differential on R
n). Let u : U → R be a function defined

on the open subset U of Rn. The set

D+u(x0) :=

{
θ ∈ R

n
∣∣ lim sup

x→x0

u(x)− u(x0)− θ(x− x0)

|x− x0|
≤ 0

}
is called an upper differential of u at x0.

Definition 2.5 (Upper differential on a manifold). Let u : M → R be a function
defined on the manifold M . The linear form θ ∈ T ∗

x0
M is an upper differential of

u at x0 ∈ M if there exist a neighborhood V of x0 and a function ϕ : V → R,
diffferentiable at x0, with ϕ(x0) = u(x0) and dx0

ϕ = θ and such that ϕ(x) ≥ u(x)
for each x ∈ V .

It is easy to verify the equivalence between the definition of upper differentials
on a Euclidean space and the one on a manifold.

We use ∂u(x0, θ) to denote a one-sided directional derivative along θ ∈ R
n at

x0, namely

∂u(x0, θ) := lim
h→0+

u(x0 + hθ)− u(x0)

h
.

The upper differential and one-sided directional derivative of the semiconcave func-
tion enjoy the following properties ([2, Proposition 3.3.4 and Theorem 3.3.6]).

Proposition 2.6. Let u : M → R be a semiconcave function. Then the following
properties hold true.

(a) D+u(x) �= ∅ for any x ∈ M .
(b) If {xn} is a sequence in M converging to x and if pn ∈ D+u(xn) converges

to a vector p, then p ∈ D+u(x).
(c) ∂u(x, θ) = minp∈D+u(x)〈p, θ〉 for any x ∈ M and θ ∈ R

n.

Throughout this paper, we shall use | · | to denote the Euclidean norm, that is,

|α| =
√
α2
1 + . . .+ α2

i for given α = (α1, . . . , αi) ∈ R
i, i = 1 or i = n.

3. Mañé critical value and action minimizing orbits

3.1. Modification of the Hamiltonian. Let H(x, p) be a Hamiltonian satisfying
(H1)-(H3). We construct a new Hamiltonian denoted by HR(x, p) with R > 1 as
follows. Without loss of generality, we assume M = T

n, from which T ∗M =
T
n × R

n,

(3.1) HR(x, p) = αR(p)H(x, p) + μRβ(|p|2 − R2),
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where μR is a constant determined by (3.4) below and αR(p) is a C2 function
satisfying

(3.2) αR(p) =

{
1, |p| ≤ R+ 1,
0, |p| > R+ 2.

Without loss of generality, one can require |α′
R(p)| < 2 and ‖α′′

R(p)‖1 < 2, where
‖·‖1 denotes 1-norm, namely the maximum of the summation of the absolute values
of elements in each column. β(z) is defined as

(3.3) β(z) =

{
0, |z| ≤ 0,
z4, |z| > 0.

It is easy to see that HR(x, p) = H(x, p) for |p| ≤ R. In the following, we show
that HR(x, p) satisfies (H1), (H2) and superlinearity.

Claim 1. HR(x, p) satisfies (H1).

Proof of Claim 1. Note that αR(p) and H(x, p) are C2 functions. By the construc-
tion, β(z) is of class C3. It follows that HR(x, p) is a C2 function. �

Claim 2. HR(x, p) satisfies (H2).

Proof of Claim 2. It suffices to show that for given x ∈ M , ∂2HR/∂p
2(x, p) > 0.

(i) For |p| ≤ R,

HR(x, p) = H(x, p).

Hence, we have

∂2HR

∂p2
(x, p) =

∂2H

∂p2
(x, p) > 0.

(ii) For R < |p| ≤ R+ 1,

HR(x, p) = H(x, p) + μRβ(|p|2 −R2).

It follows that

∂2HR

∂p2
(x, p) =

∂2H

∂p2
(x, p) + 2μR

(
2β′′(|p|2 −R2)Z(p) + β′(|p|2 − R2) · E

)
> 0,

where Z(p) := (p1, . . . , pn)
T ·(p1, . . . , pn), and E denotes the n×n identity

matrix.
(iii) For R+ 1 < |p| ≤ R+ 2,

HR(x, p) = αR(p)H(x, p) + μRβ(|p|2 − R2).

This yields that

∂2HR

∂p2
(x, p) =H(x, p)α′′

R(p) +W (x, p) + αR(p)
∂2H

∂p2
(x, p)

+ 2μR

(
2β′′(|p|2 −R2)Z(p) + β′(|p|2 − R2) · E

)
,

where

W (x, p) := α′
R(p)

T · ∂H
∂p

(x, p) +
∂H

∂p
(x, p)T · α′

R(p).

Since W (x, p) is symmetric, ∂2HR/∂p
2(x, p) is symmetric. We denote

∂2HR/∂p
2(x, p) = (aij)n×n; then ∂2HR/∂p

2(x, p)(x, p) is positive definite
if
√
aiiajj > (n− 1)|aij | for i, j = 1, . . . , n and i �= j.
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Based on the construction of αR(p) and the compactness of M , let

γR := 2 sup
(x,p)∈Tn×[R+1,R+2]n

|H(x, p)|+ (n− 1) sup
(x,p)∈Tn×[R+1,R+2]n

‖W (x, p)‖1.

It is enough to take

(3.4) μR > max {γR, 1} .
(iv) For |p| > R+ 2,

HR(x, p) = μRβ(|p|2 −R2),

which implies that

∂2HR

∂p2
(x, p) = 2μR

(
2β′′(|p|2 −R2)Z(p) + β′(|p|2 −R2) · E

)
> 0.

Therefore, HR(x, p) satisfies (H2). �

Claim 3. HR(x, p) satisfies the superlinearity.

Proof of Claim 3. It suffices to verify the superlinearity of HR(x, p) for |p| > R+2.
In this case, we have

HR(x, p) ≥ μRβ(|p|2 −R2) ≥ |p|2.
Hence, for each A > 0, one can find CA > 0 such that

HR(x, p) ≥ A|p| − CA.

Therefore, HR(x, p) satisfies the superlinearity. �

It is easy to see that HR converges uniformly on compact subsets to H in the
C2 topology as R → ∞.

3.2. Mañé critical value. We use cR to denote the Mañé critical value ofHR(x, p).
Then

(3.5) cR = inf
u∈C1(M,R)

max
x∈M

HR(x, ∂xu).

The following lemma asserts that for R large enough, the Mañé critical value of HR

is independent of R. We denote

(3.6) c[0] := inf
u∈C1(M,R)

max
x∈M

H(x, ∂xu),

which can be seen as the Mañé critical value of H(x, p).

Lemma 3.1. There exists R0 > 0 such that for any R > R0, we have

(3.7) cR = c[0].

Proof. From (3.5) and the construction of HR, it follows that for any R > 0,

(3.8) cR ≤ max
x∈M

HR(x, 0) = max
x∈M

H(x, 0).

Let A := maxx∈M H(x, 0) + 1. We denote

Λ := {(x, p) ∈ T ∗M |x ∈ M,H(x, p) ≤ A}.
By (H3) and the compactness of M , Λ is compact. Hence, there exists R0 > 0 such
that

Λ ⊂ {(x, p) ∈ T ∗M |x ∈ M, |p|x ≤ R0},
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where | · |x denotes the Riemannian metric on T ∗
xM . Based on the construction of

HR, it yields that for any R > R0 and (x, p) ∈ Λ, we have

(3.9) HR(x, p) = H(x, p).

In terms of the definition of the Mañé critical value, one can find a sequence un ∈
C1(M,R) such that

(3.10) max
x∈M

HR(x, ∂xun(x)) → cR.

Since cR < A, we have |∂xun(x)| ≤ R0 for n large enough. Moreover, we have
HR(x, ∂xun(x)) = H(x, ∂xun(x)) for any R > R0, which yields for n large enough,

c[0] = inf
u∈C1(M,R)

max
x∈M

H(x, ∂xu(x))

≤ max
x∈M

H(x, ∂xun(x))

= max
x∈M

HR(x, ∂xun(x)).

Taking the limit as n → ∞, it follows from (3.10) that c[0] ≤ cR. Similarly, we
choose a sequence vn ∈ C1(M,R) such that

(3.11) max
x∈M

H(x, ∂xvn(x)) → c[0].

Since c[0] ≤ maxx∈M H(x, 0) < A, we have |∂xvn(x)| ≤ R0 for n large enough.
Moreover, we have HR(x, ∂xvn(x)) = H(x, ∂xvn(x)) for any R > R0, which yields
for n large enough,

cR = inf
u∈C1(M,R)

max
x∈M

HR(x, ∂xu(x))

≤ max
x∈M

HR(x, ∂xvn(x))

= max
x∈M

H(x, ∂xvn(x)),

which together with (3.11) implies that cR ≤ c[0] as n → ∞. Therefore, one can
find R0 > 0 such that for any R > R0, cR = c[0]. This finishes the proof of Lemma
3.1. �

For the sake of simplicity, we assume c[0] = 0 in the following context.

3.3. The viscosity solution of (1.3). Let ū(x) be a viscosity solution ofH(x, ∂xu)
= 0. Since H(x, p) is coercive with respect to p, ū(x) is a Lipschitz function on M ,
which together with Proposition 2.3 implies that ū is semiconcave.

Let D be the set of all differentiable points of ū on M . Due to the Lipschitz
property of ū, it follows that D has full Lebesgue measure.

Lemma 3.2. There exists R1 > 0 such that for any R > R1, ū(x) is a viscosity
solution of HR(x, ∂xu) = 0.

Proof. Since ū(x) is a Lipschitz function on M , for x ∈ D, we have H(x, ∂xū) = 0.
By (H3), there exists R1 > 0 such that |∂xū| ≤ R1 for x ∈ D. It follows from the
construction of HR that for R > R1 and

(x, p) ∈ {(x, p) ∈ T ∗M |x ∈ D, |p|x ≤ R1},
we have HR(x, p) = H(x, p), which means that for x ∈ D,

HR(x, ∂xū) = 0.
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Due to the semiconcavity of ū(x), it follows from Proposition 2.3 that ū(x) is a
viscosity solution of HR(x, ∂xu) = 0 for any R > R1. This completes the proof of
Lemma 3.2. �

3.4. Location of the action minimizing orbits. Let Φt
H denote the flow gen-

erated by H(x, p). Let (x(t), p(t)) := Φt
H(x0, p0). Let LR be the Lagrangian as-

sociated to HR. To fix the notion, for a given R > 0 and (x0, p0) ∈ T ∗M , we
call (xR(t), pR(t)) := Φt

HR
(x0, p0) the action minimizing orbit with xR(0) = x0 and

xR(t) = y if

xR(t) = γR(t), pR(t) =
∂LR

∂ẋ
(γR(t), γ̇R(t)),

where γR : [0, t] → M is an action minimizing curve with γR(0) = x0 and γR(t) = y.
That is, γR achieves

inf
γ(0)=x0

γ(t)=y

∫ t

0

LR(γ(s), γ̇(s))ds.

Lemma 3.3 (A priori compactness). For s ∈ [0, t], let (xR(s), pR(s)) be an action
minimizing orbit with xR(0) = x0 and xR(t) = y. There exists R̄ > 1 such that for
any R > R̄, one can find t0 := t0(R̄) > 0 such that for any s ∈ [0, t] with t > t0,
we have

(xR(s), pR(s)) ∈ Ω,

where Ω := {(x, p) | H(x, p) ≤ 1}.

In order to prove Lemma 3.3, we need to do some preparations. Based on Lemma
3.2, it yields that for x ∈ D and R > R1,

(3.12) HR(x, ∂xū(x)) = 0.

We define

(3.13) L̃R(x, ẋ) = LR(x, ẋ)− 〈∂xū(x), ẋ〉, x ∈ D.

Denote

(3.14) ΓR :=

{(
x,

∂HR

∂p
(x, ∂xū(x))

)
: x ∈ D

}
,

where ∂HR

∂p denotes the partial derivative of HR with respect to the second argu-

ment. We have the following lemma.

Lemma 3.4. For any x ∈ D, L̃R(x, ẋ) ≥ 0. In particular, L̃R(x, ẋ) = 0 if and
only if (x, ẋ) ∈ ΓR.

Proof. By (3.13) and (3.14), we have

(3.15) L̃R

∣∣∣∣
ΓR

= −HR(x, ∂xū(x)) = 0.

In addition, we have

(3.16)
∂L̃R

∂ẋ

∣∣∣∣
ΓR

=
∂LR

∂ẋ
(x, ẋ)− ∂xū(x) = 0.
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By the superlinearity of LR, it follows from (3.15) that there exists K1 > 0 large
enough such that for |ẋ| > K1,

L̃R(x, ẋ) ≥ d > 0,

where d is a constant independent of (x, ẋ).
For x ∈ D, ū(x) satisfies the equation (3.12). Since ū(x) is Lipschitz continuous,

∂xū(x) is bounded. Let

ẋ0 :=
∂HR

∂p
(x, ∂xū(x)).

Then there exists K2 > 0 independent of x such that |ẋ0| ≤ K2. Take K3 :=

max{K1,K2}. Note that ∂2LR

∂ẋ2 (x, ẋ) is positive definite, for |ẋ| ≤ K3, it follows
from (3.15) and (3.16) that there exists Λ > 0 independent of (x, ẋ) such that

(3.17) L̃R(x, ẋ) ≥ Λ

∣∣∣∣ẋ− ∂HR

∂p
(x, ∂xū(x))

∣∣∣∣2 .
Consequently, it is easy to see that

(3.18) L̃R(x, ẋ)

{
= 0, (x, ẋ) ∈ ΓR,
> 0, (x, ẋ) /∈ ΓR.

This completes the proof of Lemma 3.4. �
Let Ω∗ denote the Legendre transformation of Ω via L : T ∗M → TM . By (H3),

there exist R2, R
∗
2 > 0 such that

Ω ⊂ {(x, p) ∈ T ∗M | x ∈ M, |p|x ≤ R2},
Ω∗ ⊂ {(x, v) ∈ TM | x ∈ M, |v|x ≤ R∗

2}.
Based on the preparations above, we will prove Lemma 3.3. First of all, we take

(3.19) R̄ = max{R0, R1, R2, R
∗
2},

where R0, R1 are determined by Lemma 3.1 and Lemma 3.2.

Proof of Lemma 3.3. By the energy conservation ofH, it suffices to prove (x0, p0) ∈
Ω, where (x0, p0) = (xR(0), pR(0)) is the initial point of the flow Φt

HR
. Let

(3.20) Δ := T ∗M\Ω = {(x, p) | H(x, p) > 1}.
By contradiction, we assume (x0, p0) ∈ Δ.

Let Σ := {(x, ∂xū(x)) | x ∈ D}. Since H(x, ∂xū(x)) = 0 for x ∈ D, Σ ∩Δ = ∅.
Let Σ∗ and Δ∗ denote the Legendre transformation of Σ and Δ via L : T ∗M → TM
respectively. Since L is a diffeomorphism onto the image, we have

(3.21) Σ∗ ∩Δ∗ = ∅.
By virtue of Lemma 3.2, it yields that for R > R̄ and x ∈ D,

∂HR

∂p
(x, ∂xū(x)) =

∂H

∂p
(x, ∂xū(x)).

It follows that

(3.22) Σ∗ =

{(
x,

∂H

∂p
(x, ∂xū(x))

)
: x ∈ D

}
.

We use Σ∗
κ to denote a κ-neighborhood of Σ∗ in the fibers, namely

Σ∗
κ :=

{
(x, ẋ)

∣∣ x ∈ D, dist

(
ẋ,

∂H

∂p
(x, ∂xū(x))

)
≤ κ

}
.
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By the C2 regularity of H and LR, for any ε > 0, there exists κ > 0 such that
for (x, ẋ) ∈ Σ∗

κ, we have

H

(
x,

∂LR

∂ẋ
(x, ẋ)

)
≤ ε;

hence, for κ small enough, we have ε < 1. Moreover

Σ∗
κ ∩Δ∗ = ∅.

By Lemma 3.4, for any x ∈ D, L̃R(x, ẋ) ≥ 0 and L̃R(x, ẋ) = 0 if and only if
(x, ẋ) ∈ Σ∗. Then for each R > R̄ , there exists a constant η := η(R̄) > 0 such that
for x ∈ D and (x, ẋ) ∈ Δ∗,

(3.23) L̃R(x, ẋ) ≥ η,

where

L̃R(x, ẋ) = LR(x, ẋ)− 〈∂xū(x), ẋ〉.
Let γR : [0, t] → M be an action minimizing curve with γR(0) = x0, γR(t) = y.

Then we have γ̇R(s) = ∂HR

∂p (xR(s), pR(s)) for s ∈ [0, t]. Since (x0, p0) ∈ Δ, for

s ∈ [0, t], we have

(3.24) (γR(s), γ̇R(s)) ∈ Δ∗.

Let Θ be the set of γR(s) along which the one-sided directional derivative denoted
by ∂ū(γR(s), γ̇R(s)) exists. For γR(s) ∈ Θ, we denote

L̂R(γR(s), γ̇R(s)) := LR(γR(s), γ̇R(s))− ∂ū(γR(s), γ̇R(s)).

Note that ū is locally semiconcave. By virtue of Proposition 2.6(b), one can find a
sequence xs

n ∈ D with xs
n → γR(s) and ∂xū(x

s
n) → ps ∈ D+ū(γR(s)) as n → ∞ for

a given s ∈ [0, t]. By virtue of Proposition 2.6(c), for n large enough, extracting a
subsequence if necessary, we have

∂ū(γR(s), γ̇R(s)) = min
p∈D+ū(γR(s))

〈p, γ̇R(s)〉

≤ 〈ps, γ̇R(s)〉

≤ 〈∂xū(xs
n), γ̇R(s)〉+

1

n
.

Note that Δ∗ is an open set; then (xs
n, γ̇R(s)) ∈ Δ∗ for n large enough. It follows

from (3.23) that for every s ∈ [0, t] and n large enough,

(3.25) L̂R(γR(s), γ̇R(s)) ≥ LR(x
s
n, γ̇R(s))− 〈∂xū(xs

n), γ̇R(s)〉 −
2

n
≥ η

2
.

Moreover, we have ∫ t

0

L̂R(γR(s), γ̇R(s))ds ≥
η

2
t.

On the other hand, we have∫ t

0

L̂R(γR(s), γ̇R(s))ds =

∫ t

0

LR(γR(s), γ̇R(s))− ∂ū(γR(s), γ̇R(s))ds

=

∫ t

0

LR(γR(s), γ̇R(s))ds− (ū(γR(t))− ū(γR(0))).
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It follows from the semiconcavity and the compactness of M that ū has a uniform
bound denoted by C0. Hence, we have

(3.26)

∫ t

0

LR(γR(s), γ̇R(s))ds ≥
η

2
t− 2C0.

On the other hand, γR is an action minimizing curve of LR. Let γR2
be an action

minimizing curve of LR2
. It follows from Lemma 3.1 that for R > R̄, there exists

a constant C1 > 0 independent of R such that∫ t

0

LR(γR(s), γ̇R(s))ds ≤
∫ t

0

LR(γR∗
2
(s), γ̇R∗

2
(s))ds

=

∫ t

0

LR∗
2
(γR∗

2
(s), γ̇R∗

2
(s))ds

= ht
R∗

2
(x0, y) ≤ C1,

(3.27)

where ht
R∗

2
(x0, y) denotes the minimal action of LR∗

2
. It is clear to see that (3.27)

contradicts (3.26) if we take t > (4C0 + 2C1)/η. Let t0 := (4C0 + 2C1)/η; then we
have (x0, p0) /∈ Δ for t > t0. Obviously, t0 only depends on R̄. This completes the
proof of Lemma 3.3. �

4. Asymptotic Lipschitz regularity

In this section, we are devoted to proving Theorem 1.1, which is concerned with
the following Hamilton-Jacobi equation under the assumptions (H1)-(H3):

(4.1)

{
∂tu(x, t) +H(x, ∂xu(x, t)) = 0,

u(x, 0) = ϕ(x),

where (x, t) ∈ M × [0,∞) and ϕ(x) ∈ C(M,R). Let uR(x, t) be the viscosity
solution of the following equation:

(4.2)

{
∂tu(x, t) +HR(x, ∂xu(x, t)) = 0,

u(x, 0) = ϕ(x).

Let TR
t be the Lax-Oleinik semigroup generated by LR associated to HR via the

Legendre transformation. Namely,

(4.3) TR
t ϕ(x) = inf

γ(t)=x

{
ϕ(γ(0)) +

∫ t

0

LR(γ(s), γ̇(s))ds

}
.

Then we have

(4.4) uR(x, t) = TR
t ϕ(x).

First of all, we consider the viscosity solutions of (4.1) with t suitably large.

Lemma 4.1. For any R ≥ R̄ where R̄ is determined by (3.19), there exists t0 > 0
such that for t > t0, uR(x, t) is a viscosity solution of the following equation:

(4.5) ∂tu(x, t) +H(x, ∂xu(x, t)) = 0.

Proof. By Proposition 2.3(b), uR(x, t) is locally semiconcave on M × (0,∞). Let
ER be the set of all differentiable points of uR(x, t) on M × (0,∞). Then ER has
full Lebesgue measure. For (x, t) ∈ ER, we have uR(x, t) satisfies (4.2). For a given
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(x̄, t̄) ∈ ER, let γR : [0, t̄] → M be a curve achieving the infimum of (4.3) with
γR(t̄) = x̄. Then we have

(4.6) ∂xuR(x̄, t̄) =
∂LR

∂ẋ
(γR(t̄), γ̇R(t̄)).

Since R ≥ R̄, it follows from Lemma 3.3 that there exists t0 > 0 independent of R
such that for t̄ > t0 and any s ∈ [0, t̄],

H

(
γR(s),

∂LR

∂ẋ
(γR(s), γ̇R(s))

)
≤ 1.

Then (x̄, ∂xuR(x̄, t̄)) ∈ Ω. Moreover, for each (x, t) ∈ ER and t > t0, we have

|∂xuR(x, t)| ≤ R̄,

since R̄ is independent of (x, t). It follows that for R > R̄, (x, t) ∈ ER and t > t0,
uR(x, t) satisfies

∂tu(x, t) +HR(x, ∂xu(x, t)) = 0.

Hence, for (x, t) ∈ ER and t > t0, uR(x, t) satisfies (4.5). By Proposition 2.3(a),
uR(x, t) is a viscosity solution of (4.5). This completes the proof of Lemma 4.1. �

Lemma 4.2. Given t > t0, T
R
t ϕ(x) is uniformly bounded for each R > R̄.

Proof. Let γR : [0, t] → M be a curve achieving the infimum of (4.3) with γR(t) = x.
By Lemma 3.3, for R > R̄, there holds

TR
t ϕ(x) = ϕ(γR(0)) +

∫ t

0

LR(γR(s), γ̇R(s))ds

= ϕ(γR(0)) +

∫ t

0

L(γR(s), γ̇R(s))ds,

which implies for any x ∈ M ,

|TR
t ϕ(x)| ≤ max

x∈M
|ϕ(x)|+ t max

(x,ẋ)∈Ω∗
L(x, ẋ).

This completes the proof of Lemma 4.2. �

By Lemma 4.2 and Lemma 3.3, a standard argument shows that given t > t0,
TR
t ϕ(x) is equi-Lipschitz for each R > R̄ (see [7, Proposition 5.5]). It follows from

Lemma 4.1 that for t > t0, the viscosity solution u(x, t) of (4.1) can be represented
as lim infR→∞ TR

t ϕ(x). In the following, we consider the case with t ∈ [0, t0].

Lemma 4.3. Let ψ(x) be a Lipschitz function. Then there exists R̃ > 0 such that
for (x, t) ∈ M × [0, t0], uR̃(x, t) is the viscosity solution of (4.5) with uR̃(x, 0) =
ψ(x).

Proof. Based on uniqueness and the regularity theory of viscosity solutions ([1,
Theorem 8.2], [4, Theorem 2.5]), under the assumptions (H1)-(H3), there exists
a unique Lipschitz viscosity solution u(x, t) of (4.5) with u(x, 0) = ψ(x). At the
differentiable points of u(x, t) on M × [0, t0], we have

(4.7) |∂xu(x, t)| ≤ K,
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where K is a constant. Taking R̃ ≥ K, it follows from a similar argument as the
one in the proof of Lemma 4.1 that for (x, t) ∈ M × [0, t0], u(x, t) is the viscosity
solution of

(4.8)

{
∂tu(x, t) +HR̃(x, ∂xu(x, t)) = 0,

u(x, 0) = ψ(x).

On the other hand, uR̃(x, t) is also a viscosity solution of (4.8). By the uniqueness
of the viscosity solution of (4.8), we have u(x, t) ≡ uR̃(x, t) for (x, t) ∈ M × [0, t0].
This completes the proof of Lemma 4.3. �

Proof of Theorem 1.1. First of all, we consider the case of t ∈ [0, t0], where t0 is
determined by Lemma 4.3. For given initial data ϕ(x) ∈ C(M,R), we choose a
sequence of Lipschitz functions ϕn(x) such that ϕn → ϕ(x) in the C0-norm. Let
un
R(x, t) be the viscosity solution of the following equation:

(4.9)

{
∂tu(x, t) +HR(x, ∂xu(x, t)) = 0,

u(x, 0) = ϕn(x).

By (4.4), we have un
R(x, t) = TR

t ϕn(x). Let

un(x, t) := lim inf
R→∞

TR
t ϕn(x).

It follows from Lemma 4.3 that un(x, t) is the viscosity solution of

(4.10)

{
∂tu(x, t) +H(x, ∂xu(x, t)) = 0,

u(x, 0) = ϕn(x).

Claim.

(4.11) lim
n→∞

un(x, t) = lim inf
R→∞

TR
t ϕ(x).

Proof of the Claim. It is easy to see that for given R̃ > 0 and n ∈ N,

inf
R>R̃

(
TR
t ϕn(x)− TR

t ϕ(x)
)
≤ inf

R>R̃
TR
t ϕn(x)− inf

R>R̃
TR
t ϕ(x)

≤ sup
R>R̃

(
TR
t ϕn(x)− TR

t ϕ(x)
)
.

By virtue of the non-expansiveness of TR
t , we have

‖TR
t ϕn(x)− TR

t ϕ(x)‖∞ ≤ ‖ϕn(x)− ϕ(x)‖∞,

where ‖ · ‖∞ denotes the C0-norm. Hence,

(4.12) ‖ inf
R>R̃

TR
t ϕn(x)− inf

R>R̃
TR
t ϕ(x)‖∞ ≤ ‖ϕn(x)− ϕ(x)‖∞.

Since lim infR→∞ = limR̃→∞ infR>R̃, we have

(4.13) ‖ lim inf
R→∞

TR
t ϕn(x)− lim inf

R→∞
TR
t ϕ(x)‖∞ ≤ ‖ϕn(x)− ϕ(x)‖∞.

Moreover, un(x, t) converges to lim infR→∞ TR
t ϕ(x) in the C0-norm on M × [0, t0]

as n → ∞, which verifies the claim (4.11).
Let ū(x, t) := lim infR→∞ TR

t ϕ(x). It follows from the stability of viscosity
solutions ([5, Theorem 8.1]) that for (x, t) ∈ M × [0, t0], ū(x, t) is the viscosity
solution of (4.1).
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Second, it follows from Lemma 4.1 that for t > t0, the viscosity solution u(x, t)
of (4.1) can be represented as lim infR→∞ TR

t ϕ(x). By virtue of the uniqueness of
the viscosity solution of (4.1) under the assumptions (H1)-(H3) [4, Theorem 2.5],
it follows that for (x, t) ∈ M × [0,∞),

u(x, t) = lim inf
R→∞

TR
t ϕ(x).

In particular, there exists t0 > 0 such that for t > t0, u(x, t) = T R̂
t ϕ(x) where R̂ =

max{R̄, R̃}. Note that T R̂
t ϕ(x) is Lipschitz continuous and its Lipschitz constant

is independent of ϕ ([5, Proposition 4.6.6]). By Lemma 4.1, t0 is also independent
of ϕ. Hence, for t > t0, u(x, t) is ι-Lipschitz continuous and t0, ι are independent
of ϕ.

Thus, we have completed the proof of Theorem 1.1. �
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